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Noting that the choice of renormalization point advocated by Brodsky, Lepage and Mackenzic (BLM ) is the flavor independent
prescription which removes all f-dependence from the next-to-leading order cocfficients, we consider the possible generalization
which requires all higher order coefficicents 7; to be findependent constants rf. We point out that in QCD, setting r;=r¥ is always
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of the BLM
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of g,,(e*e~ —hadrons) in QCD.
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed.

1. Fixing the arbitrariness of the renormalization
scheme (RS) is of much practical interest (both the-
oretically and phenomenologically) in perturbative
QCD, owing to the not so small value of the coupling
constant. In the next-to-leading order (NLO) one has
to fix the scheme renormalization point y or the def-
inition of the parameter 4. In the next-to-next-to-
leading order (NNLO) one has to fix the scheme-de-
pendent NNLO coefficient of the renormalization
group (RG) g-function.

Brodsky, Lepage and Mackenzie (BLM) have pro-
posed, for any given physical quantity R, an interest-
ing flavor independent prescription to fix x (or A)
which removes all flavor f~dependence from the NLO
coefficient r, of the perturbative series for R [1]. The
motivation of this prescription is the observation that
in QED the cnergy dependence of the invariant charge
can be identificd with the rcnormalized expression of
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the photon vacuum polarization graphs. Starting from
this observation BLM havec proposed to absorb the
fermion contributions to the photon (or gluon)
propagators to the scale fixing parameter ¢ (or 4).
Within this approach one can consider the question
of applicability (or non-applicability) of the pertur-
bative predictions for their detailed comparison with
experimental data [1].

This proposal has already been discussed and used
in a2 number of phenomenological QCD studies (see
e.g. ref. [2]). However, the problem of the possibil-
ity of the extension of the BLM proposal beyond the
NL level remained open (recently this problem was
also investigated within the skeleton expansion in ref.
[31). In this note we discuss the generalization of the
BLM proposal which requires all higher order coef-
ficients r; to be indcpendent from fas well. We will
show that beyond the NLO, in addition to the pre-
scription to fix u, one must consider the problem how
to fix the higher order coefficients of the RS g-func-
tion. We will find that this problem has no unique
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solution. We then consider the alternative procedure
of using a fixed RS S-function, but a coupling con-
stant dependent redefinition of x in higher orders of
perturbation theory [1]. As an example we consider
the application of this prescription to deal with the
scheme dependence ambiguity of the NNLO QCD
approximation of ¢,,,(e*e~ —»hadrons). The analo-
gous questions in QED are also discussed.

2. Consider a physical quantity R=R(Q) and its
expression in an arbitrary RS with the coupling
a=a,/n,a=a(u):

R=a(l+ra+ra’+ra’+..). (1)

If we restrict ourselves to RS which does not intro-
duce the arbitrary f<dependence bevond that ex-
pected from fermion-loop inscrtions, r; will be a lin-
ear function of f, and since the same is true for the
one-loop coefficient §, of the RG QCD g-function

=—foa’—pa*—pra‘~pia*—..., (2)

onc can write
QZ
’1=—Bo<107 +d7)+’7, (3)

where both d} and r* are findependent. BLM pro-
pose to start from the MS-scheme [4] and to fix u=u,
by the condition In (QZ/;Li) +d} =0, so that r;=r%.
Writing ry=r,o+r,, fand o= oo+ o1 f One has

2
r,0=—ﬂoo(lnp +dT>+rT (4)
and

2
i =—Fo (ln% +dT)- (5)

The BLM proposal is therefore equivalent to the
condition r}=0 or u2=Q%exp(d?), i.e., that r, is
findependent, with f, ¢ and Q naturally considered
as independent variables. Note that the BLM pres-
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ciption can be restated as, first, a redefinition
of 1 uks — Uhim = s exp(~d?), or equivalently
of A1 Aig—oAiim=Akbsexp(—dt), with di=
—rﬁ (¢=Q)/Bo (this is an analogue to the transi-
tion from the MS to the MS-scheme [4]). The sec-
ond step is to put u, » = Q7. Note, that since r'¥fS is
process dependent, the definition of ;v is process
dependent too.

