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1. INTRODUCTION 

We consider the initial value problem for the nonlinear Schriidinger 
equation (NLS) 

n+2 
l<m<- 

n-2 
(1.1) 

@(x, 0) = so(x) E H’(R”). 

In [Sof-Wei] we developed a nonlinear scattering and stability theory of 
NLS with dynamics characterized by the interaction of a single nonlinear 
bound state channel with a dispersive channel. We showed that a class of 
small solutions (including any solution in a sufficiently small neighborhood 
of a small amplitude nonlinear bound state) decomposes into a sum of two 
terms: (1) a nonlinear bound state with modulating (time-varying) energy, 
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E(t), and phase, r(t), and (2) a term, b(t), which disperses to zero with 
free linear dispersion rates. The collectiue coordinates E(t) and r(t) satisfy 
modulation equations and have the form of a system of ordinary differential 
equations perturbed by interaction terms of the infinite dimensional disper- 
sive channel. In the infinite time limit, t -+ + co, the energy and phase tend 
to asymptotic limits E’ and y *. Nonlinear bound states are found to be 
asymptotically stable in the sense that in response to a small perturbation, 
the solution will conoerge in Lp (p > 2) to a nonlinear bound state of 
possibly different energy and phase. The results, for n 2 2, of [Sof-Wei] 
required (a) restrictive hypothesis on the range of nonlinearities and (b) 
that the potential V and the data Q0 be symmetric about some common 
origin of coordinates. In this paper we extend our results for n > 3 to the 
case of anisotropic potentials, anisotropic data, and remove certain 
unnatural restrictions on the range of nonlinearities. The main new 
ingredient in the analysis is the use of recently obtained Lp decay estimates 
(p>2) for eicPd+ ‘If [JSS]. 

For a discussion of previous results on nonlinear scattering (in the 
absence of bound states or for completely integrable equations) and 
stability (in the sense of Lyapunov) with references see the introduction to 
[ Sof-Wei]. 

Notation 

All integrals are assumed to be taken over R” unless otherwise specified. 
%2(z) and 3(z) denote, respectively, the real and imaginary parts of the 

complex number z 
A = Laplacian on L2(R”) 

(x)=(l+x.~)l’~ where XER” 

(f, g) = Jf*g, wheref* denotes the complex conjugate off 
Lp = LP(R”) 

H”=(f:(Z-A)s’2f~L2} 

C(I; X) = the space of functions, u(t, x), which are continuous in t, 
with values in the space X. 

2. BACKGROUND AND STATEMENT OF RESULTS 

The well-posedness theory of NLS (see, for example, [GV] and others 
cited in [Sof-Wei]) implies that given initial data @,, E H’(R”), there exists 
a unique local solution @ E C( [0, T,,,); Z-Z’(R”)), where either T,,, = + co 
or 

lim sup IlV@(t)llL2 = + co. 
t t Tmx 
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Furthermore, during the time interval of existence the following functionals 
remain time-independent on solutions: 

JcvI= j Id2dx. (2.2) 

For the scattering and stability results of this paper, we shall require 
n 2 3 and the following hypotheses on the linear potential V(x): 

(Vl) (x)’ V(x): Hv -+ Hq’for some CI > n + 4 and q > 0 
(V2) PEL’ 
(V3) 0 is neither an eigenvalue nor a resonance (see, for example, 

[Je-Ka] or Section 2.3 of [Sof-Wei]). 

These hypotheses ensure the applicability of the linear Schrbdinger decay 
estimates of the following: 

THEOREM 2.1 [JSS]. Let H = -A + V acting on L2(R”), and assume 
hypotheses (Vl), (V2), (V3) on V(x). Let P,(H) denote the projection onto 
the continuous spectral part of H. Zf p-’ + 4-l = 1, 2 <q 6 03 then 

A simple and useful consequence is the following local decay estimate: 

COROLLARY 2.2. Assume that HE -A + V satisfies the hypotheses (Vl), 
(V2), and (V3), and let o > n(( l/2) - (l/p)). Then 

(2.4) 

Proof. Let p;’ =2-l -p-l. Then, 

Il(xI-“e ‘H’p,(W ti II L2 Q II (x > pulI LpI lle’“‘P,(H) $11 Lp 

~ G,pll<X>-“llm 
I4 (n/2)-(n/p) II@IIw 

The requirement of a “single bound state channel” interacting with 
dispersion is captured in our last hypotheses on V(x): 
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(V4) HE -A + V(X) acting on L*(R”) has exactly one negative 
eigenvalue E, < 0, with corresponding L2 normalized eigenfunction $, . 

