Evidence for "Stable" Organocopper Intermediates in the Reaction between Me₂CuLi LiI and Allylic Sulfinyl Mesylates.¹

Roberto Fernández de la Pradilla,*a M. Belén Rubio,ª Joseph P. Marino*b and Alma Viso.b

^a Instituto de Química Orgánica, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain.
^b Department of Chemistry, The University of Michigan, Ann Arbor, Mi 48109-1055, USA.

Abstract: The addition of Me₂CuLi-LiI to acyclic allylic sulfinyl mesylates bearing a phenyl functionality in the molecule gives rise to chiral allenes 4 and 11 in variable yields and optical purities, presumably via an unusually stable σ -copper(III) species.

Despite numerous recent studies on the structure of organocopper reagents² and on the mechanism of copper (I) mediated conjugate additions to α,β -unsaturated ketones and esters³ and allylic derivatives,⁴ some aspects of these useful reactions⁵ remain poorly understood. While the intermediacy of a σ -copper(III) adduct, derived from an initial d,π^* -complex, is commonly accepted, experimental data supporting this adduct is scarce, and we are not aware of any report on the direct detection of this transient intermediate.⁶ In this paper we describe our preliminary observations on what may be an unusually stable σ -copper(III) species attached to an sp³ hybridized carbon and its unexpected reactivity upon hydrolysis.

At the initial stage of the development of a new strategy for the asymmetric construction of acyclic chiral centers via conjugate addition of organocuprates to allylic mesylates activated with a chiral sulfoxide group,⁷ we found that when the crude solution of unstable mesylate 1 (Scheme 1) was treated with Gilman cuprate Me₂CuLi LiI in THF (-78°C or -78° - r.t.) variable but consistently low yields (<25%) of S_N2' products 2 and 3 were obtained. After considerable experimentation we determined, by comparison of our spectral and analytical data with the values in the literature,^{6a} that the major product of the reaction was the volatile allene 4.

We hypothesized that allene 4 was being produced upon aqueous work-up of an unusually stable σ -copper(III) intermediate and therefore we tested different reaction conditions to promote transfer of the ligand on copper before hydrolysis. Indeed, refluxing the crude reaction mixture (ca. 30 min) brought about a substantial increase in yield (80%) without altering the diastereoselectivity of the process (Table 1, entry 2). Alternatively, the use of cyanocuprates, known to undergo a faster reductive elimination,⁸ resulted in an increase of selectivity and in virtually complete S_N2' displacement without requiring reflux of the reaction mixture (entries 3 and 4).

Entry	Substrate	Conditions	<u>S_N2'(ratio)</u>	<u>Allene(α)^a</u>	SN2'/Allene ratio ^b (yield) ^c		
1	1	Me ₂ CuLi·LiI(-78°-r.t., 5h)	2:3 (45:55)	4 (~0°)	27:73	(73%)	
2	1	$Me_2CuLi\cdotLiI(-78^{\circ}-\Delta)$	2:3 (45:55)	Trace	-	(80%)	
37	1	MeCuCNLi(-78°-r.t.)	2:3 (28:72)	Trace	· _	(89%)	
. 47	1	MeCuCNMgBr(-780-r.t.)	2:3 (6:94)	Trace	-	(80%)	
5	5	Me2CuLi·LiI(-780-00)	6:7 (6:94)	4 (-11.0º)	. 35:65	(76%)	
67	5	MeCuCNLi(-780-r.t.)	6:7 (6:94)	Trace	-	(81%)	
7d	8	Me ₂ CuLi·LiI(-78°, 20min)	-:-	11 (+51.1º)	-		
8	8	Me ₂ CuLi·LiI(-78°, 4h)	9:10 (50:50)	11	25:75	(80%)	
9	8	Me ₂ CuLi·LiI(-78 ^o -Δ)	9:10 (85:15)	Trace	-	(85%)	
10	12	Me ₂ CuLi·LiI(-78°, 1h)	13:14 (28:72)	Trace	-	(82%)	

Table 1.	Reaction	between (Irganoco	oper Rea	gents and All	vlic Sulfin	vl Mesv	vlates 1.	. 5.	8.	12.
									, - ,	-,	

^a In CHCl₃. ^b Measured by integration of the ¹H NMR spectrum of the crude reaction mixture. ^c Overall yield of pure products. ^d Under these conditions, ca 50% of allene 11 and ca 50% of starting material 8 were isolated after chromatography.

