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Lute’s Biased Choice Model has never had a serious competitor as a model of identification data. Even 

when it has provided a poor model of such data, other models have done even less well. Two alternative 

models are presented and the three are fit to a published data set. One alternative model is very much 

like the Biased Choice Model, differing only in the way it treats response bias. It uses an ordinal assump- 

tion about the biases and might be called the Triangular Bias (TB) model. The Guessing Mixture Model 

(GMM) is quite different, although it too uses the concepts of bias and similarity. It posits that the 

observed confusion matrix is a probability mixture of two latent matrices, the one involving only similarity, 

not bias, while the other involves bias, not similarity. 

Illustrative data, a confusion matrix based on four stimuli constructed by crossing two binary features, 

can be naturally described in three hierarchical ways. The most general description ignores the feature 

structure of the stimuli. The next description, the feature pattern model, assumes that similarity depends 

only on the pattern of feature differences, and the simplest special case assumes that similarity depends 

only on the product of similarities from each of the features. 

For the general description the three models are not strikingly different, with the Biased Choice Model 

fitting least well, followed by GMM, with TB the winner. For the independent feature form, however, 

the GMM model fits much better than either of the others. Indeed, the independent feature model cannot 

be rejected at the 10% level using GMM, even though the sample of data is large. 

Key words: Confusion matrices; identification experiments; log-linear models; biased choice; EM 

algorithm. 

1. Introduction 

A choice experiment in which an identification function exists, a function map- 

ping each stimulus into a unique response, is called an identification experiment 

(Lute, 1963). Many models of identification behavior have been put forward and 

certainly many more will find their way into the literature, but so far none has had 

more success than Lute’s Biased Choice Model (BCM) (1963), also known as the 

‘similarity choice model’ (Townsend and Landon, 1982). It has not always fit iden- 

tification data, but when it has not neither has any other model.’ 

Special cases of the BCM are quite easy to think of but they seem seldom to be 

’ Comparing the fits of models that are not hierarchically related can be hazardous. Comparisons in 

this paper will be based on likelihood statistics. Other criteria, such as the unweighted least squares 

criterion used by Ashby, Lee and Balakrishnan (1991) may order models differently. 
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adequate to fit the data in question even when the general BCM fits. Indeed, when 

a special case fits for one subject it often does not fit again, for another subject, 

for another session, or for another condition. 

In this paper I propose two different models which are alternatives to the original 

Lute formulation, rather than special cases of it. Both are first cousins but are dif- 

ferent enough from the BCM to provide considerably different fits. 

Before proceeding further we should all understand that the experimental 

paradigm we are discussing involves presenting to the subject a stimulus from an 

over-learned stimulus set, but so degraded that it is rather often misidentified as one 

of the other stimuli in the set. The data are analyzed in the form of a confusion 

matrix with rows representing the stimuli presented and columns representing 

response labels of the stimuli the subject saw or thought he saw, or for lack of any 

other reason, he guessed were presented. 

Lute’s Biased Choice Model is elegantly simple. It states that the probability of 

using label j when stimulus i was presented (pjj) is proportional to the similarity of 

stimulus i to stimulus j (qij) and to the popularity of, or bias toward, using label 

j <pj). Formally, 

Pij-Pjrllj. 

Without loss of generality one can define the similarity of a stimulus to itself as 1 

(see Appendix A for proof). In addition the model would not be identifiable without 

the natural restriction that similarity be a symmetric measure,2 that is that stimulus 

i is precisely as similar to stimulus j as stimulus j is to stimulus i. Formally, 

Finally, the p parameters are necessarily non-negative and homogeneous so that 

one is free to normalize them to add to one or to pick one as a standard and scale 

all the other bias parameters relative to it. 

