
Automatica, Vol. 28, No. 3, pp. 549-555. 1992 
Printed in Great Britain. 

0005-1098192 $5.00 + 0.00 
Pergamon Press Ltd 

© 1992 International Federation of Automatic Control 

Aiming Control: 
(D, 

Residence Probability and 
T)-Stability*t 

S. KIMAt S. M. MEERKOV~:§ and T. RUNOLFSSONII 

The problem of  Aiming Control is analyzed using a residence probability 
measure along with the associated notion o f  (D, T)-stability. 

Key Words--Linear  Systems; stochastic control; large deviations; stability criteria; approximation 
theory. 

Abstract--In this paper, the problem of aiming control is 
formulated and analyzed in terms of the residence 
probability measure. Specifically, the notion of residence 
probability in a domain is introduced and its asymptotic 
expression is derived for linear systems with small, additive 
white noise. The associated notion of (D, T)-stability, which 
characterizes the performance of stochastic systems with no 
equilibrium points, is introduced and investigated. Finally, 
the controllability of residence probability is studied and the 
necessary and sufficient conditions for (D, T)-stabilizability 
are derived. The development is based on the asymptotic 
large deviations theory. 

1. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

CONSIDER A SYSTEM described by the Ito 
stochastic differential equation: 

d x = ( A x + B u ) d t + e C d w ,  x(0)=Xo, (1.1) 

where x • R " ,  u • R  m, 0 < e < < l  and w is a 
standard r-dimensional Brownian motion. Let 
D c R" be an open bounded domain with 0 in its 
interior, T < oo a positive number and consider 
the following problem: 
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Given system (1.1) and the pair (D, T), find a 
feedback law 

u = Kx, (1.2) 

and an open set Do c D such that the closed loop 
system (1.1), (1.2) has the following property: 

x(t, Xo) • D, Vt • [0, T], Vxo • [Do], 

where [Do] is the closure of Do. 
This problem is referred to as the problem of 

aiming control. Such a problem arises in a 
number of applications where the goal is to 
accomplish a certain task during a specified 
period (T) with a specified accuracy (D). 
Examples include the telescope pointing prob- 
lem (Skelton, 1973), robot arm and laser beam 
pointing (Cannon and Schmitz, 1984; Katzman, 
1987), missile terminal guidance (Garnell, 1977), 
etc. 

Let aD be the boundary of D and define the 
first passage time 

1:~o = inf {t -> 0 :x(t, Xo) • aD}. 

It is well known that r~o is almost surely finite 
(Freidlin and Wentzell, 1984). Therefore, the 
aiming process specifications, (D, T), cannot be 
met exactly and some probabilistic meaning 
should be attached to their interpretation. 
Specifically, the problem of aiming control can 
be re-formulated in the following two probabil- 
istic settings. 

Residence time control. Given (1.1) and a pair 
(D, T), find a feedback law (1.2) and an open 
set Do c D such that 

E[r~ol -> T, Vx0 • [/9ol. (1.3) 

Residence probability control. Given (1.1), a 
pair (D, T) and a constant 0 < p < l ,  find a 



550 S. KIM e t  a l .  

feedback law (1.2) and an open set Do c D such 
that 

Prob {rx~0 > T} >p ,  Vx0 e [Do]. (1.4) 

The residence time control problem (1.4) and 
its generalizations have been analyzed in 
Meerkov and Runolfsson (1988, 1989a, 1989b, 
1990) and Runolfsson (1988). In these publica- 
tions, the fundamental bounds on the achievable 
values of E[r~0] have been investigated and the 
methods for controllers design, compatible with 
these bounds, have been developed. 

Note that, since r~o is a non-negative random 
variable, the Markov inequality gives: 

Prob {~x~o--> T} ----- E[rx~°] 
T 

Therefore, if Prob { r i0 -  T } - p ,  the estimate 
for E[~o] follows immediately: 

E[r~0l >-pT. 

This observation suggests that the residence 
probability control (1.5) is a stronger reformula- 
tion of the aiming control problem than the 
residence time control (1.4). 