A straightforward extension of the BLM scheme
then consists in requiring all 7; to be also f~indepen-
dent. We first show that it is always possible to achieve
this for any given R, by choosing arbitrary, finde-
pendent values for the r,. To see this it is convenient
to use the RS-invariant effective charge approach [5-
8] where the RS coupling a.5 is identified with R it-
self, R=a.y (see also ref. [9]). The corresponding
RG equation for R then defines the effective charge
B-function:

2 AR
o d—Qz—ﬂen(R)
=—ﬁoR2—51R3—52R4—53R5-~~, (6)

which is the RS-invariant object which governs the
Q%-evolution of R in QCD. In particular, the f; (i>
2) arc the RS-invariant quantitics [5-7] (simply re-
lated to the scheme-invariants p;, > 2, introduced in
ref. [10]). Upon solving eq. (6) one introduces the
effective RS-invariant scale parameter 4., such that

2
ﬂoln—z=l+0(lnR)+const.+O(R) (7)
A% " R
(BoIn(Q?/A%r) is connected with the invariant p, of
ref. [10]). On the other hand, the solution of thc RG
equation (3), with a(u?) defined in the considered
RS, reads

2
,b’olnf?=£+O(lna)+const.+0(a), (8)

and introduces the RS scale parameter 4. The effec-
tive charge RS-invariant parameters Ay and f; are
related to the RS parameter A and B; by the relations
[5-7,11]

2

e
"1—3()]“/?:—30]11_ (9)

2 s
Ac(T

Po(ra—ri)y=pir, +Ez—ﬁzy (10)
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.50("3—“)
=38+ =28 + 5B —Bs) s (11)

etc. Eq. (9) follows immediately by taking the differ-
ence between eq. (7) and eq. (8), reexpanding in
powers of a and comparing with the standard expan-
sion of eq. (1). It is clear from eqgs. (10) and (11)
that one can assign arbitrary values to 7y, 15, 13, ... at
#=0 which will determine both A4 [by ByIn(A%/
A2)=—r,(u=Q)] and B, B, ..., i.e., the renormal-
ization scheme parameters (this fixes the scheme).
In particular, one can take the 7, to be findependent
constants. This conclusion can be generalized to all
orders using the relation B(a)(dR/9a)=Bx(R)
which determines the §, given the ;and the £, [6,7,11 ]
(seeref. [12] for explicit formulac).

We next investigate what the constraints are on the
RS p-functions which follow from the requirement
that the r; are findependent. We first show that this
condition cannot be achieved by the mere BLM
choice of y, but imply additional restrictions on the
RS dependent S-function coefficients. We shall only
consider the schemes where the general form of fde-
pendence is the same as expected if induced solely by
fermion-loop insertions, namely that r; are polynom-
ial in fof maximal degree i. Thus we assume

n=rotrif, rn=rotrftraf
r3=rytry /i3, (12)

etc., and also

Bo=Bwot+PBorf, Bi=Bthuf,
Bo= B0+ B [+ Bor S+ Bos 2,
Bo=Boo+ P [+ B f 4+ Bos 3 . (13)

Note that the £, -coefficient can have f3-terms as has
been observed [13] to occur on the basis of the re-
cent NNLO O(a?) calculations [14,13,15] (thc QCD
results [ 151 are in agreement with the ones presented
in ref. [16], for a critical discussion see ref. [17]),
although they are absent in the MS-scheme [18] and
MOM scheme [19]. We generalize the foundations
of ref. [13] and stress that once the f*-terms ap-
peared in the 8,-coefficients in the cffective scheme,
they can also exist in another arbitrary scheme, and
that in general £,;#0.

Note also that some special contributions to the f~
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dependence like light-by-light scattering diagrams in
QED, which form a class of RG-invariant diagrams,
may and probably should be treated separately.