This is a log-linear model because the logarithm of each cell probability is a linear 

function of a set of parameters. Here the parameters are the vectors ln/?j and 

’ Tversky (1977) has convincingly shown that judgments of similarity are frequently not symmetric 

and has provided a mathematical model of such judgments along with descriptions of empirical condi- 

tions which should lead to asymmetries. Attempts to generalize this model to cover indirectly measured 

similarity have not been too successful (Keren and Baggen, 1981; Smith, 1982). Krumhansl (1978) has 

discussed asymmetries also, but primarily in terms of confusion probabilities. It is clear that conditional 

probabilities, even in biased choice models, can be asymmetric for two reasons. The simplest is that one 

response is favored and this is the reason for the /I parameters. But even if all KS were equal, the condi- 

tional response probabilities might be asymmetric because of the normalization leading to conditional 

probabilities. If a stimulus is near a large number of other stimuli (in a ‘dense’ region) many of its V’S 

will be large, causing its normalization constant to be large and therefore all its conditional error prob- 

abilities to be small, and in particular, smaller than their partners associated with a relatively isolated 

stimulus. 
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In vii. This is a real advantage for us as data analysts, since it means that there are 

existing algorithms to calculate maximum likelihood estimates of the parameters, to 

test various hypotheses and, even better, to calculate confidence intervals on con- 

trasts of various parameters (in logarithmic form). Even more important, if 

simplifications of the model can be found that retain its multiplicative form, tests 

of these special cases can be performed as easily and as routinely. All of the models 

to be discussed here are log-linear models or weighted averages of log-linear models 

which I call ‘aggregated models’. 

I will make all my points using a single example. The data have been published 

(Pachella, Smith and Stanovich, 1978), and are fairly simple, but still manage to il- 

lustrate a number of techniques for exploring the implications of a data set for 

Lute’s BCM and for the alternative choice models referred to in the title. The pur- 

pose of this exposition is not to say anything definitive about how perception or 

speeded classification or any other psychological task really works, but rather to 

contribute to the toolbox available for studying such data sets. No doubt if this ex- 

ample had not yielded results differing among the alternative models I wanted to 

present, I would have hunted up a more favorable example. 

The data table under discussion was filled as a small part of an investigation of 

the temporal course of stimulus identification. A major manipulation was to require 

the subject to make his/her identification before or as soon as possible after a 

deadline. Deadlines were varied to give a picture of how identification changed from 

early in the process until late. The stimuli were four stylized letters: B, C, D, and 

E. The letters were formed from the factorial crossing of two features, a vertical 

bar on the right side, distinguishing between B and D on the one hand and C and 

E on the other, and a small central horizontal bar characteristic of B and E but not 

of C and D. 

The data presented here were produced by subject J.H. working with a deadline 

of 360 ms. Each stimulus was presented 75 times in each of four sessions spread for 

the most part over four days, so the confusion matrix was four by four with roughly 

300 observations per stimulus. Although there is some evidence that there were 

minor differences from one day to the next they did not seem systematic so they 

Table 1 
Subject J.H. with a 360 ms deadline 

Stimulus Response Total 

B C D E 

B 201 23 59 10 293 

C 37 203 20 50 310 

D 86 41 162 9 298 

E 37 59 23 181 300 

Total 361 326 264 250 1201 
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have been ignored. Ignoring these differences would normally, although not 

necessarily, inflate the measures of goodness of fit I will report later. The data are 

presented in Table 1. 

The data are rather typical. The entries in diagonal cells containing correct 

responses are rather larger than the others since about 62% of the responses are cor- 

rect. This is no surprise because the deadline was chosen to provide about 60% cor- 

rect responses. It seems clear that at this level of data processing the small central 

bar is not too valuable a clue, both the B-D and the C-E confusions being quite 

numerous. The right vertical bar, on the other hand, even in the first few hundred 

milliseconds has already contributed heavily to the identification task. B and E seem 

to be quite clearly distinguished, as do C and D, although perhaps not quite so 

separated as B and E. Finally, ‘label’ biases are another obvious feature of the data, 

‘E’ seemingly being rather an unpopular response. Indeed, even casual inspection 

suggests a kind of alphabetic preference. 

