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Abstract 

Giaquinto. A., Quantization of tensor representations and deformation of matrix bialgebras, 

Journal of Pure and Applied Algebra 79 (1992) 169-190. 

The quantum matrix bialgebra M,(2) and quantum plane ki are constructed as preferred 
deformations of the classical matrix bialgebra and plane, that is. the comultiplication for M,,(2) 

and the My(2)-coaction for kz remain unchanged on all elements (not just generators) during 

the deformation. The construction of these algebras is obtained by quantizing the standard 

representations of the Lie algebra ~((2) and the appropriate symmetric group on each tensor 

power of the vector space of coordinate functions on the plane. Analyzing the invariant 

elements of these representations then leads to the desired deformations. 

1. Introduction 

This paper contains the main results of [S], the author’s Ph.D. Dissertation, and 

is intended to serve as an introduction to the theory of ‘quantum symmetry’, 

announced in [6], in which quantum groups are studied as part of algebraic 

deformation theory. The present paper applies the general theory of [6] to yield 

‘preferred presentations’ of deformations of the matrix bialgebra M(2) and of the 

plane k2 which are isomorphic to the quantum matrix bialgebra M,(2) and the 

quantum plane ki. The comultiplication for the deformation of M(2) and the 

M(2)-coaction for the deformation of k2 remain unchanged on all elements. The 

explicit form for the deformed multiplication of the quantum plane, which initially 

was given by other means, is derived as a straightforward application of the 

general theory. 
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To construct My(2) and k: as deformations we first quantize the representa- 

tions of the symmetric group, S,,, and the Lie algebra gl(2) on the n-fold tensor 

product V @‘I, where V= (k2)* is the (dual) ‘fundamental representation’. The 

basic relationship that these representations are cornmutants of each other is 

maintained during the quantization. Classically, this ‘double commutant’ theorem 

gives the decomposition of each V @n into simple modules for these representa- 

tions and we show that the same is true after quantization. For our purposes, the 

appropriate quantum enveloping algebra is the Woronowicz quantization of 

Ual(2) which acts as semiderivations of V”‘, cf. [ 171. In place of kS, we use the 

group algebra of a (generally) infinite group built from the infinitesimal bialgebra 

deformations of M(2). The generators of this group satisfy the relations in the 

Artin presentation for the symmetric group except the braid relation. The mutual 

cornmutant property of this group and the Woronowicz quantization on V@“’ 

enables us to decompose V @” into simple modules for the quantized action of S,. 

This decomposition is ‘exactly’ the same as for the usual symmetric group which 

enables us to construct M,(2) and ki as deformations as follows: We make use of 

the isomorphism M(2) z End,(k’) to view k’ and M(2) as quotients of the tensor 

algebras TV and T(V @ V*) and define, for each n, a map T; : if@“+ VBn which 

‘matches’ the simple summands for S,, to the corresponding quantized summands. 

These maps already suffice to give a preferred deformation of k’. To obtain the 

associated deformation of M(2) we tensor these maps with those obtained from 

the dual decomposition of V*@’ to give a coalgebra automorphism of T(V C3 V*) 

which takes the subspace of ordinary skew elements to the standard ideal of 

relations for M,(2). Using this map we define a new multiplication on T(V C3 V*) 

with the properties that it is compatible with the original comultiplication and the 

subspace of ordinary skew elements remains an ideal for this multiplication. 

There is thus a new product, *, on the quotient which is just the underlying vector 

space of M(2) and, by construction, (M(2). *) 2 M,(2) as bialgebras. 

We now fix some notation and conventions which will be used throughout the 

paper. Let M(n) be the ring of polynomial functions on M(n), the y1 X y1 matrices 

with entries in some field of characteristic zero (usually the complex numbers). As 

an algebra, M(n) is the commutative polynomial ring k[x,,, . . . ,x ,,,, 1, where x,~ is 

dual to the matrix unit e,, E M(n). The multiplication in M(n) induces an algebra 

morphism A : M(n) -M(n) @M(n), called the comultiplication, which on the 

generators is given by Ax, = c ,’ x,,’ 8x,,, Evaluation of functions at the identity 

element of M(n) gives an algebra map F : M(n)+ k, the counit, and so M(n) is a 

bialgebra. The ring of polynomial functions on k”, (affine) n-dimensional space, is 

k” = k[x,, . , x,~], where X, is the ith coordinate function on k”. The standard 

action of M(n) on k” makes k” a left M(n)-comodule algebra. This means that 

there is an algebra morphism A : k” -+ M(n) @3 k” which gives k” the structure of a 

left M(n)-comodule. On the generators we have that hx, = c,, x,,, @3x,. The 

foregoing, of course, holds much more generally and enables one to study affine 

algebraic groups G and their representations in terms of the Hopf algebra B(G) 

of polynomial functions on G and its comodules (cf. [16]). 
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The standard quantum matrix bialgebra M,(n) has a succinct description in 

terms of the Faddeev-Reshetikhin-Takhtajan [FRT] construction for a quantum 

Yang-Baxter matrix R. Set X to be the vector space generated by xii and let TX 

be the tensor algebra of X. The FRT construction associates in a canonical way a 

varying subspace of XC3 X depending on a parameter q E k”; these are the 

commutation relations for M,(n). The quotient of TX by the two-sided ideal 

generated by this subspace is defined to be M,(n). (Actually, the FRT construc- 

tion uses the noncommutative polynomial ring k( x,, , . . . , x,,,, ) instead of the 

tensor algebra TX; for our purpose it will be more convenient to work with TX 

which is isomorphic to k( x,, , . . , x,,) .) There is a bialgebra structure on M,(n) 
in which the comultiplication is defined on the generators to be the same as that 

of M(n) and then is extended to all of M,(n) to be an algebra morphism (the 

counit is defined similarly). Associated to M,(n) is the quantum n-dimensional 

space, k:, which is a left M,(n)-comodule algebra. The coaction on generators is 

the same as the M(n)-coaction for k” and then is extended to make ki a left 

M,(n)-comodule algebra. 