Let us now consider the condition for r, to be f-
independent. Inserting eqs. (12) and (13) into eq.
(10) and taking r,=r =r%, f~independent, one gets
a set of relations which determine the corresponding
coefficient ry=ryg+ oy f+ ran f* at u= g, namely i, =
Fao+ Py fH P f2

Py = ﬂzzﬁ;ﬂzz , (14)
= ﬁjz/g B ﬁOO (Bos—P23) (15}
01 &
. _Bu re_ Poo Bor =B
T T T e T B (1)
e B BB
Fo=7 500 i Boo (7

Eqgs. (16) and (17) allow to determine 7} and 7y in
terms of the f-function coefficients [after eliminat-
ing 7, through eq. (15)]. One finds

Bao = B0 = (Boo/ Bor) (Bor = B)
] ﬂ!!ﬂOO*ﬂOlﬁlO

+ _%522 _ﬁ22 - (ﬂOO/ﬁ(H ) (523 _.823)
ﬂOl ﬁllﬁOO_ﬂOIﬂlO

with 7 following from eq. (17). Eq. (18) is simply

the relation derived in ref. [20]:

B=8| __B-5
ﬂl Po=0 lgl

ri=p

. (18)

, (19)

* _
?‘1——

}= — Boo/ oy

which follows more generally from taking the limit
Bo—=0 (f= — Byu/Bo1 ) on both sides of eq. (10} and
assuming regularity of r; and r, in this limit. Eqgs.
(14)~(17) show that both r¥ and F, are determined
in terms of £~ and f.function coefficients. Note, that
requiring r, =r} does not imply in gencral that 7, is /-
independent. This can be gained by putting 75, =0,
Fr»=01in eqgs. (14)~(17). This in turn is equivalent
to the unique definition from eqs. {(14) and (13) of
the part of the NNLO coefficient 8% of the -function
in the prescription considered, namely to

ﬂgz =E22= ﬂ53 =[’~’23 . (20)
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We are then left with two equations [eqgs. (16) and
(17) with Fg=r3, 7, =0, ;= B3 and S=43] to
determine four unknowns rt, r%, 3, and 3. Even if
one adapts the BLM choice of 4 in the MS scheme
p2=12=0%cxp[ —r}{® (1=Q)/fo: ], which is cquiv-
alent [20] to

rr=ris , (21)
\f= — Boo/for

one does not have cnough equations to determine all
unknowns. This simply means that, according to eq.
(19), one should also (arbitrarily) fix 83 (f= — oo/
Bor)=BY® (f=— Buo/Bo1), which thus fixes one lin-
ear combination of 8%, and f£% to bc cqual to its
MS value. Note, that cq. (19) shows explicitly [20]
that r? is RS dependent through the 85 (f= — foo/Bor)
term. This fact can also be seen from eq. (21), if one
considers schemes where r, differs from M by an £
independent constant.

One can then further require that both 83, and
B%, be equal to their MS values, howcver, this looks
rather artificial since

B3 =B~22¢ﬁ§, % =Fos #B%SEO )

i.c., one would set a part of % to be 85, and a part
of it to be B,! Further one we will not fix the value of
r¥ through eq. (21) but consider it as a free quantity.

Similar constraints on the BLM scheme g-function
arise in higher orders. For instance, assuming the ar-
bitrary f<independent values r}, % and r% and the ex-
istence in the B, B-functions coefficients of the f4-
terms, eq. (11) yields

Bra—B3=0, 3(Bs—P%)+Burt=0,
%(Esz—ﬂ§2)+ﬁzzrf=0a (22)
and

Bor (r5—rt?)

=380+ B —283) i+ (B —B3),  (23)
Boo(r5 —r1?)

=3Biort?+ (3fu—2B3%)r1+ 1 (Fro—B).  (24)

Since B3 is already fixed in the previous step in
terms of rf, r3, eq. (22) and eqgs. (23), (24) clearly
dctermine as cxpected #% for given r¥, r$ and r3.
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Note, that as well as in the NNLO we have more un-
knowns (%, 831, 832, B3, B34, r3) then available
equations {five).