So far our analysis has been at the ‘eyeball’ level, but still richer than merely 

testing for independence, finding that it does not obtain, but with no clue as to how 

it is wrong. The classes of models to be taken up in this paper all provide ways of 

going much beyond simple independence. All of them are either generalizations or 

specializations of the biased choice model, and all are examples of multinomial 

models as defined in Riefer and Batchelder (1988). The generalizations are what I 

advertise in the title, the specializations are presented because I feel they are not con- 

sidered often enough. 

First we fit Lute’s BCM using maximum likelihood. The cell expectations using 

this model are presented in Table 2 along with the deviations from the data for com- 

parison. 

The index G2 for these data is 12.39 which, with three degrees of freedom, is 

significant at the 1% level. Quite clearly the model does not fit. At the same time 

the general features of the expected values seem appropriate. Even with the hun- 

dreds of observations made here the largest error is less than ten. A more useful in- 

dex for data analysts and for the rest of this paper is G2/df, which has many of the 

Table 2 

Subject J.H. expected values (deviation from observed) 

Stimulus Response Total 

B C D E 

B 201 24(- 1) 54(5) 14(-4) 293 

C 36(l) 203 29(-9) 42(s) 310 

D 91(-5) 32(9) 162 13(-4) 298 

E 33(4) 67(-Q 19(4) 181 300 

Total 361 26 264 250 1201 
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Table 3 

Subject J.H. similarities and biases 

Stimulus Similarities (q) 

B C D E 

B 1.000 0.145 0.389 0.112 

c 0.145 1.000 0.168 0.277 

D 0.389 0.168 1.000 0.092 

E 0.112 0.277 0.092 1.000 

Biases 0.317 0.260 0.229 0.194 

statistical characteristics of an F-value with df and infinite degrees of freedom. Here 

G’/df (call it F*) is 4.13, clearly significant but, as we will soon see, not really 

large. 

Even though the model does not fit, for comparative purposes we can go ahead 

and estimate parameters, presented in Table 3. 

The parameter estimates seem to reflect the same characteristics we noticed in the 

raw data but we still do not have a very good idea how simple the model might be. 

Do we know, for example, whether any of the off-diagonal similarities are dif- 

ferent? Why are B and C, which differ on both features, estimated as being more 

similar than are B and E, which differ only on one? B and E differ with respect to 

the vertical bar just as do C and D, yet the similarities are not the same. Is the dif- 

ference reliable? The bias parameters seem to be alphabetically ordered, but are the 

differences really reliable? 
The most conservative data analyst might say: ‘Why bother? These questions do 

not arise since the most general form of the BCM has been shown not to fit.’ If 

only to illustrate the procedures let us try to address some of these questions. Are 

the six similarities different from one another? When we fit a model which assumes 

that they are not we get a G2 of 122.33 with eight degrees of freedom. The addi- 

tional degrees of freedom, five of them, were bought at a cost of increasing G2 by 

109.94 so F*=22.0. The similarities are vastly different from one another. Along 

the same line, is there evidence of differential response bias? Fitting a model having 

no differential response bias yields a G2 of 41.66 with six degrees of freedom. The 

increase is 29.27 with three degrees of freedom, or F*=9.76, not quite so large but 

impressive nevertheless. If one were to accept for the moment the Lute BCM for 

this data one would feel compelled to accept also differential similarities and dif- 

ferential biases. 

Somewhat more deeply, if the features are to be relevant to the identification pro- 

cess, confusions that correspond to the same feature differences should have the 

same similarity. The letter pairs CD and BE, the pairs BC and DE, and the pairs 

BD and CE all differ by the same feature combination, so by the simplest model 

should also have the same similarity indices. We will refer to this model as the 



204 J.E.K. Smith / Alternative biased choice models 

feature pattern model. If we subscript similarities with v when the stimuli differ only 

in the vertical feature, with h when they differ only in the horizontal feature and 

with hv when they differ in both features, we obtain the pattern of similarities 

shown in Table 4. 