This paper is devoted to the investigation of 
the controllability properties of residence prob- 
ability, i.e. to the question on when there exists 
a feedback law u - - K x  that solves the residence 
probability control problem. The related ques- 
tion of design of the residence probability 
controllers will be addressed in a companion 
paper. As it was the case in Meerkov and 
Rnnolfsson (1988, 1989a, 1989b, 1990) and Ru- 
nolfsson (1988), the development is based on the 
large deviations theory of Freidlin and Wentzell 
(1984). 

The idea of utilizing the residence probability 
as a measure of control systems performance is 
not new. Apparently, it was first introduced in 
Ruina and van Valkenburg (1960) and then 
analyzed in Kushner (1967), Fleming and Tsai 
(1981), and Dupuis and Kushner (1987). 

The structure of the paper is as follows: in 
Section 2 an asymptotic formula for residence 
probability in a domain is derived. In Section 3, 
the notion of (D, T)-stability, that characterizes 
the behavior of stochastic systems with no 
equilibrium points, is introduced and analyzed. 
Section 4 presents the conditions for residence 
probability controllability and (D, T)- 
stabilizability. In Section 5, the conclusions are 
formulated. The proofs are given in Appendices 
1-3. 

2. RESIDENCE PROBABILITY IN A DOMAIN 

Consider the Ito system 

dx = A x  dt + eC dw, x(O) = Xo, (2.1) 

where, as before, x • R  n, 0 < e < < l ,  w is a 
standard r-dimensional Brownian motion and 
rank C = r .  Let D c R  n and D 0 ~ D  be open 
bounded sets with 0 in their interior and smooth 
boundaries OD and ODo, respectively. The first 
passage time of the trajectory originating at Xo is 

r~o = inf {t -> 0 :x(t) • OD}. (2.2) 

As a random variable, r~o is characterized by its 
probability distribution, i.e. Prob { rx~o_< T}. 
Based on this distribution, the first passage 
probability of the trajectories originating in [Do] 
can be defined as follows: 

Pno{C<-T} a= sup Prob{r~o---T}. (2.3) 
xo~lDo] 

Note that, due to the compactness of [Do] and 
the continuity of Prob {r~o--< T} in Xo (Freidlin 
and Wentzell, 1984), the supremum in (2.3) is 
actually attained. Then the residence probability 
in the domain is defined as 

PD0{r~ > T} =a 1 - P o o { v ~ -  < T} 

= min Prob {~x~0> T}. (2.4) 
x0~[oo] 

These probabilities play a crucial role in the 
development that follows. They are charac- 
terized next. 

Theorem 2 .1 .  Assume that ( A ,  C )  is disturbable, 
i.e. rank [ C A C .  • • A " - ' C ]  = n. Then 

lim e 2 In Poo{ r ~ - T }  = - min min 
e--~0 Xo~ [Do] y~OD 

O~t<_ T 
½(y - eAtxo)TX--l(t)(y -- eA'xo) = -- cp(Do), (2.5) 

where 

if(Q) = A X ( t )  + X ( t ) A r  + CC r, X(0) = 0. (2.6) 

Proof. See Appendix 1. 

Theorem 2.1 states, in particular, that 
Poo{r~-<T} is closely related to e -~°(°°/~2, i.e. 
for any di > 0, there exists an eo > 0 such that, 
for all 0 < e -< eo, 

e-t(~°(°°)+~)/~q -< Poo{ r ~  T} -< e -l(~°(°°)-~)/E21. 

(2.7) 
Note that ~(Do), the logarithmic first passage 

probability, is a coordinate-free characterization 
of system's performance. This follows from 
Theorem 2.1 and the fact that {x • R" :x e D } = 
{Qx • R" : Q - ' x  • D} for any invertible matrix 
Q. This property will be used in Section 4 to 
establish the upper bound of the achievable 
logarithmic first passage probability for system 
(1.1). 
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3. (D, T)-STABILITY 
If a stochastic system has an equilibrium point, 

its stability can be characterized by the usual 
notion of Liapunov stability modified in an 
appropriate stochastic sense (Kushner, 1967; 
Khasminsky, 1969). If the system does not have 
equilibria, as is the case for (2.1), the Liapunov 
stability does not apply. In this situation, the 
notion of first passage time could be used to 
describe its "stability" features. One way to 
accomplish this is as follows. 