A new feature which appears first at this order is
that when r? is determined in terms of S-functions by
¢q. (18) and cgs. (23), (24) this implies one rela-
tion between £%, and %, (whatever the value of r%)
which cannot thus be taken as free parameters (con-
trary to the situation with f%, and %, ). In fact, tak-
ing the limit ;-0 (/= — Buo/Po;) on both sides of
eq. (11), and assuming only regularity of r,, r, and r;
in this limit, one casily derives [using ¢q. (19)] the
general relation

=BB-B . (25)

Bo=0 po=0

(Bifs—B3)

i.e., B Bs— B3 is RS invariant when So=0o0r /= — B/
Bor-

Eq. (25) implies the above mentioned relation be-
tween B3, and B%;. A more systematic choice of free
paramecters to all orders, and one which has an ana-
logue in the QED case (see below), might then con-
sistin taking r} (i.e., 83 forf= — Buo/Po1 ) and 887 /df
(i22) for f=—fBuo/Bo: as the frec quantities (of
coursc onc might also use another set, c.g. T and

* ). However, these choices do not help to find a
natural physical way to fix them either.

In summary, this first proposed cxtension of the
BLM approach is ambiguous, since it docs not allow
to fix in a unique way the f~independent coefficients
r* for any physical quantity R. Given this situation,
the simplest and in our opinion most sensible way
out remains to take r* =0 (hence f*=4;) and thus
use the effective scheme prescription (note that this
is not proposed to be achieved by a mere choice of a
renormalization point 4 in a given RS as was incor-
rectly stated at the end of ref. [1]). The motivations
for the effective charge scheme as the RS-invariant
method in QCD was argued from morc gencral view-
points in rcfs. [5-9].

3. In the above proposed extension of the BLM
scheme we tried to adapt the RS to each observable
R(Q) in order to obtain findependent coefficients.
This required to fix both the scale 2 and the g-func-
tion cocfficients B, i>2 in accordance with a given
quantity R. Now we will consider a different possi-
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bility, namely to stick to a fixed definition of the cou-
pling (i.e., work with the given f;, the same for all R),
but to use different scales at each order of perturba-
tion theory, to achieve findependence. We will show
that this alternative does not work in general. To see
this, let us introduce a set of scales y;, such that y; is
fixing the scale of the coupling in the ({+ 1)st order,
and put po=44,, i>=1.

Let us now use the standard RG relation a(u,) =
a(d ) =a(u,)[1—-FolnAla(u,)+...] and present
the expression for R in the following way:

R(Q)=a(uo) [1+ralu)+ra*(po)+..]

=a(w)[1+ra(u)+ (r—rfolnit)a’(u)+..].

(26)

Choosing now u =, (the BLM prescription ), hence
ri=r7}, it can be shown that this expression and the
requirement that 7,=r% —r{f, In A? be findependent
give the following set of conditions:

Bos— B =0 (27)
and

522—ﬂ22=,3(2n Iniirt,

Bor (73 —r1?) = (B11 —2Boofor InA{)rt +521 —Bar s
.300(?5—’72)=(ﬂlo—ﬁﬁolni%)r’“‘ﬁzo—ﬂzo- (28)

From eq. (27) one sees that one cannot use a fixed
scheme since B5; # f,5 in general. We conclude this
alternative extension of the BLM scheme does not
work owing to the eventual presence of O(f 3)-terms

inﬂz.

4. We will now show that using the definition of the
scale parameter, mentioned in the original BLM pa-
per [1], one can get rid of the f~dependent terms in
r, starting from the MS-like schemes and thus resolve
the ambiguities found in sections 2,3. Indeed, let us
define 47 in accordance with ref. [1] as

pr=puill+n(Nalu) +..1, (29)
where y,(f) are f~dependent functions and 43 is the
usual scale parameter *!. Using the explicit depen-
dence of r, upon Q2/u?, namely

#! This possibility has been pointed out to us by Brodsky and
Hung Jung Lu. For discussions of the general questions, com-
plementary to our analysis, within the framework of the dressed
skeleton expansion, see ref. [3].