Nonlinear bound states (also termed solitary or standing waves) are 
finite energy, localized solutions of the form 

@(x, 2) = t+bE(X) ciE’++, (2.5) 
where 

(-A+ ~(~)+~I~I/E(~)I”-‘)II/E(~)=E~E(x). (2.6) 

A consequence of (V4) is the existence of a two-parameter family of non- 
linear bound state solutions to NLS of the form (2.6) which bifurcate from 
the zero solution at energy E, (see Section 2.2 in [Sof-Wei] and others 
cited therein). Its properties are summarized in 

THEOREM 2.3, For 1> 0, let E E (E,, 0) and for I < 0, let E < E,. Then, 
there exists a solution tiE of (2.5) such that for s B 0 

(4 tiE~HS9 G-0 
(b) The function E H llttQEjl nS is smooth for E # E,, and 

lim 
E-E. 

II $4 HS = 0, 

i.e., the solution tiE( .) eiY, whose parameters lie in the cylinder (E,, O), x S: 
(,I > 0) or ( - CD, 0),x S: (A < 0), bifurcates in H” from the zero solution at 
E = E, . Furthermore, if E lies in a sufficiently small neighborhood of E,, we 
havefor keZ+ ands>O 

il(x>k ~EllHS~Ck,s,nIIICIEll”9 

II(X)k~~~~II~~~~k,s,nIE-E*I~l II$EIIw. 

We prove the following: 

THEOREM 2.4 (Scattering). Let n > 3 and assume 

n+2 
2<m<,_2 

There is a continuous function o: E H o(E), E E I,,, (where Z,, denotes a real 
open interval with endpoints E, and E, + sgn(l)q, and n sufficiently small, 
and an open cone-like region of the form 

%J= u (feH”: IIf-IC/EliH’<dE)), 
EE I,, 

such that if o0 E ‘ik,, then 

~(t)=exp-ir~E(“)ds+ig(t) 
(Ic/E(r, + #tt)) 
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with 
dE 
x~ L’(R’) (so that , ty, E(t) = E k exists), 

4 %E L’(R’) (so that lim y(t) = y * exists), 
I- &cc 

and Mt)llm+ 1 =0((t)-‘-“) as ItI -+ co. 

In the proof below, as well as in [Sof-Wei], we work under the 
hypotheses: 

(i) There is a number 6, such that II@,Jl,, < 6,, 
(ii) min,, II% - eVEI H1y subject to the constraint (eie+., 

Q0 - eietiE) = 0 has a non-zero solution $,,,e’@, i.e., E0 # E,, and 
(iii) V(x) + LI$Eolm-’ satisfies the nonresonance condition (V3). 

As explained in [Sof-Wei], the nonresonance condition is generally 
satisfied. It is also shown that assumptions (i) and (ii) hold at least for all 
CD,, in an open cone-like region with vertex at the origin, described above. 
Thus, w(E) may tend to zero as E + E,. 

The following is a related asymptotic stability result showing that data 
near a nonlinear bound state of energy E, and phase y,, decays (via disper- 
sion) as t + f co to a nearby nonlinear bound state of energy E* and 
phase y +. 

THEOREM 2.5 (Asymptotic Stability). Let n > 3 and 2<m c (n +2)/ 
(n-2). Let Q,, denote the interval of real numbers with endpoints E, 
and E, + r] sgn(l), where q is positive and sufficiently small. Then, for 
all E, E SJ,, and y,,~ [0,2n), there is a positive number ~(1, E,) such that 
if Q(O) = (tiEo + 4(O)) eiyo with II#(O)II,I GE, then G(t) decomposes into 
localized and dispersive parts as in Theorem 2.4. 

3. ANSATZ AND THE COUPLED CHANNEL EQUATIONS 

Following [Sof-Wei] we decompose the solution as follows: 

Ansa tz 

Q(t) = emie(l(lEc,) + d(t)) 

G(O) = eiyo(tiEo + 4(O)) 

(3.1) 
8~ ‘E(s)ds-y(t) 

s 0 

E(O) = Eo, Y(O) = Yo- 
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Here, $E denotes the ground state of (2.5), 

H(E)~,=(-d+Y+11~,1”-‘)11/,=E~, 

$EEH’, $>O, 
(3.2) 

forEE(E*,O)ifA>OandEo(-co,E*)if1<O,where 

E,=infa(-d+ V)<O. 

Orthogonality Condition 

and (3.3) 

Note that this orthogonality condition implies that for all t, d(t) E 
Range(P,(K)), the continuous spectral part of a fixed Hamiltonian, K. 