Note that this model has only three similarity parameters and not six as the 

general BCM has. It says only that any pair of stimuli that differ on a set of features 

will have the same similarity index as any other pair that differ on the same set. It 

is an interesting special case of the BCM precisely because it takes note of the struc- 

ture of the stimuli. Nothing is implied about a relation between any of the 

parameters in Table 4, although one might prefer not to find that qhv is larger than 

the other two, since stimuli that differ by two features should not be more similar 

than stimuli which differ by only one. 

An even more parsimonious model, which still falls in the log-linear class, is the 

model which has it that different similarity indices are needed only for each feature, 

not for every combination of features. The similarity of two stimuli is the product 

of the similarity indices of the features on which they differ. In our example that 

would mean that B and C would have to be less similar than B and E because B and 

C differ on both the horizontal and the vertical features, while B and E differ only 

on the vertical feature. It means more than that. This could be called an independent 

features model or, in line with log-linear terminology, it is a model of ‘additive 

features’ (in terms of the logarithms of the feature qs). Data that satisfy the feature 

pattern model but not the additive feature model can be either sub-additive or super- 

additive depending upon whether: 

qhqv < qhv sub-additive 

or 

qh%>qhv super-additive. 

When this model is fitted we find a strongly sub-additive fit with qhV more than 

2.5 times as large as the product of qh and qV. The fit of the model in terms of F* 

is nearly the same as that of the BCM model, G* =25.1, df =6, F*=4.2. The 

model does not fit, but it does give a reasonable feel for the data. 

When we look at the fit of the additive model we begin to see just how discrepant 

a real mismatch is. The maximum likelihood fit of an additive feature model yields 

Table 4 

Similarity pattern for feature pattern model 

B C D E 
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a CL of 59.7, an increase of 34.6 with the gain of only one degree of freedom. This 

is roughly equivalent to a normal deviate of m or 5.9. 

Summing up our analysis of the efforts of J.H. with a 360 ms deadline, we see 

that his error pattern is highly heterogeneous, that is his pattern of confusions is 

related to the structure of the stimuli. In addition he uses the different possible 

responses with different frequencies, the alphabetically earlier responses being more 

‘popular’ than the later ones. The BCM model can be rejected as a complete model 

of J.H.‘s data, but it is close enough to be usefully descriptive. 

The feature pattern model describes the data fairly well. A very strong sub- 

additive effect is observed in that confusions when two features differ between 

stimuli are hardly any less frequent than when only the vertical stroke is the 

discriminative feature. The small horizontal stroke adds little to the discriminative 

powers of J.H. when the stimuli already differ with respect to the vertical bar. 

2. An ordered bias alternative 

Rob Nosofsky (personal communication, 1988; see also Nosofsky, 1991) sug- 

gested that to call the p parameters ‘response bias’ was a rather presumptuous way 

to treat the BCM parameters. It is quite easy to think of characteristics of ex- 

perimental situations which would lead to data not satisfying the equal p situation 

but to attribute this as necessarily due purely to response processes would be 

premature. 

The BCM as it is usually described involves a set of ‘response biases’ parameter- 

ized as PI and adding to one. The additivity is really more a technical convenience 

than it is a feature of the model, however. What is determined by the data is really 

the ratio of any pair of /3’s, and these differ from q’s in that the q’s are symmetric 

in their index arguments, whereas the p ratios, or rather the logarithms of these 

ratios, are anti-symmetric. If one defines 

then the BCM requires that 

YtiYjkYki= 1, for all i,j,k. 

Values of yji greater than one are interpretable as a preference for response i over 

response j, or a bias. 