356

PHYSICS LETTERS B

16 April 1992

2

n=r(Q=p?) =By ln%, (30)

onc can show that the shift u3— u? of eq. (29) is
equivalent to the following redefinition of the coeffi-
cicnts ry:

ro=ra+foyi(f) . (31)
Assuming now the polynomial dependence of y, (f),
nN=ro+2./, (32)

we obtain from eq. (10) the following system of lin-
ear cquations [analogous to those of egs. (14)-(16)
and of eqs. (27)—-(28)] which comes from the re-
quirement that r3 must be f~independent:

Bos—Bos=B3ivn1 (33)
522—ﬂ22=ﬂ%|?10+2/3wﬁ01Y11 > (34)
Bor — B
=Bor (r5 —r1?) — Bu1rt +2BooBor V1o + Boov11 »
(35)
Bro—Bro=Poo(rs =r1) = Biort + fiorio.  (36)

It can be shown that this system is compatible with
the relation obtained in eqs. (18), (19) for the NLO
coefficient % in the BLM prescription,

One can now see that using the definition of the
scale parameter of eq. (29) we can absorb the f3-
cocfficient B, of the B.q-function even within the MS-
like schemes (contrarily to the cases discussed in sec-
tions 2,3). Indeed, putting B,3=835=0, B,; =¥
(0<i<2), we have four cquations [eqgs. (33)-(36)]
to determine four unknowns (9., Y10, 7T, r3). There-
fore, the ambiguities found can be fixed at the NNLO.

5. Let us apply our theoretical considerations to the
analysis of the NNLO perturbative QCD approxi-
mation of the quantity R(s) =06, (€*e~ -hadrons)/
g(ete”—utp~). In the MS scheme the result re-
cently obtained reads [15] (sec alsoref. [16])

R(s)=3Y Q2[1+a+(1.986—0.115)a>
+ (—6.637—1.200f—0.005f 2)a*+...]

_(z Qf) 1.2394%, (37)
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where Q; are the quark charges and a=a( s =5).
Using now the results of calculations of the coeffi-
cients of the S-function in the MS-like schemes at the
three-loop level [ 18], reminded now in the numeri-
cal form

Bo=2.75—0.167f, B, =6.375—0.792f,
B =22.320—4.370/+0.094/2, (38)

we obtain the numerical expression of the scheme-
invariant f, without taking into account propor-
tional to (2Q)? light-by-light-type contribution to
R(s):

B, = —19.422-2.334f+0.076/2+0.003f>  (39)

(compare with the similar expression obtained in ref.
[15]). Fixing now the NNLO ambiguities of the BLM
approach in accordance with the discussions of sec-
tion 4, we get the following numerical values of the
scale fixing parameters introduced in egs. (30), (31):

#3=him = tigs exp(0.69),
m=0.11, y,=3, (40)

and the NNLO approximation of R(s) in the consid-
ered generalization of the BLM approach:

R(s)=3Y Q#(1+a,+0.08a2—-23.3a3)

_(z Qf) 1243, (41)
where a,=a{uj[1+ 7 (Na(ud)]=s}.

6. Let us now discuss the QED case. The corre-
sponding results can be obtained from the QCD ones
after putting C, =0, Cg=1 and Tf=N where C, and
Ck are the corresponding Casimir operators, 7=1 and
N is the number of lepton types. As a result, in QED
Bi0o=0, which represents the main diffcrence for the
present discussion with respect to the QCD case. Since
Bio=0, there is no analogue in QED of the relation of
eq. (19), so that r} is not fixed in terms of f-function
coefficients. Otherwise, the main conclusions remain
similar: one can find RS with n-independent coeffi-
cients r} for a given R(Q) either by assigning arbi-
trary values to the r¥ themselves, or, alternatively
consider r¥ and the coefficients 8% of the terms lin-
ear in N in the g-function coefficients as the free pa-
rameters, as is clear from eqs. (14)-(16) with S,,=0.