Forn=2,1eta=x,,,b=X1?,c=XZ1, and d = x,? and again let X be the vector 

space they generate. The commutation relations for M,(2) are given by 

a@b=qb@a, a@c=qc@a, 

b@d=qd@b, c@d=qd@c, 

b@c=c@b, a@d-dda=(q-q-‘)b@c 

and M,(2) is then the quotient of TX modulo the ideal generated by these 

relations. The associated linear space of M,(2) is the quantum plane, ki. If x = x, 

and y = x2 are the coordinate functions on k2 and V is the vector space they 

generate, then kt is the quotient of TV subject to the ideal generated by the 

commutation relation x @ y = qy 8x. Note that when q = 1, the algebras M,(2) 

and ki reduce to the classical algebras M(2) and k’ with their usual structure. 

Thus for q # 1, one has ‘quantizations’ of M(2) and k2. 
Another approach to quantization of M(2) is through algebraic deformation 

theory. In [7], Gerstenhaber and Schack developed a cohomology and deforma- 

tion theory for arbitrary bialgebras. If p and A are the multiplication and 

comultiplication of a bialgebra A, then a formal deformation, A, = A( p,, A,), of 

A, is a k[tl-bialgebra structure on the k[tl-module Al[tl with pL, = P + ~“,t + 

p2t2 •t . . . and A,=A+A,t+A,t’+..., where El, E Hom,(A @ A, A) and A, E 

Hom,(A, A@A) are extended to be k[tB-bilinear. The existence of a unit and 

counit is preserved under deformation; in fact, every deformation is equivalent to 

one in which the unit and counit do not change. It is proved in [7] that every 
bialgebra deformation of M(n) is equivalent or isomorphic to one in which A, = A, 

the original comultiplication on M(n). Thus every deformation of M(n) is 

isomorphic to one in which only the algebra structure varies. A deformation of 

M(n) in which A, = A is called a preferred presentation of the deformation. The 
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same is true for deformations of O(G) when G is a reductive group. Similarly, if 

N is any comodule algebra over M(n) or 0(G), then every deformation of N is 

isomorphic to one in which the coaction remains strictly unchanged on all 

elements. 

As with the classical case of deformations of algebras [5], the deformations of 

bialgebras are ‘controlled’ by a cohomology theory, this being the theory intro- 

duced in [7]. While we shall not describe (or use) cohomology in this paper, we 

should mention that the pair (CL,, A,) is the ‘infinitesimal’ of the deformation and 

must be a two-cocycle for (p + k,t, A + A,t) to define a bialgebra structure on 

A[t] /f’. There are then obstructions (all of which are three-cocycles) to lifting 

( I_L + ~,t, A + A,t) to a bialgebra structure on A[tI]. 
A virtue of this approach is that the new bialgebra structure is defined directly 

on the underlying vector space of A (base extended to A[tjj). Although it has 

many significant applications, the FRT construction of M,(n) is not of this form; 

nor is it obvious that it is isomorphic to a deformation of M(n). A significant 

question, then, is to determine whether M,(n) is a deformation of M(n). If so, 

then it follows that it is isomorphic to a preferred presentation. In [7], formulas 

for the products x,, * xk, of generators of M(n) are given which give the same 

commutation relations as for M,(n), but do not give an associative product when 

applied to arbitrary elements of M(n). (Takhtajan has, independently, given the 

same formulas [ 151.) 

In [6], it is shown that M,(n) is a deformation of M(n) and it is constructed as a 

preferred presentation. Similarly, quantum n-space is exhibited as a preferred 

presentation and the formulas for its deformed multiplication are given. Other 

deformations of M(n) are constructed in [6] including the multiparameter family 

appearing in [l], [13], and [14]. Also, a previously unknown family of deforma- 

tions at the ‘boundary’ of the deformation space is constructed in [6]; for n = 2 

this is the Jordan quantization of M(2), cf. [Z]. 

The deformations in [6] are all constructed in a uniform way starting with 

unobstructed infinitesimal bialgebra deformations of M(n), which according to the 

cohomology theory of [7] correspond to elements y E A’ M(n) whose Schouten 

bracket [y, y] E A.’ M(n) is invariant under the adjoint action of M(n). In Section 

2, we associate to each y E A’ M(n) a subgroup of GL(V@“‘) for each m which we 

denote as S,,,(y). This group is used to quantize the standard representation of 

the symmetric group on V%“‘. Analyzing the decomposition of V@” under S,,,(r) 

then leads to deformations of M(n) and of k”. To obtain M,(n) as a deformation 

in this way, we make use of the Woronowicz quantization of Udf(n) to obtain the 

necessary information about the invariant elements of S,,(y). 

This paper is a complete treatment of the theory of quantum symmetry as it 

applies to M,(2) and ki. All necessary proofs are given, whereas in [6] some are 

only sketched; a more thorough account of the results of [6] will appear in a 

separate note. In addition, there are some technical difficulties in the general 

theory that are absent when n = 2, thus making this case more accessible. 
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2. Quantized representations of S, 

The quantum matrix bialgebra M,(2), the quantum plane k’g, and many other 

‘quantum’ algebras are deformations, at least intuitively, of polynomial rings. A 

polynomial ring in II variables may be viewed as the symmetric algebra of an 

n-dimensional vector space. After reviewing this basic construction, we introduce 

the notion of a ‘quantum’ symmetric algebra and show how -to realize the 

quantizations ki and My(2) as quantum symmetric algebras. Using these con- 

structions, it is possible to obtain canonical preferred deformations of M(2) and 

k2 which are isomorphic to M,(2) and ki, respectively. For the quantum plane, it 

is possible to exhibit explicitly the deformed multiplication for its preferred 

presentation. 

Let W be an n-dimensional vector space. The polynomial ring k[x,, . . . , xn] or 

symmetric algebra SW is naturally a quotient of the tensor algebra TW. To 

describe SW we make use of the action of the nth symmetric group S, on W@‘“. 