Definition 3.1. System (2.1) is said to be 
(D, T)-stable with probability 0 < p  < 1 if there 
exists an open set Do c D such that 

Poo{Z" > T} >p ,  (3.1) 

or, equivalently, 

Poo{r~----- T} -< 1 - p ,  (3.2) 

where Poo{r~> T} and Poo{~ ~< - T} are defined 
in (2.4) and (2.3), respectively. 

In this definition, set D may be interpreted as 
a safe operating region, T as a desired operating 
time, and Do as an initial, "lock in", set. 

Sufficient tests for (D, T)-stability and in- 
stability are given below. 

Theorem 3.1. Assume that A is Hurwitz and 
(A, C) is disturbable. Let M > 0 be a matrix 
such that 

ArM + MA <0,  

and assume there exists a positive number R0 
such that 

R0 
r ~ yeoomin Ilyll - VZmi,(M) > 0, 

where ;train(M) is the smallest eigenvalue of M 
and I1" II is the Euclidean norm of a vector. Then 
for any 6 > 0 there exists an eo > 0 such that if 
0<e_<eo  system (2.1) is (D, T)-stable with 
probability 1 - e  -I('~-6)/d] where 

F 2 

2Zm,x(X(T))' 

X(t) is the covariance matrix defined by (2.6) 
and ;tm,x(X(T)) is the largest eigenvalue of 
X(T). The corresponding initial set Do in this 
case is: 

= R :xoMxo<Ro}. Do {Xoe " r 2 

Proof. See Appendix 2. 

Theorem 3.2. Assume (A, C) is disturbable. 
Then for any 6 > 0 there exists an e0 > 0 such 
that if 0 < c - < e o  system (2.1) is not (D, T)- 

stable with probability p = 1 - e -l('~+6/dl if 

max Ilyll 2 
y~OD 

2 ) ~ m a x ( X ( T ) )  

Proof. See Appendix 2. 

Theorems 3.1 and 3.2 provide the lower and 
upper bound for the residence probability in the 
domain: 

{ min R° 2 } [.o , , ,-  
1 - e x p  - 2~,m~x(X(T))e2 + 

< P o ~ { r ' >  T} 

m a x  IlYll 2 ,5 ] 
- y ~ o o  - ~ 5  ( 3 . 3 )  

< 1 - exp 2;tmax(X(T))ez • 

4. RESIDENCE PROBABILITY CONTROLLABILITY 
AND (D, T)-STABILIZABILITY 

Consider again system (1.1) with control (1.2). 
As it follows from Theorem 2.1, if (A + BK, C) 
is disturbable, 

l ime 2 In Pn.{r~(K) -< T} = -tp(Do, K), 
e-~,0 

where q~(D0, K) is the logarithmic first passage 
probability defined by 

tp(Do, K ) =  min min ½(y-e(a+Br)'Xo) r 
Xo~ [ Do] y6OD 

O~_t<_ T 
x x - l ( t ,  K)(y - e(a+SX)'Xo), (4.1) 

X(t, K) = (A + BK)X(t, K) + X(t, K) 

x ( A + B K )  r +CC r, X(O,K)=O. 

Note that if (A, [BC])([BC] is the matrix whose 
columns are the columns of B and C) is 
disturbable, (A+BK,  C) is disturbable for 
almost any K (Davison and Wang, 1973). We 
would like to choose the feedback law (1.2) so 
that ~(Do, K) is as large as desired. This may or 
may not be possible. To characterize the various 
situations we introduce 

Definition 4.1. System (1.1) is said to be strongly 
residence probability controllable (srp- 
controllable) if for any (D, T) and te > 0 there 
exists u -- Kx and Do c D such that ~(Do, K) > 
a~. Otherwise the system is weakly residence 
probability controllable. 