Diastereomer 5 displayed a similar behavior although the formation of allene 4 appeared to be less favored than for 1 (entries 5 and 6). The very low optical purity found (entries 1 and 5) may be due to allene formation prior to complete quenching of the reagent and racemization by the excess cuprate.^{6a} It should be noted that other substrates tested, bearing *n*-Bu and Me substituents instead of Ph, did not produce any allene derivatives even when the reaction mixture was quenched after 15 min at -78° C.⁷ However, subsequent experiments performed on pure sulfoxide 8,⁹ surprisingly resulted in variable yields of allene 11¹⁰ along with starting material or S_N2' products depending upon the reaction time and temperature (entries 7-9). The absolute configuration of 11 was considered to be S by comparison of the sign of its rotation with similar allenes in the literature.^{6a} Furthermore, it was observed that the ratio of S_N2' products varied with the reaction conditions, suggesting a faster formation of the minor adduct, perhaps due to a less stabilized Cu(III) intermediate.¹¹ In contrast, diastereomer 12 yielded only trace amounts of allene 11 (entry 10), thus showing that the steric and/or electronic requirements of this process are very strict.

These results may be tentatively rationalized in terms of irreversible formation⁴ of a σ -copper(III) adduct, a simplified depiction of which is shown in structure 15 (Scheme 2) for the case of mesylate 8. Isomerization of 15 to a π -allyl complex^{3,4} seems unlikely considering the clean S_N2' nature of our methodology. When L=Me, reductive elimination is relatively slow, especially in this particular case due to a relatively strong arenecopper stabilizing interaction. Subsequent hydrolysis (saturated NH₄Cl) yields allene 11 by a mechanism that we do not fully understand but believe to be formally *via anti* elimination. To the best of our knowledge, this remarkable transformation is unprecedented in the literature.¹² It is unlikely that this unusual "elimination" takes place on the initial d- π * complex since quenching of these complexes generally leads to recovered starting material;^{3f} however, at the time we cannot rule out this possibility. On the other hand, in the case of substrates 1 and 5, the stabilizing interaction between the aryl ring and copper is probably of different nature due to the benzylic character of the copper(III) intermediate postulated. This hypothesis is further supported by two facts: 1) Allenes 4 and 11 are obtained in high chemical yields but low enantiomeric purities in all cases upon reaction of the corresponding mesylates (1, 5, 8, 12) with McMgBr or MeLi (THF, 0°C).¹³ 2) Preliminary studies with racemic *tert*-butylsulfinyl analogs show that even McCuCNLi yields considerable amounts of allenes in some cases. Therefore it appears that the copper

mediated case does not proceed via nucleophilic displacement on sulfur¹⁴ and that a more electron donating sulfinyl moiety significantly favors production of the allenes presumably due to a more stabilized σ -copper(III) intermediate. Additionally, our observations follow closely those of Crabbé on a postulated allenylcopper(III) species,^{6b} except for the final elimination step to yield the allenes.

The scope of this procedure as a new method to synthesize chiral allenes,¹⁵ including the use of optically pure *tert*-butyl sulfoxides¹⁶ as substrates, as well as the utilization of these mesylates to gain further knowledge on the mechanism of organocopper S_N^2 displacements by attempting the detection by NMR and the isolation of these intermediates are currently being addressed in our laboratories.