The left S,-module structure on W@‘” is given by (T(w,@...@w,,)= w~,-~,@ 

. . . ‘23 wu- I,, for each c E S,, . Let sk( TW) be the two-sided ideal in TW generated by 

all elements of the form a 63 b - b @ a for a,b E W. The symmetric algebra is the 

quotient TW/sk(TW). Since k has characteristic 0, the exact sequence 

O+sk(TW)+ TW+SW-+O 

has a canonical linear splitting identifying SW with the symmetric or invariant 

elements, sym(TW), in TW. An element a E W @” is symmetric if U(Y = LY for all 

C7 E s,, . If 6 E SW, then the corresponding symmetric element of sym(TW) is 

given by $ CUES,, a(a), where (Y is a preimage of (Y in TW. For example, the 

element xy E k[x, y] corresponds to the symmetric tensor 4 (x C3 y + y @ x). 

Our main interest in this paper will be the vector spaces associated with M(2) 

and k’. To describe these we need some notation and conventions. Let 87 = ( : 2) 

and V = (;( ) be the matrices of coordinate functions on M(2) and k’ and denote 

the vector spaces their entries generate by X and V, respectively. Using the 

language of symmetric algebras we have that M(2) = SX and k’ = SV. Since 

M(2) = End,(k’) s k2 @ (k’)*, we can make the identifications X = V @ V* and 

3?= Y’“sY*, where 

With this the algebra M(2) becomes SX = S(V @ V*) = SV @ SV*. 

To quantize M(2) and k2 we view SV @ SV* C TV @ TV* = TX and consider 

certain quantizations of the standard representation of S, on XBn, VBn, and V*@n. 

These quantizations are built from the infinitesimal bialgebra deformations of 

M(2). Recall that these infinitesimals can uaturally be identified with A2 M(2). 

We view A2 M(2) as the submodule of M(2) C3 M(2) generated by elements of the 
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form +(a @ p - p 8 (II) for cw,p E M(2). We also use the Kronecker product of 

matrices to identify M(2) @ M(2) with M(4). Recall that the Kronecker product 

M G3 M’ is defined to be 

where M = 

Let Y@2r be the column vector 

x@x 
X@Y 

i 1 Y@X 

Y@Y 

whose entries generate V C3 V and view y E A’ M(2) as an element of M(4) 

under the identifications A’ M(2) C M(2) $3 M(2) = M(4) discussed earlier. 

Set Q = exp(ty), and let E be the matrix representing the interchange 

(12)” : V 63 V-+ V @ V, defined by (12),(u @ u) = u @u. The matrix E is block 

diagonal with blocks (l), (:’ ,‘,), and (1). 

Definition 2.1. The quantum interchange am, is the linear transformation de- 

fined on the column vector of generators by 

~,,(y)(V@l-) = Q-“E(@Y”) 

Note that if M and M’ are matrices in M(2), then E(M 63 M’) = (M’ C3 M)E, so 

Ey = - yE since y E A’ M(2), and thus EQ = Qm’E. With this, it follows that 

(rv(y))’ = Q-‘EQ -‘E = EQ’Q-‘E = Id,,,. For each n, let S,,(y) be the 

subgroup of GL(V@“) generated by 71,. . . > T,,-,, where r, acts as 

Id Fi-’ @r&+BId~“~‘-I. The generator r, is the ith quantum interchange. For 

S,(y) we have that 7, = rJy) and S,(y)‘S,. For S,,(y), each 7, satisfies 

r T, 
’ = Id,R. and s-;T, = ~,r# if )i - j( > 1. The braid relation, ~,T,,+,T, = r,+,r,~,+,, 

however, is generally not satisfied and so S,,(y) usually is infinite for II > 2. For 

certain choices of y, the quantum interchanges 7, = ~,,(y)@Id~ and r2 = 

Id, @ rv(y) which generate S,(y) may satisfy the braid relation which gives, for 

each n, an evident isomorphism S,,( 7) g S,, as subgroups of GL(V@“). This is not 

the case for the y giving M,(2). 
Now V&Z becomes a left S,,( y)-module where P E S,,(y) acts as u- * E 

GL(V*@‘), h t e inverse dual to u E GL(V@“). The quantum interchanges for 
v*6311 are defined using (T,,(Y))- * which we denote by T”,(Y). Viewing ‘Y*@‘?“* 

as the dual row vector to Y%jctr, T,,*(Y) is given by right multiplication by the 

matrix (Q-‘E)-’ = EQ’. Using the representations of S,,( y ) on V@:” and If.*@” 

we define the associated left S,,(y)-module structure on X%” by setting T~( y) = 



Quantization of tensor representations 175 

T~(~)@~~.(~)EGL((V@V)@(V*@~V*))=GL(X@X). On the matrix 

a@a aC3b bC3a b@b 

2&h?= 
a@c a@d b@c bC3d 

c@a c@b d&la d@b 

c@c cod d@c d@d 

whose entries generate X@ X, the action of T~( y) is given by 

Since EX?$%‘E represents the ordinary interchange (12), the quantum inter- 

change has the form 

~~(y)2?6%2?= Q-‘{(12),Z%+?}Q’. 

Setting t = 0 gives the usual representations of S,, on If@“, V*@ and X8’“. In this 

construction we are tacitly assuming that coefficients are extended to the power 

series modules over TX, TV, and TV* and all maps are extended to be 

k[[tl-bilinear. With this the quantum interchanges can be expressed as power 

series whose leading terms are the ordinary interchanges. 

Definition 2.2. If there is an action of S,(y) on W@‘, then an element a E W@” is 

quantum symmetric if it is invariant under this action, that is, 7;‘~ = CY for all i. 

(Here, W @” is used to represent V@“, V*@“, or X@“.) The subspace of quantum 

symmetric elements of W@’ 

operates on W@” 

will be denoted by sym,(W@“) and when S,,(y) 

for all n their direct sum is denoted sym,(TW). The two-sided 

ideal in TW generated by elements of W @ W of the form LY - TJ y)a are the 

quantum skew elements, sk,(TW). When the symmetric group acts in the usual 

way on W@” these spaces are denoted by sym(W@“), sym(TW), and sk(TW). 