Indeed, deviations from this condition alone determine the goodness of fit of the 

BCM to a set of data. As is shown in Appendix B, if the set of consistent estimators 

of y’s, g,,, defined as 

g,; = 
nj; n;; 

+ ilij njj 

where n;j is the frequency of responsej to stimulus i, satisfies equation (4), the data 
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satisfy Lute’s BCM. At first glance it may seem counter-intuitive that the fit of the 

model depends only on the antisymmetric functions and not on the q’s (note that 

rl cancels from this function). The reason is that the model contains parameters for 

all possible symmetric functions of two subscripts. The model is, so to speak, 

saturated with similarities. Anything symmetric is permitted to happen; but the 

biases must have a form that allows separation into individual response effects. The 

argument is technically the same as that for the Bradley-Terry-Lute model of 

preferential choice (Lute, 1959). 

Another kind of anti-symmetric function can be used if there is a natural ordering 

on the stimuli. For instance, our example has the ordering B, C, D, and E, the 

alphabetic ordering. Using this ordering we can define another antisymmetric 

function: 

c 

b if j precedes i, 

y;= 1 if i=j, and (5) 

l/b if i precedes j. 

This function, if it replaces the function of equation (3), represents a much less 

constrained model since it proposes only one bias parameter, not I- 1 different 

ones. If it is used, the resulting biased choice model stands between the biased choice 

model which corresponds to the case with b = 1 (the ‘unbiased biased choice 

model’?) and the classic BCM. 

In our example a value of y* greater than one would imply that the response cor- 

responding to the earlier stimulus in the sequence would be the more popular but 

that the preference of B over E would be no greater than that of C over D. The form 

of the model is then 

A completely post hoc justification for this model in this experiment might be that 

for the most part the stimulus will have reduced the choice to one of two possible 

responses very early. The extreme emphasis on quick responses, coupled with a se- 

quential search of the possibilities, might lead the subject to respond with the first 

response consistent with what he/she has seen so far, and thus the earlier response 

in the natural order would be favored. It is not rare that stimuli in an identification 

experiment have one or more natural orders and the justification here is meant to 

suggest that future experimenters make provision for building the possible effects 

of such orders into the data analysis. 

Regardless of why this model might work, we proceed with fitting it to the data. 

We note that we are fitting two fewer parameters, and that our model ‘explains’ why 

the biases we noted when fitting the BCM might have arisen. The earlier in the se- 

quence a stimulus is, the more frequently it will obtain the bias advantage. When 

the model is fit, the obtained G2 is 10.75 with five degrees of freedom, F*=2.25, 

and a nominal attained significance level of 0.057. Not only is G2 smaller by 2, but 

we have two more degrees of freedom. It is evident that this model is an alternative, 
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Table 5 

Subject J.H. fit of alphabetic bias 

Stimuli Responses 

B C D E 

B 
Obs 

EXP 

c Obs 37.0 203.0 20.0 50.0 

EXP 39.5 204.8 24.5 41.1 

D Obs 86.0 41.0 162.0 9.0 

EXP 87.9 36.5 163.2 10.4 

E 
Obs 37.0 59.0 23.0 181.0 

EXP 29.6 67.9 21.6 180.9 

201.0 23 .O 59.0 10.0 

198.1 20.5 57.1 17.4 

not a special case, since a special case will always yield a G2 at least as large as its 

more general relative. The observed and expected cell entries are displayed in Table 

5. 

To achieve this nearly acceptable fit the earlier response had an advantage of 

1.87 : 1 over the later one. This number is the maximum likelihood estimate of b2 

in the model and can be calculated directly from the expected values in Table 5 with 

the formula 

p= mkjmjimik 

mijmJkmkr ’ 

i<j<k, (7) 

where mjj are cell expected values (slightly more accurate expected values were used 

in the calculation above). Returning to Table 5 we see that the preference of B over 

E, looking at the cell expected values, should have been even larger. More than half 

of the remaining G2 can be accounted for by the two BE cells. Indeed, we can 

quite easily extend this alternative model by allowing the early-late feature to have 

different strengths depending on the difference between i and j. This costs two 

degrees of freedom and effectively assigns one whole parameter to the BE pair 

which saturates those two cells. The results of that analysis are shown in Table 6. 