Clearly the srp-controllability is closely related 
to the property of (D, T)-stabilizability: 

Definition 4.2. System (1.1) is (D, T)- 
stabilizable if for any (D, T) and 0 < p < 1 there 



552 S. KtM et al. 

exists u = Kx and Do ~ D such that 

Poo{~> T} >p. 

Below, the class of srp-controllable systems is 
characterized. 

Theorem 4.1. Under the assumption of (A, C) 
disturbability, (1.1) is srp-controllable if and 
only if Im C c Im B. 

Proof. See Appendix 3. 

When Im C ~ I m B ,  there exists an upper 
bound on the achievable q0(Do, K). This bound 
is analyzed next. 

Consider again (1.1) and assume that B has a 
full rank. Then there exists a similarity 
transformation x = Q$ that transfers (1.1) to the 
form 

d~ = (,4:~ +/~u)  dt + e(~ dw, (4.2) 

[/~11 A121, 
Q-1AQA-A=[A21-'{z2 J Q-1B =/~ = [~] ' 

1c__  

Since qg(Do, K) is a coordinate free characteriza- 
tion of system performance, the bounds will be 
established in terms of the realization (4.2) .  

Assume (A, B) is controllable and choose 

u=Ko£, K o = - l B r P o ,  p>O, (4.3) 
P 

where Pp is the positive definite solution of 

ArPo + PoA +I  -1PoI~Brp o = 0. (4.4) 
P 

Let P~2(t) be a positive definite solution of 

- P~2(t) = Are~2(t) + P~2(t)A= + t 
* ^ ^ T  * 

- P22(t)AE1A2~P22(t), P~2(T) = 0, (4.5) 

and P22 be the positive definite solution of 

A r  p22 + P22A22 + I ^ ^ r - -  P 2 2 A 2 1 A 2 1 P 2 2  = 0, (4.6) 

i.e. P22 = lim P~2(0). 
T ~  

Finally let M > 0 and Po > 0 be a matrix and a 
number such that 

(A + Bf(o)rM + M(J{ + BKo)<O, (4.7) 

for all 0 < p -< Po and let Ro > 0 be number such 
that 

F =  min IlYll- Ro y~OO ~ > 0 .  (4.8) 

Let ~ = ( / (  • R m×~ :fi~ +/~/ (  is Hurwitz} and let 
¢(/50, R) be the logarithmic first passage 
probability of (4.2) from /5 = {$ • R ~ : Q-I~ • 
D}. 

Theorem 4.2. Under the assumption of control- 
lability of (A, B) and disturbability of (A, C) the 
maximal achievable logarithmic first passage 
probability is bounded as follows: 

where 

F2 nmax I lyll  2 

23.** ~-- SRp~ ¢ ( D o ,  K )  ~-~ y ~ a O  
r~sc 23.* ' 

(4.9) 

3.* = Tr t)2P~2(0)C2, (4.10)  

3.** = Tr C2rP22C2 . (4.11) 

Proof. See Appendix 3. 

Note that in the srp-controllability case 
~2 = 0, 3.* = 3.** = 0 and, therefore, 

sup ¢(50,  R ) =  ~. 
Ka2//" 

To illustrate the bounds of Theorem 4.3, 
consider an example of the roll attitude control 
problem in a missile disturbed by a random 
torque (Hotz and Skelton, 1986). The dynamics 
of the system are described as 

= 10 - 1  

0 1 

+ u + e  w, (4.12) 

where 5 is the aileron deflection, to is the roll 
angular velocity, q9 is the roll angle, u is control 
of aileron actuators and ~i, is white noise. Note 
that (4.12) is in the form (4.2) with C_.24=0, i.e. 
the system under consideration is wrp- 
controllable and rp(Do, K) is bounded. To 
evaluate this bound, assume, for simplicity, that 
D is a ball with radius R, T = 3 and calculate 

3.*~0.1, 3.**=0.1. 