Thzquantum skew elements in TX are then generated by the quadraticElations 

ZC3%= Q-‘{(12),&%?}Q2 or, equivalently, Q2Z8%’ = (( 12),% @ %?)Q’. 

This construction of the quantum skew elements in thus the Faddeev- 

Reshetikhin-Takhtajan construction [4] for the matrix Q’. 

We shall show how to use these representations to produce deformations of k’ 

and (k’)* by showing that the quantum skew elements coincide with the ideal of 

relations for M,(2) and ki for a particular choice of y. Analogous to the classical 

situation, M,(2) and k: are viewed as the subspaces of quantum symmetric 

elements associated to the appropriate infinitesimal. 
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The infinitesimal used to construct M,(2) and kt, henceforth denoted y,, is 

e12 A e,, E A’M(2). Using -y,, we have that 

i 

1 0 0 0 

’ 

0 

cos(t/2) sin(ri2) 

0 

= 0 -sin(t/2) cos(t/2) 0 

0 0 0 1 

Letting S(t) = sin(t) and C(t) = cos(t), the quantum interchange T~( ~~y,) on V @ V 
operates on the basis elements in the following way: 

In V 69 V it is easy to show that x @,Y, y @ y, and qx 63 y + y @‘x are quantum 

symmetric (fixed by r,,(y,)) while x 63~ - qy @3x is quantum skew (sent to its 

negative under T~( Ye)), where q = set(t) - tan(f). 

For X8X the quantum interchange acts in the following way on the basis 

elements: 

Qy,)(a C3 b) = C(t)b 63 a - S(t)u @ b , 

T,(y,)(b 8 a) = C(t)u @ b + S(t)b @ a , 

+)(a 63 c) = C(t)c @a a - S(t)u c3 c , 

T~~(y,)(C~a)=C(~)a~~++(t)c~u, 

Tx( y,)(b @J d) = C(t)d G3 b - S(t)b @ d , 

~X(yq)(d@b)=C(t)b@d+S(t)d@b, 

Tx( y,)(c c3 d) = C(t)d (23 c - S(t)c @ d ) 

~,(y<,)(dcac)= C(t)c@d+ S(t)d@c, 

~~(yJ(u @ d) = C’(t)d 63 a + S’(t)u 63 d - C(f)S(r)(b @I c + c @I 6) , 

Tx(yq)(d 8 a) = C’(t)u 63 d + S’(t)d @ a + C(t)S(t)(b @ c + c @ b) , 

Tx(yq)(b 8 c) = C’(t)& b - S2(t)b @I c + C(t)S(t)(d @ a - a @ d) , 

T~( y,)(c 63 b) = C’(t)b (23 c - S2(t)c @ b + C(r)S(r)(d @ n - a @ d) . 
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The following elements in X8X form a basis for the subspace of quantum 

symmetric elements: 

a@a, b@b, c@c, d@d, 

qa@b+b@a, qa@c+c@a, 

qb@d+d@b, qc@d+d@c, 

(l+q”)a@d+2q’dC3a-(q-q”)(bC3c+c@b), 

2q(b@c+c@b)+(l-q’)(d@a-aad), 

while the following comprise a basis for the subspace of quantum skew elements: 

a@b-qb@a, a@c-qc@a, 

b@d-qd@b, c@d-qd@c, 

2q(a@d-dda)+(l-q’)(b@c+c@b), 

(l+q’)b@c-2q2c@b-(q-q”)(d@a-aad), 

where q is once again set(t) -tan(t). 

Note that the basic quantum skew element in I/@ V is the commutation 

relation for the quantum plane k’, and an easy computation shows that the 

quantum skew elements in X63X give precisely the commutation relations for 

M,(2). Thus another way to obtain the commutation relations for these quantiza- 

tions is by imposing the quantum interchanges associated to y, on V@V and 

X63X and taking the quantum skew elements relative to those interchanges. 

Alternatively, since the quantum skew elements coincide with the Faddeev- 

Reshetikhin-Takhtajan construction for the matrix Q’, replacing Q* by QCQ 

yiel$ the same relations for any invertible C E M(4) which commutes with 

%@3 2 + (12),%6$%. In [7] the matrix C is given such that QCQ = R, the 

standard ‘quantum Yang-Baxter’ matrix used to define the commutation relations 

for M‘,(2). 

As stated earlier, the generators 7, = r,,(yq)@Idv and rr = Id, 63 ~~(y~y,) of 

S,(y,) do l~at satisfy the braid relation. However, the following relation does 

hold: 

72 7, 72 - T, T2T, = S2(f)[7, - 72] . (1) 

Although the following observation will not be used in this paper, we would like 

to mention that (1) implies that S,,(y,) F H,(n), the Hecke algebra of the 

symmetric group. The Hecke algebra may be viewed as the algebra having 

generators (T,, . . . , u,~_, with relations a;~, = a, a, if (i - jl > 1, the braid relation, 

a,g+lfl; = a,+l~;u,+l? and af = (q - l)u, + q, where q E k. Now when q is not a 
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root of unity, H,(n) z kS,,, and hence kS,,(y,) z kS,, as subgroups of GL(V@I”). 

While this can be used to prove the existence of deformations of M(2) and k’ 

associated with -y,, to obtain explicit formulas for the deformed multiplication we 

need a precise description of the decomposition of our representations. 

3. The quantum enveloping algebra 

In addition to quantizing the action of the symmetric group on VBn, we also 

quantize the action of the universal enveloping algebra U~f(2) on VBn. Using 

both quantizations, we can decompose V @’ into simple S,,(-y,)-modules and then 

realize My(2) and k: as the quantum symmetric elements in TX and 7V, 

respectively. 

Let ~((2) be generated by H, X and Y with bracket relations 

[H,X]=2X, [H,Y]=-2Y, [X,Y]=H. 

To describe the Uaf(2)-module structure on V@” first note that V is a Lie module 

for ;f(2) in which the action is given by the operators: 

X= xaldy , Y = yalax , H = xalax - yalay . (2) 

These then extend to derivations of the tensor algebra TV, giving the latter an 

gf(2)-module structure in which each V@” is an gf(2)-submodule, and, hence, is a 

U51(2)-module. 