This is easily the best fit we can report in this paper. There are three degrees of 

freedom, G2 is 2.82, and F*=0.94. Remember that the basic BCM also had three 

degrees of freedom but a G2 of 12.39. 

Despite this good fit, however, there are still three disturbing facts. The first is 

that the alphabetic response asymmetries are not ordered in an intuitively satisfying 

manner. The BE, three-step asymmetry is 4.17, the two-step asymmetry is 1.55, and 

the one-step asymmetry is 2.06. The lack of a monotone relation is not serious since 

the inversion in the order is not large. Indeed, we cannot reject a model in which 
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the three-step asymmetry is large, larger than the one- and two-step asymmetries. 

The second is that the similarity indices do not make much sense either. B and 

E are estimated to be less similar than B and C and also D and E are estimated to 

be more similar than B and E. In both cases two stimuli that differ on only one 

feature seem less similar than a pair that differ on both features. 

The final disturbing fact is that when we try to fit a feature pattern model along 

with the alphabetic distance model, the fit is very poor indeed: G2 is 18.00, an in- 

crease of 15.1 with three degrees of freedom, an F* of 5.0. If we accept this marginal 

fit and look again at additivity we find an even more subadditive set of parameters 

than before. So far in all the models we have considered the two-feature similarity 

index has ranged from 3 to 5 times the product of the two one-feature indices. 

Indeed, in scaling endeavors sub-additivity has often cropped up. In an interesting 

chapter Kendall (1971) defined a ‘horse-shoe’ effect that seemed to show up 

repeatedly in archaeological seriation, a kind of multidimensional scaling problem 

in which archaeologists use frequencies and co-occurrences of artifacts in graves and 

other ancient sites to deduce the historic times when these deposits were laid down. 

Using various non-metric scaling techniques investigators found they needed two or 

more dimensions to represent the similarities as distances, even when the time order 

of deposits was well established. The plot of sites represented the time dimension 

as a curve, a ‘horse-shoe’ or hook rather than a straight line. This is of course 

another kind of sub-additivity, a case when the triangular inequality should be a real 

equality and is not. 

The archaeological example and the confusion matrix example are very similar. 

Co-occurrences on the one hand and confusions on the other are taken to represent 

‘nearness’ and items which should, given linearity, be far apart are actually too close 

together. One way this can be represented is to twist the representation back on 

itself, forming a hook or ‘horse shoe’. 

Table 6 

Subject J.H. alphabetic distance bias 

Stimuli Responses 

B C D E 

B Obs 

EXP 

C 
Obs 

EXP 

D 
Obs 

EXP 

E 
Obs 

Exp 

201.0 23 .O 59.0 10.0 

200.4 19.5 63.1 10.0 

37.0 203 .O 20.0 50.0 

40.5 201.2 22.4 45.9 

86.0 41.0 162.0 9.0 

81.9 38.6 167.5 10.0 

37.0 59.0 23 .O 181.0 

37.0 63.1 22.0 177.9 
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3. The Guessing Mixture Model (GMM) 

A very early model for confusion data was called the ‘all-or-none model’ 

(Townsend, 1971) or the ‘simple guessing model’ (Broadbent, 1967). The scenario 

for this mode1 is that the subject is presented with the stimulus and she either 

‘detects’ the stimulus, in which case she correctly names it, or she misses the 

stimulus altogether, in which case she guesses, according to some response bias. The 

experimenter cannot tell which state the subject was in on any trial so his data have 

been aggregated for him. The mathematical model for this scenario is 

where 6, is the Kronecker delta, with a value of 1 when i=j and 0 otherwise, Pi is 

the probability of being in the detect state when stimulus i is presented, and Xj is 

the response bias toward response j and C TC = 1. An interesting special case of this 

model would have it that all the stimuli were equally detectable, i.e. P,= P for all i. 
We must be quite careful in relating this pair of models to the BCM, because the 

relation is a complicated one, as has not always been clear to me (see Smith, 1973). 