Choosing M as 

0.25 0.35 0.35 / , (4.13) 

0.25 0.35 1.351 

and verifying that (4.8) holds, we finally obtain: 

-< sup tp(Do, K) <-- 
Ro ~2 

5 R -  ~ )  ,~o~ 15R 2. 

Thus, there is no linear controller for missile 
(4.12) that keeps the states in the ball of radius 
R during interval T with probability p > 1 -  

/ exp e2 . On the other hand, there exists 
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a linear state feedback that accomplishes this 

task with probability p ~ l - e x p  - ~  R -  

~ ]  + , provided that at t = 0 the states 

are locked into the initial set Do = {Xo:XgMXo <- 
Rg}, where M is given by (4.13). 

5. CONCLUSIONS 

(1) The residence probability control gives a 
stronger reformulation of the aiming control 
problem than the residence time control. 
However, the resulting control problem is also 
more complex: the performance depends on the 
size of the initial, "lock in", domain and on the 
operating period. 

(2) (D, T)-stability with probability p is a 
useful tool for characterization of the perfor- 
mance of stochastic systems with no equilibrium 
points. 

(3) The logarithmic first passage probability of 
a controlled linear system with additive white 
noise can be modified in any desired manner, for 
instance, made as close to oo as desired, if and 
only if the range space of the noise matrix is 
included in the range space of the control 
matrix. Otherwise, the achievable logarithmic 
first passage probability is bounded away from oo 
and estimates of this bound are characterized 
herein. 
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APPENDIX 1: PROOFS FOR SECTION 2 

Proof of  Theorem 2.1. 
Consider, in conjunction with (2.1), the deterministic 

system 

= Ay + Cu, y(O) = x o, (AI.1) 

If t# is a trajectory of (AI.1) corresponding to an input 
function u ~ L2[0 , T, a m] define 

SOT(t# ) A= SOT(U) = 2 ur(t)u(t) dt. (A1.2) 

For the remaining continuous functions from [0, T] into R"  
let SOT(t#) = oo. Then SoT(t#) is the action functional for (2.1) 
(Zabczyk, 1985). 

Define 

rio ~ min {t:x(t) ~ Od), (A1.3) 

where D c R n is an open bounded set in R" with 0 in its 
interior and smooth boundary aD and x(t) is the trajectory 
of (2.1) with x 0 e Do. Introduce also 

Ho(T, Xo) ~ {t# ¢ CoT(R") : ¢(0) = x o e D, 

t#(s) * D for some s E [0, T]}. (A1.4) 

Uo(T, Xo) A= {u ~ CoT(R"): t# • HD(T, Xo), 

¢#=At#+Cu, t#(O)=xo). (A1.5) 

It follows from Theorems 1.1 and 1.2 (Chapter 4) of Freidlin 
and Wentzell (1984) that if 

inf SOT(U) = inf SOT(U),  (A1.6) 
ueUD(T.XO) u¢[Uo(T, xo)] 

then uniformly with respect to all Xo ¢ R ~, 

lira e 21nProb {t~o < T) ~- - rain SOT(u). (A1.7) 
$--'.0 uEUD(T, xo) 

However, since SOT(u) is differentiable with respect to u 
(Kirk, 1970), it follows that (A1.6) and consequently (A1.7) 
is true. 

To solve the minimization problem of (A1.6) we observe 
that, as it follows from Freidlin and Wentzell (1984), 

min SOT(u) = min V(t, x o, y), (A1.8) 
uE[UD(T, xo) ] y¢OD 

O~t~T 

where 

V(t, xo, y ) = m i n l  ~uT(s)u(s)ds,  (A1.9) 

~ = A t # + C u ,  t#(0)=x o, t#(t)=y. (A1.10) 
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Problem (A1.8)-(AI .10)  can be solved using a standard 
variational approach. A straightforward calculation shows 
that 

V(t, Xo, y) = ½(y - e m x o ) r X - l ( t ) ( y  - ea'xo), 

where 

X = A X + X A r  + C C  r, X ( 0 ) = 0 .  