We view V@” as a graded vector space where deg(x) = 1, deg( y) = - 1 and 

deg(cu @ p) = deg(a) + deg( p). Let V(i, j) C V@” be the submodule spanned by 

all monomials of degree i - j with i + j = ~1. Note that dim V(i, j) = (7 ) = (I). 
Each element of V(i, j) is an eigenvector with eigenvalue i - j for the operation 

of H. We now describe the necessary quantization of Ugf(2) needed to decom- 

pose V@” into simple S,,(yq)-modules. This quantization is isomorphic to the one 

introduced by Woronowicz in [16] and will be denoted Uyaf(2). 

Definition 3.1. The Woronowicz quantization Uya1(2) is the algebra with 

generators Hy , X,, and Y, and the relations 

qX4Yy - q-‘Y,X, = H, , 

q-ZH,X, - q2X,H, = (q + q- ‘)X, , 

q2H,Y, - q-‘Yc,Hy = -(q + q-‘)Y, . 

The operation on V m is defined inductively. For y1 = 1 it is given by the linear 

maps V* V, 
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qw=o, Y,(x>=y, H,(x)=qx, 

q(Y)=.? YJy)=O, H,(y)=-q-‘y, 

and if aEV@‘” has degree r, then 

These relations then hold for all a,/3 E TV. (Actually, X,, Yy , and H, act as 

semiderivations or cr-derivations of TV for appropriate automorphisms of TV; cf. 

[12] for a related discussion of a-derivations and quantizations of U51(2).) The 

submodule V(i, j) of V@” is an eigenspace for the operator H,. The eigenvalues 

involve the ‘quantized’ integers ryz. More generally recall the following definition: 

Definition 3.2. The q-binomial coe#icient (sometimes called the q-Gaussian bini- 

mial coefficient) is 

n 

i j 

= (1 _ q’l)(l - q-‘). . . (1 - q-+‘) 

i 4 (l-q’)(l-q’p’)...(l-q) 

if IZ # 0 and ( (,! ), = 0. 

With this we set ryz = ( ;)q2 = (1 - q”)/(l - q2). Note that H,(x@y) = 
H,(y@x) = 0 and 

H&Y@?‘) = q(l + q2 + . . . + qzrp2)x@‘I , 

H,Jy@“) = +(l + q-2 + . . . + q-Zr+2)y@,r, 

Therefore, if cr has degree r, then it can be shown inductively that 

H,(a) = q. rilza 

Note that when q = 1, U,yGl(2) re d uces to USI and its usual operation on TV. 
In [6], it is shown that U, Wal(2) is a subalgebra but not a subcoalgebra of a 

bialgebra isomorphic to the Drinfel’d-Jimbo quantization of Ugl(2) [3,9]. 

4. Decomposition of tensor space 

The action of S,,(Y~) and U/,w5il(2) on I/@” can be used to give its decomposi- 

tion into simple S,,( yy)-modules. The decomposition is the ‘same’ as the decom- 
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position into simple S,,-modules provided that 4 is not a root of unity. More 

exactly, there is a natural correspondence between the simple S,,(yg)-summands 

and the simple S,-summands which gives the deformations we are seeking. 

It will be convenient to use the natural symmetric bilinear form (-, -) on V 
given by 

(x,x> = (y, Y> = 1, (x, Y> =o. 

This form induces one on V@” where 

With this the operations of S,, and S,,(r,) on TV are given by orthogonal 

transformations and we have a decomposition of V@‘” into orthogonal S,(r,)- 

submodules V(i, j), i.e. 

V @‘I = $) V(i, j) . 

To complete the decomposition we must split the V(i, j) into simple S,,(r,)- 

modules. To do this we use the action of Uyal(2) on V@“. 
For the generators X,, Y, and H, of UyGl(2) we have that 

X,(V(i, j)) C V(i + 1, j - 1) , 

Y,(V(i, j)) C V(i - 1, j + 1) , 

H,(V(i, j)) C V(L i) . 

The following lemma is the analog (in this context) of Schur’s classical result that 

kS,, and U~l(2) are mutual commutants of each other when viewed as subalgebras 

of End(V@‘“). There is a similar result due to Jimbo [9] that the cornmutant to his 

quantization of U~l(2) is the Hecke algebra. 

Lemma 4.1. For every f E lJya1(2), the map f : VW”+ V8” is an S,,( yq)-module 
morphism. 

Proof. It is sufficient to show that 

for cr E V C3 V. The corresponding statement for X, follows by switching x and y, 

X, and Y,, and replacing 9 by 9-l. The operation of any f E UTGl(2) on V@” 
would then be an S,, (7,) -module morphism since any such f can be expressed as a 

polynomial in X, and Y,. 
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Writing the basis elements of V C3 V once again as a column vector and setting 

q = set(t) - tan(t), we have 

which coincides with 

where q = set(t) - tan(r) as required. 0 

The decompositions of the modules V(i, j) and V( j, i) are ‘dual’ to each other 

if the roles of x and y are switched and t is replaced by -t (equivalently, q is 

replaced by q-‘j. 

Lemma 4.2. Suppose cx E V(i, j), and that i > j. Then Y,(Q) # 0. 

Proof. Pick an r such that Xi(a) = 0 but XS,(CV) # 0 if s < r. Since X’,(a) = 0 we 

have that 

(421x; Y, - Y,X:,)Cl = (q”X’, Y&x (4) 

Recall that from the definition of Uy~l(2) 

Y,K, = q2XqYq - My 

Using this we can rewrite q”X’,Y, - YCIX:, as 

4 2’m’X;-‘Hy + q”-“X;-2HyX4 + . . . + qHc,X’y-’ . (5) 

If d is the degree of LY, then the degree of Xi(a) is d + 2s, so we may use (4) and 

(5) to obtain 

q2’(X; Y,)cy = { q+‘( q . dqz) + q”-“( q . (d + 2)<(z) 

+ . ..+q(q.(d+2r-2).z)}X;,-‘(a). (6) 

This expression is not zero since (X’,- ’ )LY f 0 as assumed and hence Y,(a) # 0 as 

claimed. q 
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Similarly, X,((Y) f 0 for (Y E V( j, i) when i > j. Note that the preceding lemma 

is false when 9 is specialized at a root of unity since Hy(~) can be zero even if the 

degree of (Y is nonzero. 