Acknowledgment. This research was supported by DGICYT (Grants PB90-0035 and PB90-0078) and by NIH(CA 22237-11). We thank the C.A.M. for visiting fellowships to A.V. and R.F.P.. We are grateful to Dr. O. Arjona, Dr. J. Plumet (U.C.M.) and Dr. R. S. Paley (Swarthmore College) for encouragement and fruitful discussions.

References.

- 1. Presented in part at the Sixth IUPAC Symposium on Organometallic Chemistry directed towards Organic Synthesis, August 25-29, 1991. Utrecht (The Netherlands).
- For recent references, see: a) Van Koten, G. J. Organomet. Chem. 1990, 400, 283-301. b) Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1990, 112, 8008-8014. c) Olmstead, M. M.; Power, P. P. Organometallics 1990, 9, 1720-1722. d) Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H. J. Am. Chem. Soc. 1990, 112, 5869-5871. e) Bertz, S. H. Ibid. 1990, 112, 4031-4032. f) Lipshutz, B. H.; Sharma, S.; Ellsworth, E. L. Ibid. 1990, 112, 4032-4034. g) Lorenzen, N. P.; Weiss, E. Angew. Chem. Int. Ed. Engl. 1990, 29, 300-302. h) Bertz, S. H.; Dabbagh, G. J. Am. Chem. Soc. 1988, 110, 3668-3670. i) Lipshutz, B. H.; Kozlowski, J. A.; Breneman, C. M. Ibid. 1985, 107, 3197-3204.