As in [Sof-Wei, Section 31 after substitution of (3.1) into NLS and 
imposing (3.3) we obtain the coupled system: 

i~=(H(E,)-E,)~+(E,--E(t)+)i(t))~+F(t), 
(3.4) 

(3.5) 

Here 

and 

F=F,+F,, 
(3.6) 

F,=j$,-&a,+,, 

F2 = F~,lin + F-291. 

Fz,ri, is a term which is linear in 4, 

Fz,lin(bv ICI)= 1 (3.7) 

and F2,nl is a term that is nonlinear in Q such that 

IF2,n1(d, $,I G I4 cCN$) 1412+ M”l> (3.8) 
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where IA(s)1 is bounded for s bounded, IA(s)l + 0 as s + 0, and c is inde- 
pendent of II/ and 4. Equations (3.4)-(3.5) comprise a coupled system for 
the interacting dispersive, (3.4), and bound state, (3.5), channels. 

To prove Theorem 2.4 and Theorem 2.5 it will suffice to obtain a priori 
bounds on & 3 and 4(t) in suitable norms. This is carried out in the next 
section. 

4. A PRIORI ESTIMATES OF SOLUTIONS TO THE 
COUPLED CHANNEL EQUATIONS 

With a view toward obtaining a priori estimates on the solution of 
(3.4k(3.5) we first rewrite (3.4) as an integral equation: 

(4.1) 

Here, U(t, s) denotes the propagator associated with the flow 

+I(E,)-E,)u+(E,-E(t)-f(r))u(t) 
(4.2) 

4s) =f, 

that is, 

U(t,s)=exp -i 
( J 

‘(Eo-E(t))d~-i(~(t)-~(s)) s > 

w(4NEo) - Eo)(t - ~1) (4.3) 

(see [Sof-Wei] ). 
In this section we estimate the coupled channel equations and show that 

for E near E, and tie small, in a precise sense, 4(t) is dispersive and E(t), 
r(t) have asymptotic limits as t + + co. 

THEOREM 4.1. Let n > 3, and m,(n) <m < (n + 2)/(n - 2). Assume 

IIQoll*+ Il4oll1+ Il~Ollm+l and PO-&I 

are sufficiently small. Then, 4(t) is dispersive, in the sense that 
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where c E min((n/2), 1 + E), E > 0 and 

sup <t> (~/*)--/(m+l) Il@(t)ll 
m+l ~C”(II4clII1+ ll43112)~ 

IER 

The positive number E is defined below. Furthermore, I$ j E L’, and in 
particular 

SUP (t>i(13(t)l + I&)l) G cv40111+ 1140112). 

Our aim is to obtain a closed system for the local decay norm 
II (x> --D 4(t)llz and IM(t)ll,~ for SOme 4 > 2. 

In the proof the following dimension-dependent number arises. Let 
m,(n) denote the positive root of the quadratic equation 

2 2 
f,(m)=m*- 1+- m---=0, ( > n n 

i.e.. 

m,(n)=:+:+; (n*+ 12n+4)“*. 

Note that m, (3) = 2, and that m,(n) is decreasing with increasing n, for 
n > 3. 

Estimation of IlqS(t)llLm+I 

Using (4.1), the specific form of F(s) as detailed in (3.6~(3.7), and the 
decay estimates of Section 2 we have, for q-’ + p-’ = 1, q > 2: 

IMU)ll,~ IIVt, 0) d&+ j; IIUt, ~)~,U-Wo)) Wll,~ 

GC(tP’2)+(“‘q) wollp+ 1140112) 

+I; Jt-s~-w*‘+w7) 1131 llhll, + IJQ ll~,ll, 

+ IIVG-‘&I,+ lINti) 141211p+ llIwYlp1 h 

= C<t)-(“‘2)+(n’q) w&+ 1140112) 

+ (I) + (II) + (III) + (IV) + (V), (4.4) 

where terms (Ib(V) denote the integral terms in (4.4). We estimate the 
integrals individually. 

505/98/2-13 
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Estimation of (I) 

x cIIwv~-1$E~l12 II~x>-“9vtMl2) 

+ II<~>2”4wEollm Il(x>-“4wll:+ II~EJ, Ildll,m,l. (4.5) 

Similarly, we have by (3Sa) instead of (3Sb), the following estimate 
of (II): 

IJ+ ll8E tiElIp 6 Cl <a, ICIE, $&)I -l IPE Ic/& 

+ cll<x>“~Izf-1~EoI12 Il(x>-“4(t)llz 

+ IIw2”.w)IC/Eollcc Il<~>-“4wll: 

+ ll$E,ll, Iltw)ll,“,l. 