For the remainder of this section suppose that i 2 j. The preceding lemma then 

implies that Y, : V(i + 1, j - 1) + V(i, j) is a monomorphism. Let M,(i, j) = 
(Y,(V(i + 1, j - 1)))’ C V(i, j) be the orthogonal complement of the image of 

V(i + 1, j - 1) in V(i, j) under the action of Y,, and set M,(n,O) = V(n, 0). 

Every M,(i, j) is a S,,(Yq)-submodule of V(i, j) of dimension (; ) - (,II I ). 

Dually, let Mi,( j, i) = (X,(V( j - 1, i + 1)))’ C V( j, i). By the correspondence 

between V(i, j) and V( j, i) already discussed, M,(i, j) s Mi( j, i) as S,,(r,)- 

modules. 

Theorem 4.3. Each M,(i, j) is a simple S,(yq)-module. 

The proof of this theorem makes use of the quantum symmetric elements in the 

tensor algebra TX which we view as IV @ TV*. Recall that the action of the 

S,,( -y,) on these spaces is induced by the quantum interchanges rV(yq), rV*(-yq) = 

(r&~)))? and Qx,) = r&)@rV&J d escribed in Section 2. The quantum 

symmetric elements of TX are easy to describe using the following observation: 

Lemma 4.4. If W is any finite-dimensional vector space with basis e,, . . . , e, and 
T E GL( W), then the element CY = c ei @ e,? is invariant under the transformation 
T@TT*~GL(W@W*). 

Proof. Note that W @ W* z End,(W) and that a corresponds to Id, and is 

independent of the choice of basis. Now the dual basis to Te,, . . , Te, is 

T-*e* ,‘“” T-*er and therefore (TC3 T-*)a = (Y. U 

Using the preceding lemma we may conclude that if M,, and Mi are sub- 

modules of V@” isomorphic to some My(i, j), then M, @Mb* C X@” contains a 

quantum symmetric element. 

Proof of Theorem 4.3. We begin by counting the number of quantum symmetric 

elements in TV @ TV* = TX that can be constructed using Lemma 4.4. 

The modules V(i, j) and V( j, i) (recall i 2 j and i + j = n) decompose into 

S, ( y,) -submodules in the following way: 

V(i, j) = 6) Y:!‘M,(n - r, r) , 

V( j, i) = 2, XiPrMk(r, n - r) . 

(7) 

From this and the fact that X, and Y, are S,(-y,)-module morphisms, the 

multiplicity, m(i, j), of M,(i, j) in V @fl, i.e. the number of distinct V(r, s) which 
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contain a S,(yy)-submodule isomorphic to M,(i, j), is rt + 1 - 2j. Now Lemma 

4.4 guarantees that If@‘” @V*@” contains at least Cy!,y’ m(i, j)’ linearly in- 

dependent quantum symmetric elements. These elements are linearly indepen- 

dent since they are in orthogonal submodules of (V”“)@(V*@‘“). Using the 

multiplicities calculated above gives 

‘~I m(i, j)’ = ( II + l)(n + 2)(n + 3) 

j=O 
6 

Thus there are at least (n + l)(n + 2)(n + 3)/6 linearly independent quantum 

symmetric elements in each X@‘“. These quantum symmetric elements become 

linearly independent ordinary symmetric elements when t = 0 since they remain in 

the same orthogonal submodules of X@‘“. Recall that, since dim(V 8 V*) = 4, 

dim(sym((V @ V*)““)) = ( n :” ) = (n + l)(n + 2)(n + 3) /6, so the ordinary sym- 

metric elements found form a basis for sym((V @ V*)““). Since any set of linearly 

independent quantum symmetric elements may be chosen to remain linearly 

independent when t=O, it follows that dim(sym,(V @ V*)““) 5 
dim(sym(V @V*)““). Therefore, the dimensions of the spaces of quantum and 

ordinary symmetric elements coincide for all n. Consequently, if M, and MI are 

S,( yq)-submodules of V can isomorphic to some M,(i, j), then M, 63 Mi* contains 

(up to scalar multiple) a unique quantum symmetric element and contains none if 

M, 7M;. 
The S,(y,)-submodule M,(i, j) of V(i, j) is therefore simple, for if it decom- 

posed in a nontrivial way, we would be able to find at least two linearly 

independent quantum symmetric elements in M,(i, j) @ Mi(i, j) . 0 

A consequence of the simplicity of M,(i, j) is that (7) gives the complete direct 

sum decompositions of V(i, j) and V( j, i) into simple S,,( y(,)-modules. Moreover, 

these are orthogonal decompositions. 

The correspondence of the decompositions of V @‘I into simple modules for both 

the quantum and ordinary symmetric groups is the crucial step in realizing M,(2) 

and k’, as deformations. In 161, the analogous result for II > 2 is discussed. There 

are some technical difficulties that do not appear for n = 2. For example, the 

analog of the modules V(i, j) is V(b), where p is a partition of II. When y1 f 2, the 

partitions are not linearly ordered making it impossible to count the multiplicities 

of the simple modules M,(p), which are the counterparts of the M,(i, j). The 

modifications used in [6] do, however, establish the simplicity of M,(p), thus 

making it possible to construct M,(n) as a deformation of M(n). 

5. M,(2) and ki as deformations 

With the complete decomposition of V @’ into simple modules for both S, (Ye) 

are S,,, we can construct canonical preferred deformations of M(2) and k2 which 
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are isomorphic to M,(2) and ki . Using the explicit form of the quantum 

symmetric elements in TV, the deformed multiplication for the quantum plane ki 

can be exhibited in a simple closed form. 