Thus, according to (A1.6) and (A1.8), it follows from (A1.7) 
that 

lira e2 In Prob (r**_< T} 

= min ½(y - eA 'xo)rX- l ( t ) (y  -- ea'Xo). 
y~OD 
O~t~  T 

To complete the proof consider 

eoo{~*-  < T} = max Prob (rx'o--- T}, 
xo*[Oo] 

where D o c D is an open set containing 0 with a smooth 
boundary aDo. Taking into account the continuity of In 
Prob {Z~o -< T}, the uniformity of the limit in (A1.7), and the 
compactness of [Do], 

l i m e  2 In Poo{r e <-- T} 
e ~ o  

= lira e21n max Prob {r~o -< T} 
~ o  xo~lDol 

= lim e 2 max InProb {r~o--< T} 
e--~ xo~tOol 

----- max lira e 2 In Prob { ~ o -  T} 
xoslDol e---~0 

= xo,maXIDol [--  ymin~ OD ½(y -- eAtXo)TX--1(t)(y -- eAtXo)] 
O'~t~T 

= - min min ½(y - ea~xo)rX-~(t)(y - eAtxo). 
xo~lDol y ~ a D  

O:~t~T 

Proof  o f  Lemma 2.1. Since X( t )  = Qf ( ( t )Q  r, 

(~ - eA'-~o)r.~ ~(t)(~ - eA'$o) 

--1 - - l e A t  --1 x T T X - I Q ~ ,  =(Q y - Q  QQ o) Q ~ , 
--1 - - l e A r  --1 x X Q(Q y - Q QQ o) 

= (y - eAtxo)rX - ~(t)(y - emxo). 

Therefore, 

(0(/5o) = rain rain ½(.9 - e'4'~o)rf(-~(t)(~ - e'i'$o) 
~o~16ol .~ab 

O'~t~T 

= rain rain ½ ( y - e a t x o ) r X - ' ( t )  
xo~ [Do] y c a D  

Or~t~T 

× (y -- eA'Xo) -= qo(Do). 

APPENDIX 2: PROOFS F O R  SECTION 3 

Proof  o f  Theorem 3.1. Observe that 

~(Do)--  > - min min lXmin(X-l(t))IlY --eAtxo]12 
xo~lDo] y c a D  

O ~ t ~ T  

min rain Ily--ea'xoll  2 
xoelDo ] y c a D  

O~,t~T =__ 
2A=,.(X(T))  

Since A is Hurwitz and there exists M > 0 such that 

A r M  + M A  <0.  

D O = { x  o e R "  :xroMxo < - R2o} is an invariant set for (2.1) with 
e = 0. Since 

F -a min IlYll- Ro 
~ o  ~ 1 > 0 ,  

this invariant set is contained in D. Therefore,  

min min [[y--eAtxoll 2 
xo¢ [D0] y~OD 

~(Oo) - o~,~r _ 
2~-m~x(X(T)) 

Ro ~ (~i~,yll ~ j  
> 22m~x(X(T)) __a @,. (A2.1) 

(A2.1) and (2.7) imply that (2.1) is (D, T)-stable with 
probability 1 -  e -1(a-6Fe21 where 

0 < Of < (I) 1 . 

Proof  o f  Theorem 
R = max IlYlI. Then 

y ~ a D  

3.2. Let B = ( x • R " : I I x l I < _ R }  and 

qg(Do)-< min l y r X - ' ( t ) y  
y~OO 
O ~ t ~ T  

--< min ~ y r X - l ( t ) y  
y e a B  

O ~ I ~ T  

= rain l~min(X-l ( t ) )R2 
O ~ t ~ T  

R 2 
__a ~2, (A2.2) 

2 ~ L m a x ( X ( T ) )  

(A2.2) and (2.7) imply that (2.1) is not (D, T)-stable with 
probability 1 - e -t('*+65/~21, where oc > ~2. 

APPENDIX 3: PROOFS FOR SECTION 4 

Proof  o f  Theorem 4.1. Sufficiency. If Im C c_ Im B, the 
disturbability of (A, C) guarantees the controllability of 
(A, B). Then, as it was shown in Meerkov and Runolfsson 
(1988), there exist a sequence (K,,} such that (A + BK~)  is 
Hurwitz for all a~ e [1, oo), a set Do which is invariant set for 
Yc = (A + B K . ) x  for all ot and, in addition, 

lim X®(K~) = O, 

where 

(A + BK~)X®(K~) + X~(K~) (A  + BK~)  r + CC r = O. 