Estimation of (III) 

II!K-‘4Wllp~ IIwd~zf--llI II(X)-“4(~)ll*, 

(4.6) 

(4.7) 

where 

r-‘+2-Lp-‘. 

Estimation of (IV) 

(4.8) 

where 

0 
-1 

p;l+ 4 =p-1. 

Estimation of(V) 

Il141rnllp= ll411,7n. (4.9) 

It is clear from our estimates of (I)-(V) that a natural choice of Lq norm 
is one for which q = mp, or since p-’ + q-l = 1, we have q = m + 1. Note 
that with this choice of q, the exponents r and p above are well defined and 
positive so long as m 2 2. 
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We shall proceed by deriving a priori decay estimates for II& t)ll 4 and 
II (x> -O 4(Oll2~ on some finite time interval ItI < T. To obtain a closed set 
of coupled inequalities we must estimate Il4(t)ll 2, as well. The decay rates 
of IlWll, and Il(x>-“cWk are those suggested by linear theory, except 
for a small range of values of m where the local decay rate is taken to be 
weaker, though integrable. (This constraint appears to be of a technical 
nature.) 

We introduce the quantities 

M,(T)= sup <~>iII(~)-04(~)ll~ 

where 

[Emin n l+s , 
( > 2’ 

and where E > 0 is defined below. 

where 

and 

M,(T)= sup (t)(“‘2)-(n’9) Il~(t)ll,, 
Id 6 T 

q=m+l, 

M,(T)= sup Il4(t)ll2. 

Here, n > 3. When convenient, we shall write Mj instead of Mj( T). Using 
the above estimates in (4.4) we obtain 

x(M,(T)+M:(T)+M~(T)). (4.10) 

Convergence of the time integral in (4.10) is controlled by the condition 
m(n/(m + l)- (n/2)) > 1 which holds if m >m,(n). Here, C, depends on 
suprema over Jtl < T of tiE(,) and JIE, dependent coefficients appearing in 
the above estimates of (I)-(V). C, has the property that C, JO as E + E,. 
Multiplication of both sides of (4.10) by (t)(“‘*)-@l9) and taking 
supremum over I t) < T yields 

~2(T)~C(llhll2+ Il4ollcm+~um) 

+ CQ(M,(T) + M:(T) + W’(T)), 

where CbJO as E+ E,. 

(4.11) 
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Estimation of /I (x)-O $(t)llz 

As before, we begin with (4.1): 

-A+B+C. (4.12) 

The time integral has been split up this way to handle the non-integrable 
time singularity of (x) --O U(t, S) P, at t = s (see (2.4)). In the following 
estimate of A, B, and C, we use Corollary 2.2. 

Estimation of A 

Estimation of B 

I 

r-1 
II (x> -O WC J) PJ(sNl2 ds o 

I- 1 

< i o Il(~)-~U(t,~)P,(~~~)-~l~l~~‘~)ll~~~ 

5 
I-1 

+ II (x>-~ U(t, s) P,4W-’ 4112 ds o 

I 

r-1 
bC It--I-“‘* IIF(Ll4[“-’ qSII1ds o 

+ j’-’ Clt-s( (n/r) - (n/2) 11~11 “,i d, 

0 

(r-‘+F-‘=l,r>2), 

s 
1-l 

<C It--l-“‘* ~IWEIII I31 + II~E~EIII m 
0 

+ II$;-‘4, + llA($) 1~1211,~ ds 

+J-‘-l Clt - s((‘+-(“‘*) ~~~~~“- ds mr T 
0 

=Bl+B2+83+B4+B5. 
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The integrands of B, and B, satisfy the estimates (4.5~(4.6) with II$Ell, 
replaced by lllCIElll and Il~EJ/EII, replaced by Il~EIC/Elll. 

B3: IIV-1c41~ G IIW”K?ll2 II~x)-“~l12 

B4: ll41(/) 1~1*111~ Il<x>‘“~W)II, ll<x>-WI: 

B5: II4II:i= IItW,,,~,-1, 

We set (n/2) - (n/r) = 1 + E, and observe that E is positive provided 
r>2n/(n -2). We let r= r(6)=2n/(n-2)+6, with 6 >O. Thus, s(S)JO, 
and r(6) J2n/(n - 2) as 6 JO. Using further that 

where O(6) JO as 810, the integral (B5) now becomes 

5 

t-1 

0 
Clf--l-‘-“(S) I1411~m(l-o(~))/(,+2)~~. 

We next interpolate the norm appearing in the previous integral between 
L2 and L”‘+‘as 

II~II~,c,-~ca,,,c,+*,~ ll4llm+l m(m + l)/(m - l)(m - I- (2/n) - co(S)) 
II411 p3+? 

where j?>O. 
Combining these estimates, we obtain 

5 
t-1 

BZ Il(xY vc 3) ~,~(~)ll*~~ o 

I-l 
< C” 4 I 

o (s>-c It-sl-“‘2ds(M1(T)+M:(T)+M2(T)) 

where 

[=min 
( > 

;,1+8 . 