Recall that for the representation of S,,(Y~) on TV the ideal of quantum skew 

elements, sk,(TV), is generated x@y - qy 69x, which is the defining commuta- 

tion relation for the quantum plane, so there is an exact sequence 

O+sk,(TV)* TV+k’,+O 

Similarly, the commutation relations for M,(2) coincide with the quantum skew 

elements for the representation of S,,(r,) on TX so there is a corresponding 

sequence 

O+sk,(TX)-t TX+M,(2)+0. 

For the next lemma, W will denote either the vector space V of functions on k’, or 

the vector space X of functions on M(2). Recall that for TW the dimensions of 

the spaces of quantum and ordinary symmetric elements are the same and the 

actions of S,,( r,) and S,, are by orthogonal transformations. 

Lemma 5.1. The ideal sk,(TW) is the orthogonal complement, (sym,(TW))l, to 
the set of quantum symmetric elements in the tensor algebra TW. 

Proof. Any element of sk,(TW) can be written as a sum of elements of the form 

(IdWar - ~,)a for some quantum interchange 7, and (Y E WB3”; conversely, all such 

elements are quantum skew. Each quantum interchange T, is self-adjoint since it 

has order two and acts as an orthogonal transformation on TW so 

for all u and u. Now if ay is any quantum symmetric element in TW, then 

((Id,p - ~;>a, q,) = (a, (Id,oP,l - ~,)a,) = ((Y, 0) = o . 

Hence any element of sk,(TW) is orthogonal to every quantum symmetric 

element in TW so sk,(TW) C (sym,(TW))‘. Letting (sk,(TW)), = (sk,(TW)) fl 
W@” and (sym,(TW)): = (sym,(TW))’ n W@’ we have that 

dim((sk,(TW)),) 5 dim((vm,(TW)),f > 

Recall that the dimensions of the spaces of quantum symmetric elements are the 

same as that for the symmetric elements, so their complements also have the same 

dimensions giving 
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dim((sym,(TW))i) = dim((sym(TW))i) . 

Since every element in sk(TW) gives rise to an element in sk,(TW), we also have 

that 

dim((sk(TW)),) 5 dim((sk,(TW)),) . 

Finally, (sk( TW)), and (sym( 73’)): coincide when the symmetric algebra is 

embedded into the tensor algebra so 

dim((sk( TW)),) = dim((sym( TW)): ) , 

which, along with the previous equations, yields 

dim((sk,(TW)),) = dim((sym,(TW));) 

for each d and therefore sk,(TW) = (sym,( TW)) ’ . 0 

We can now describe the appropriate transformations of TX and TV which give 

M,(2) and kf,. To do this we use the decomposition of 7V into simple S,,( -y,) and 

simple S,-modules obtained in Section 4. Let T”, : V@“-+ VBn be an orthogonal 

transformation which takes the simple S,( Yq)-summands of If@” to the corre- 

sponding simple S,-summands. Combining all the TC gives an orthogonal trans- 

formation T, : TV- TV in which T,,(sk,(TV)) = sk(TV) and T,(sym,( TV)) = 
sym(TV). Set T,, = (TV)-* and let T,,, = T,@ T,, : TX-+ TXwhere TXis again 

viewed as the tensor product TV @ TV*. Recall that every quantum symmetric 

element of TX is contained in a module of the form M, @ Mi* , where M,,Mi z 

M,(i, j) for some (i, j). It follows that Tx(M, @ Mi*) = M @ M’*, where 

M,M’s M(i, j) and M(i, j) is the simple S,,-module of I/@” corresponding to 

M,(i, j). Thus Tx(sym,(TX)) = sym(TX) and, since T, is orthogonal, 

T,(sk,(TX)) = sk(TX). 

The transformation T, can be used to give a ‘trivial’ deformation of the tensor 

algebra TX. The deformed tensor multiplication, denoted 0, is obtained by 

setting 

N 0 P = T,(T,‘(a)@ T,‘(P)) 

for (Y,P E TX. In particular, 

x,0.. .0x,, = T,(x,@~~~@xx,). 

Associativity of 0 is guaranteed since it is the transport of the associative tensor 

multiplication. The transformation T, may therefore be viewed as an algebra 
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isomorphism from (TX, @), the k-module TX with multiplication 8, to (TX, O), 
the k-module TX with multiplication 0. Note that it takes the ideal sk,(TX) in 

(TX, 8) to the subspace sk( TX) in (TX, 0) which then must be an ideal for the 

O-multiplication. We thus have a commutative diagram of exact sequences: 

0- sk,( TX) -(TX,@)- M,(2) ~0 

‘.I %I %I 

0- sk(TX) -(TX, @)A (M(2), *)- 0 

(8) 

where * is the multiplication in M(2) induced from 0. 

The next theorem guarantees that the deformed tensor algebra (TX, 0) is also 

a preferred deformation of the tensor bialgebra TX. In other words, the original 
comultiplication on TX is compatible with the deformed tensor multiplication, 0, 

on all elements. 

Theorem 5.2. The transformation T x : TX+ TX is a coalgebra automorphism. 

Thus, (TX,@, A) 1s a bialgebra and T, is a bialgebra isomorphism from the 
quantum matrix bialgebra M,(2) to the preferred deformation, (M(2), *), of M(2) 

in which the comultiplication is unchanged on all elements of M(2). 

Proof. A basis for X@‘” consists of all elements of the form u, @ UT, where the 

subscripts I and J run through the multi-indices i,, . . . , i, of length n and 

v, = v,,@. . . ($3 v,,, with all v,, E V, vf is defined similarly. With this, the comulti- 

plication has the form 

A(v,@v;)=~(u,@vK)~(u;G3vJ*). 
K 

The operation of T, is given by 

T,(u,@u;) = T,v,@ T,*v,Y , 

so we have 

AT,(u,@u~)=~(T,v,@v,)C~(V~C%TT,*UJ) 
K 

= c (T,v,@ T,v,)@(T,*u;@ T,*v;). (9) 

The last equality follows from Lemma 4.4 since the set of all {u,} forms a basis 

for VBfl and T,y = T,, @ T,,, . Now 
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So combining (9) and (10) gives 

AT, = (TX@ T,)A, 
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(W 

which says that T, is a coalgebra automorphism and, since T, defines the 

deformed tensor multiplication 0, also guarantees that 0 is compatible with A, 

making (TX, 0, A) a bialgebra. There is then an induced bialgebra isomorphism 

p, : M,(2)+ (M(2), *). 0 

The quantum special linear group SL,(2) is defined to be the bialgebra 

obtained as the quotient M,(2)/det,(Z) - l), where det,(%‘) = a 631 d - qb @ c is 

the quantum determinant. In [4], it is shown that det,(%) is a group-like element 

of M,(2), that is A(det,(g)) = (det,(a”))@(det,(E)). Now it is well known that 

in M(2), det(%‘) = a 63 d - b 69 c is the unique group-like element of X8X. 