We note that in general the §,,-coefficient (i>0)
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are not RS invariant, even in QED: the known fact
that in QED BM5 = gMOM — gSS for the MS-like, the
momentum (MOM) and the on-shell (OS) subtrac-
tion schemes is a consequence of the absence of an
O(N?%)-term in the expression coefficients r; for the
standard QED invariant charge «;,.(Q?)=
omom (0 =a/ (1 +all)=a(1+ra+ ...), where o
corresponds to the renormalized coupling constant of
the MS-like or OS schemes, so that lim r,(N-0) =0,
and «;,, = ayom coincides with ays (or ays) and
Qs 1n the limit N—-0. This statement follows imme-
diately from the QED analogue of eq. (10) [or eq.
(35) ], which gives in the limit N—0 (or Syo=0)

-~

"20=’%0+&’10+ﬂ_2|—ﬂ, (42)

BO! ﬂ()l

so that r,o=r.0=0 clearly implies 5, = 8,,. In gen-
cral, however, r,q and r,; do not vanish (note that r,
is just the BLM coefficient r in QED!) and conse-
quently 5, # B, This has been explicitly checked to
be the case for the QED part of the NNLO QCD re-
sult [15] for R(s) (sce also ref. [16]). The result
rio=r (N=0)#0 also holds in the case of the
(g—2) . quantity, calculated in the OS scheme at the
four-loop level [22] and discussed in ref. [1].

Taking now the frec parameters to be r,; and the
B, onc can choose B% =BMS =89S Then, only r\o
remains free and sensible choices are r,o=r} (which
will insure the corresponding RS coupling «,, to co-
incide with ays, aos and «;,, as N-0) oreven r} =
0. Note that r{ =0 does not in general imply r¥=0
(i=2) if B =pNS#8,,, i.c., we will not recover in
this case the effective charge prescription (which is
equivalent, under the assumption of N-independent
r, to r*=0 and 8% =8, ). However, given the other
relations like 8%; =8>, and B%, =pB,, (which arc nec-
essary for N-independence within the framework of
considcrations of section 2) the most natural choice
for this purpose in this case remains the effective
charges prescription.

However, as in QCD one can consider the altcrna-
tive higher order extension of the BLM scheme which
uses a coupling constant dependent definition of the
scale viaeq. (29) (sccref. [1]). In this case it iS pos-
sible to achieve N-independence at the NNLO by fix-
ing 7, (f)-function coefficients through egs. (33),
(34) with By,=0, 8,3=0 [it should be stressed that,
as well as in the QCD case, the corresponding coeffi-
cients of the f,+( R )-functions, namely £, contain the
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additional N3 terms 5, ] and S, = NS or f,,=$55.
Therefore, as well as in QCD, one can realize the BLM
idcas starting from the initial MS or OS schemes. The
concrete QED cxamples will be considered elsewhcre.

7. Finally, we remark that the question of reliabil-
ity of perturbative QCD is a priori distinct from the
problem of fixing the ambiguitics in the BLM ap-
proach in higher orders. We ecmphasize that in the
framework of the effective charges scheme the appli-
cability of perturbative QCD to a given physical
quantity requires only the applicability of perturba-
tion theory to the RS invariant equations (6), (7).
This in turn depends solcly on the value of the ratio
Q?%/A%; and on the perturbative behaviour of the
B.x( R)-function, which has no straightforward rela-
tion to the valuc of ri (except in the QCD case at
f=~—Boo/Bo: through the rclation of eq. (20) derived
inref. [20]). If the cxpansion of the f.( R )-function
for some possible observed values of R happens to
converge poorly (this sometimes happens for not so
large values of «, se¢ in particular the discussions of
the characteristics of the NNLO approximations for
H®-hadrons [14,13] and e*e~ —hadrons [15]) the
transformation of the results from the effective
charges scheme to the BLM-type scheme where r¥ #
0 will simply transfer the bad convergence properties
in the lower region of encrgies from the B.«( R)-scries
to the R(a*)-series (compare eq. (39) and ¢q. (41),
sec also the independent discussions of similar topics
in ref. [8] and ref. [13]). Moreover, even if the NLO
BLM condition indicates large valucs of r} one can
use a variant of the effective charge scheme, pro-
posed in ref. [23].
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and P. Mackenzie for the definite comments. G.G. is
grateful to his collcagues from the Theory Division
of the Institute for Nuclear Rescarch for hospitality
in Moscow where this work was completed. Special
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and in the foundation of the prescription discussed
in scctions 4, S to ¢xtend the BLM approach to the
NNLO of perturbative QCD.
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