Since X ( T ,  K , )  <~ X ~ ( K , ) ,  Y T  >- 0 

l i m  X(T, K , ~ ) = 0 ,  V T > - 0 ,  

where 

X(t ,  K~.) = (A + BK~)X( t ,  r . )  

+ X ( K , ) ( A  + BK~)  r + CC T, X(O, K~) = O. 

Therefore, by using Theorem 2.1, 

lim ~(Do, K~) = , 
o t ~  

which implies that (1.1) is srp-controllable. 
Necessity. Assume that (1.1) is srp-controllable. Then 
supr  qg(Do, K) = 0o which implies that inf K gm~(X(T ,  K))  = 
0. In particular, this is true for T = oo. Finally, it was shown 
in Meerkov and Runolfsson (1988) that inf x Am~(X=(K)) = 0 
implies Im C =_ Im B. Q.E .D.  

Proof  o f  Theorem 4.2. It follows from (A2.2) and the 
positive definiteness of X ( T ,  I() that 

R 2 nR 2 
< ~ (A3.1) 

~°(/)°'/~) 2Am~(X(T,/~)) 2 T r X ( T , / ~ ) '  

where R 2 = max IlYll 2. Let ~'[0, T] be the set of time-varying 
y~aD  

feedback gains K(/), t • [0, T], and ~ be the set of constant 
feedback gains K. Then clearly 

inf Tr X(T , / ~ )  -< inf. Tr X ( T ,  1(). (A3.2) 
Ke~t" k ~ l O ,  Tl  
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Combining (A3.1) and (A3.2) gives 
nR 2 

sup t~(Do,/() -< (A3.3) 
R ~  2 inf T r X ( T , / ( ) '  

Ke~IO, TI 

Finally, it was shown in O'Malley and Jameson (1975) that 

inf TrX(T, R)=Tr¢~'P~'2(0)¢~, (A3.4) 
/~e:KIO, T] 

where P~2(t) is the positive definite solution of (4.5). 
Substituting (A3.4) into (A3.3) gives the upper bound. 

To obtain the lower bound note that as in (A2.1) 

min min IlY - e('~+~K)tXoll 2 

¢(D(,, K) z o<-,~z (A3.5) 
2Xmax(X(T, /~)) 

Moreover, since 

X~(X(T, /~) )  < Xm~(X( ~, /())--<TrX(o% /(), (A3.6) 

it follows that 

min min IIY - e(~i+~i~)~xoJl2 
xoe 1/5ol yEat~ 

()<~t <_ T 
¢(/)o, /() -> 2 Tr X( oo, /~) (A3.7) 

Let 

[e.,l P.,~], 
co= e~ 

be the positive definite solution of (4.4). It is shown in 
Kwakernaak and Sivan (1972) that 

inf Tr X(~, K) = lim Tr X(~, /(o)  
/ ~  p~O 

= lim Tr pp(?~r = Tr PoC(~ r. (A3.8) 
p~O 

Furthermore, the limit 

l im l  ppBBrpp= lim l [ P2tlt' PIlePIzP] (A3.9) 
p~Op p~Op [pT2pPit p p~r2vPt2pJ' 

exists, and thus, 

Po=l imPo=l imfPHo Pi2o] = [~ 0 ]  (A3.10) 
o~o p~o/P~2p P22~ P22 " 

A straightforward calculation shows that P22 satisfies (4.6). 
Finally, by (4.5) and (4.6), the proof of Theorem 3.1 and 
(A3.5) 

min min Ily-e(~+~)txolJ 2 
xo~l~l y e a r )  

sup t~(/)o, K)--> sup o-<,-~r 
R ~  ~ 2 Tr X(~, K) 

R Ro ]2 
-- lira 

o~o 2TrX(~,  go) 

g Ro ]2 

2 lim Tr podd r 

R Ro ]2 

2 Tr (~'rP22 C2 
(A3.11) 

The proof is complete. Q.E.D. 