Consequently, since T, is, in particular, an isomorphism of coalgebras M,(2) z 

M(2), it must take det,(Z) to det(E). Thus, in the preferred presentation of 

M,(2), the quantum determinant is just the ordinary determinant and 

SL,(2) G (M(2), *)/(det(%‘) - 1). 

Similarly, there is a preferred presentation, (kZ, *), for the quantum plane as 

a (M(2), *)-comodule algebra. This means that ki z (k’, *) and for any u and 

u in k2 with coactions h(u) = c w(,) @Us,, and h(u) = c w;,, Q3uut2), 

where W( 1) 1 w; I ) EM(2) and u~,),u~~) E k’, we have A(u * u) = 

c (“(I, * &)@(+z, * UQ)). 
The ‘star’ multiplication for (k’, *) is obtainable using the orthogonal trans- 

formation T, since the explicit form of the quantum symmetric elements in 77’ is 

easy to compute. The module V(i, j) is spanned by all monomials LY such that 

pu” = x’y’ (these are the monomials of degree i -i and p is the multiplication) 

so C ff is, up to a multiple, the only symmetric element of V(i, j). Since 

dim(V(i, i)) = ( 7 ), the unique symmetric element of norm one is 

In each V(i, j) there is also, up to a multiple, only one quantum symmetric 

element; for V(1, 1) we have seen that this element is qx @ y + y @3x. From this it 

is easy to intuit that the quantum symmetric element in the module V(i, j) is 
c qW LY, where I(a) is the number of inversions present in the monomial (Y. 

Definition 5.3. For a monomial (Y E V(i, j), let c E S, be any permutation which 
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satisfies a( y@‘~@“-~ - ) - (Y. The number f(a) of inversions in (Y is the length of the 

shortest expression of P as a product of transpositions. 

It can easily be shown that 1(o) is well defined. To compute the quantum 

symmetric elements of norm one we need to know the number of monomials in 

V(i, j) having exactly d inversions. The generating function for this is shown in 

[lo] to be the q-binomial coefficient (:I )y. In other words 

n 
i ) = c q’(a) ) 

iY u 

(11) 

where the sum ranges over all monomials (Y in V(i, j). The quantum symmetric 

element of norm one, cu,(i, j), is thus 

( ) 
-I/2 

a,(i, j) = 1 qz 2 q’@)a , (12) 

where the sum ranges over all monomials (Y E V(i, j). Some examples of the 

various (~(,(i j) are 

cu,(n, 0) = _x@’ , 

a,@, 1) = (1 + q2)-“2(qx@y -t y@x) ) 

a,(2,1) = (1+ q2 + q4)-“*(q2..&)x@y + qx@y@lx +y@x@x). 

The products for the quantum plane are deduced from the following analog of 

(0 

O- sk,( TV) -(TV, @)---+ k’ A 0 r/ 

TV I Tvj %I (13) 

O- sk(TV) --+TV,0)---t”,(k2,*)-0 

Suppose ~~y’,,Cy’ E k2 are given with k + 1= n and r + s = m. The elements 

( ;)pl”a(k, I) and (rY)-1’2 LY r, s are then the canonical symmetric elements in ( ) 

TV corresponding to x’y’ and x’y” (remember that lla(k, /)\I = Ila(r, s)\l = 1). 

According to (13), 

= ((7) (;) (;),(;jy2)-“* F 2 q’(“)+‘(n’)L(~@4, 
<I (2 ’ 

(14) 
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where the sum ranges through all monomials (Y and (Y’ in V(k, I) and V(r, s), 

respectively. 
Now, if [ E V(i’, j’), then 

T”(L) = NI”, j’) + p , 

where p( /3) = 0, hence to find p( T,( l)) it suffices to find the constant c since 

cL(a(I”, j’)) = (? ) “*x”y”. Since cz(i’, j’) may be viewed as an element of an 
orthonormal basis for V(i’, j’), we have that c = ( T,( [), Ly(i’, j’)). Now because 
T, is orthogonal and T,(cx,(n’, i’)) = a(n’, i’) it follows that 

c = (T,( 0, 4i’, if>> = ( l, ay(ifr if>> . 

For monomials (Y E V(k, f) and (Y’ E V(r, s), 

(&“,aq(k+r,z+S))= ((nl+yJ”* qK~~+G’)+ks ) 

where k+l=n and r+s=m. 
Returning to (14) we now have that 

X qk” 2 q2(‘(a)+‘(n’))p(cx(k + r, 1 + s)) 
a.O1’ 

Setting vi,i = (( ‘:‘)l( i:‘)q2)1’2 to be the ‘norm factor’, we have the following 
theorem: 

Theorem 5.4. The products 

dejine a preferred deformation from k* to (k*, *) which, by construction, is 
isomorphic as an (M(2), *)-comodule algebra to the quantum plane kt. 0 
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For an example, in V(1, 1) we have the following: 

2 112 2 l/Z 

x*y=q - 
i 

1+q2 xy3 J y*x= ___ 

i 

1+q2 xy, 

1 

so x * y = qy *x, which is the standard defining commutation relation for the 

quantum plane. This construction is only valid when 9 is not a root of unity since 

otherwise some of the quantum symmetric elements, (~,(i, j) become isotropic 

which makes the norm factors ~(i, j) infinite. Thus a preferred presentation for 

this quantum plane need not exist when q is specialized at a root of unity, a value 

where quantum groups are known to have different properties (cf. [ll]). 
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