It follows that 

B~C~(t)-‘(M,+M:+M,+M~M, m(m+l)/(m-l)(m-1-(2/n)--(5)) 19 
(4.13) 
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where Cy JO as E + E, provided [ > 1. This can be done for 6 and there- 
fore E suflkiently small provided n( l/2 - l/m + 1) x m(m + l)/(m - 1) 
(m - 1 - (2/n)) is larger than 1, or equivalently m > m, (n). 

Estimation of C 

(4.14) 

where .sO is small and to be chosen. FLin and FN Lin denote respectively the 
parts of F(s) which have linear and nonlinear functional dependence on 4. 

C2: S:, II<x>-~ u(t, S) PcFNLin(S)IIz ds 

< I I, Il<~>-~Ilr IIU(r,s)P,F,,i,(s)ll,ds, 

<C 
s 

f It--sl- (“*)+(‘lq) llFNLin(~)IIrp dS, 
r--y, 

p-1 + q-1 = 1 

It--l- (n/2)+(+1) ((s)-” + (s)-m((“‘*)--n/(m+ 1))) ds 

x w:(T) + My(T)), (using the estimates of (I)-(V)) 

(n’2)+(n’q)ds(M:(T)+M~(T)), 

where rl E min[n, m((n/2) - n/(m + l))]. Thus, 

1 I, II(xY” u(t, S) f’cFNLin(S)llz ds 

<CC,(t)-* (M:(T)+My(T)). (4.15) 
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<C 
s 

I 1 1 
1-q It-4 

(n/2)-n/(m+l) (#2dsMl(T) 

~C(t)-“/2M1(T)E~-(n/2)+nl(m+l). (4.16) 

Combining estimates (4.15) and (4.16) we have 

CE l s II (x> --D VI, s) PcF(s)ll2 ds 1--y) 

dc,(t>-3 (M:(T)+MT(T)) 

+ CE:,-(“/2)+nl(m+l)(t)-n/2 M,(T). (4.17) 

Note that 1 - (n/2) + n/(m + 1) > 0 if m < (n + 2)/(n - 2). 
Finally, using our estimates of A, B, and C in (4.12) we get 

II(X>-“~(~)l12~C(f)--n’2 (Il4olll+ lltul2) 

+ cy(t>-c (Ml +ltf: 

+ M2 + M$j/q’“+ l)l(m- l)(m- 1-(2/n)--(6)) 1 

+Z’c,(t)-yM;+My) 

+CE:,-(“/2)+nl(m+l)(t)-“/2M1, 

Multiplication by (t ) -(, taking supremum over ItI < T, s0 sufficiently 
small and E sufftciently near E, (so that Cr can be made small) we have 

MI G m4oll1 + Il~oll2) 

+ C”‘(iw; + M, + i@M, m(m + 1 )/(m - I)(m - I- (2/n) - O(S)) + My) (4.18) 

Estimation of II& t)ll 2 

We estimate Il~(t)llz directly from the equation for O(t), (3.4). To do this, 
we multiply (3.4) by #*, take the imaginary part of the resulting equation 
and then integrate over all space. This gives, 
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The form of F(‘(t), as displayed in (3.6)-(3.8), and previous estimates of 
this section can be seen to imply, for ItI < T, 

$ I14(fN:<C<Wr WY+‘(T)+M:(T)). 

Integration gives 

M:(T)~C'(M~+~(T)+M:(T)) (4.19) 

Therefore, (4.12), (4.18), and (4.19) comprise a closed coupled system of 
inequalities for Mj( T) j = 1,2, 3. M,(T) can be eliminated from (4.18), 
using (4.19). By an argument presented in Section 5.3 of [Sof-Wei] we 
now can obtain the assertions of Theorem 4.1 and the proof is complete. 

The proofs of Scattering Theorem 2.4 and Asymptotic Stability 
Theorem 2.5 are a consequence of Theorem 4.1 and the discussion of 
scattering theory in section 6 of [Sof-Wei]. 
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