- 3. a) Christenson, B.; Hallnemo, G.; Ullenius, C. Tetrahedron 1991, 47, 4739-4752 and previous papers by this group. b) Wigal, C. T.; Grunwell, J. R.; Hershberger, J. J. Org. Chem. 1991, 56, 3759-3761. c) Sharma, S.; Oehlschlager, A. C. Tetrahedron 1991, 47, 1177-1184. d) Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1990, 31, 1393-1396 and previous papers by this group. e) Alexakis, A.; Sedrani, R.; Mangeney, P. Tetrahedron Lett. 1990, 31, 345-348. f) Bertz, S. H.; Smith, R. A. J. J. Am. Chem. Soc. 1989, 111, 8276-8277. g) Horiguchi, Y.; Komatsu, M.; Kuwajima, I. Tetrahedron Lett. 1989, 30, 7087-7090.
- 4. a) Underiner, T. L.; Goering, H. L. J. Org. Chem. 1991, 56, 2563-2572 and previous papers by this group. b) Nakanishi, N.; Matsubara, S.; Utimoto, K.; Kozima, S.; Yamaguchi, R. J. Org. Chem. 1991, 56, 3278-3283. c) Bäckvall, J.-E.; Sellén, M.; Grant, B. J. Am. Chem. Soc. 1990, 112, 6615-6621. d) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3063-3066 and previous papers by this group.
- For recent reviews, see: a) Lipshutz, B. H. Synlett 1990, 119-128. b) Marshall, J. A. Chem. Rev. 1989, 89, 1503-1511. c) Lipshutz, B. H. Synthesis 1987, 325-341. d) Yamamoto, Y. Angew, Chem. 5. Int. Ed. Engl. 1986, 25, 947-959. e) Taylor, R. J. K. Synthesis 1985, 364-392 and references cited therein.
- 6. For indirect evidence on allenylcopper(III) intermediates see: a) Elsevier, C. J.; Vermeer, P. J. Org Chem. 1989, 54, 3726-3730 and references cited therein. b) Luche, J. L.; Barreiro, E.; Dollat, J. M.; Crabbé, P. Tetrahedron Lett. 1975, 4615-4618. c) Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J. F. Tetrahedron Lett. 1989, 30, 2391-2392. Allenylcopper(I) reagents do not generally transfer the allenyl moiety (Pasto, D. J.; Tetrahedron 1984, 40, 2827).
- Marino, J. P.; Viso, A.; Fernández de la Pradilla, R.; Fernández, P. J. Org. Chem. 1991, 56, 1349-7. 1351.
- 8. a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987. b) Hamon, L.; Levisalles, J. Tetrahedron 1989, 45, 489-494.
- 9. Prepared from hydrocinnamaldehyde and (E)-(R)-1-hexenyl p-tolyl sulfoxide (Kosugi, H.; Kitaoka, M.; Tagami, K.; Takahashi, A.; Uda, H. J. Org. Chem. 1987, 52, 1078-1082). For experimental conditions see supplementary material of ref. 7.
- 10. Data of 11: transparent liquid. $R_f = 0.31$ (Hexane). $[\alpha]_D = +51.1$ (c=1.38, CHCl₃). IR(CH₂Cl₂): 3028, 2928, 2857, 1960, 1602, 1495, 1454, 1378, 1260, 872, 747, 738, 734, 722, 712, 700 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ 0,86-0.91 (m, 3H), 1.30-1.43 (m, 4H), 1.92-1.95 (m, 2H), 2.27-2.43 (m, 2H), 2.71 (t, 2H, J= 7.5 Hz), 5.06-5.12 (m, 2H), 7.16-7.28 (m, 5H). ¹³C NMR (CDCl₃, 75 MHz): δ 13.9, 22.2, 28.6, 30.7, 31.4, 35.6, 90.3, 91.5, 125.8, 128.3, 128.6, 142.0, 204.2. MS (EI/70 eV) m/e: 200 (M), 157, 144, 129, 91 (100%), 67, 41. High resolution mass spectrum, calculated for C₁₅H₂₀: 200.1565. Found: 200.1569. For the preparation of racemic 11, see: Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 5237-5240
- 11. It should be pointed out that while the stereochemical outcome of the S_N2 process remains identical for different batches of CuI, the rate of transfer of the methyl group is remarkably dependent on the procedure of purification employed; in particular, CuI (Fluka, Aldrich) purified from aqueous KI (Kauffman, G. B.; Teter, L. A. Inorg. Synth. 1963, 7, 10) resulted in very fast reductive elimination. Best results were obtained with CuI (Aldrich) washed with refluxing THF in a Soxhlet apparatus. For related puzzling observations see: Alexakis, A.; Mutti, S.; Normant, J. F., J. Am. Chem. Soc. 1991, 113, 6332-6334.
- 12. Eliminations involving sulfinyl moieties as leaving groups are not very common. For a recent example see: Fuji, K.; Node, M.; Abe, H.; Itoh, A.; Masaki, Y.; Shiro, M. Tetrahedron Lett. 1990, 31, 2419-2422. See also : Posner, G. H.; Mallamo, J. P.; Miura, K.; Hulce, M. Pure & Appl. Chem. 1981, 53, 2307-2314. For a formally related copper mediated synthesis of α - β -unsaturated ketones from α -epoxy ketones, see: Mitani, M.; Matsumoto, H.; Gouda, N.; Koyama, K. J. Am. Chem. Soc. 1990, 112, 1286-1287.
- This reaction is highly dependent on the temperature. For instance, at -20°C the reaction does not take 13. place, while at 0°C, instantaneous formation of the allenes is observed. Allene 11 prepared from 12 and MeMgBr displayed $[\alpha]_D = -10.3^\circ$.
- 14. a) Furukawa, N.; Ogawa, S.; Matsumura, K.; Shibutani, T.; Fujihara, H. Chem. Lett. 1990, 979-982. b) Neef, G.; Eder, U.; Seeger, A. Tetrahedron Lett. 1980, 21, 903-906.
- For recent reports on the preparation of optically active allenes see : a) Gooding, O. W.; Beard, C. C.; Jackson, D. Y.; Wren, D. L.; Cooper, G. F. J. Org. Chem. **1991**, 56, 1083-1088. b) Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J. F. J. Am. Chem. Soc. **1990**, 112, 8042-8047. c) See ref. 6a. Kagan, H. B.; Rebiere, F. Synlett **1990**, 643-650. 15.
- 16.

(Received in UK 6 April 1992)