If we just consider the off-diagonal cells, the ‘errors’, for the ‘all-or-none model’ 

and for the BCM, we see that the conditional all-or-none model is indeed a special 

case of the conditional BCM. The all-or-none model is the BCM with all similarity 

parameters equal to one, or actually any other constant value, when we consider the 

error cells by themselves, 

The models differ fundamentally in how they account for the correct responses. 

In the all-or-none account the diagonal entries are big (or at least bigger) because 

they consist not only of lucky guesses but also of trials on which the presented 

stimulus was correctly perceived. In the BCM the diagonal cells are large (if they 

are large) because the similarity of a stimulus to itself is large, relative to the other 

similarities. As the number of cases observed in the diagonals decreases, the BCM 

increases the estimates of all off-diagonal similarities to maintain the best possible 

fit, while the all-or-none model reduces estimated ‘true’ perceptions as long as there 

are any to reduce, then sets estimated true perceptions to zero, and finally has to 

accept fewer than expected ‘by chance’ observations in the diagonal cells. The max- 

imum likelihood fit of the BCM to a set of data will necessarily fit the diagonal (cor- 

rect) cells exactly. So will the simple guessing model, if the number of observations 
in the diagonal ceils is large enough. If the subject is performing consistently above 

chance the expected values for simple guessing will be a BCM. It will not be the best 

fitting BCM of course because simple guessing is only a special case of biased 

choice. Both models fit the diagonal because both must agree with the data there 

mathematically. The simple guessing model, is, however, always a valid special case 

of the following quite different alternative choice model, the Guessing Mixture 

Model (GMM). 

Like the simple guessing model, GMM has it that on a certain fraction of the 

trials, (1 -a), the subject is either not attentive, slow, asleep, or, for some reasons, 

has not a clue as to what stimulus was presented. On those trials the subject guesses 
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according to some response set. The important thing is that on those trials responses 

and stimuli are independent. On the other trials the subject is attentive, quick, and 

alert. Unlike the subject described in the simple guessing model, however, the alert 

GMM subject cannot always report the correct stimulus. The conditional probabili- 

ty of responsej when stimulus i was presented is proportional to rlij, where the yl;j 

have the same properties as did the similarity parameters of the BCM. As a formula 

we have 

(9) 

The special form of simple guessing when stimuli are equally detectable is ob- 

tained from equation (9) by setting all similarity parameters to 0 if i is not equal to 

j, and keeping vii at one as before. The parameter (Y takes the place of the detection 

parameter P. Variants on equation (9) spring readily to mind. There might be dif- 

ferent a’s for different stimuli, or there might be an additional set of biases on ‘at- 

tention’ trials as well as on the ‘inattention’ trials. A similar model was proposed 

in Pachella et al., but equation (9) will define for our purposes the GMM. The 

GMM can be called an aggregated log-linear model. If there were some way we 

could tell which correct responses were real detections and which were merely lucky 

guesses we would have the information to fit a log-linear model to the guessing data, 

estimate bias parameters, then fit another log-linear model to the attentive data, 

estimate similarities, and then put the estimates back into equation (9) to see how 

well the whole thing fits. As it is we need new techniques to overcome the fact that 

the nature of our data aggregates these cells. This is not the place to go into the pro- 

mise and problems of aggregated log-linear models in general, but a little 

background will illuminate the application to confusion matrix models. 

The approach is to distinguish between latent tables and a manifest table. The 

manifest table is the table actually observed. In our example Table 1 is the manifest 

table. We know all its entries. If we try to fit that data with (say) the simple guessing 

model it is useful to think of a latent table as well. Again in our example that table 

has four more cells, an extra one for each diagonal cell. Each diagonal cell is really 
two cells that have been aggregated. If we only knew how many of the entries in 

the diagonal cells were true detections and how many were lucky guesses, we could 

fit one or another log-linear model easily. 

What is needed is a way to estimate not only the parameters of the model, but 

to estimate the ‘observed’ cell frequencies in the aggregated, manifest cells. The pro- 

cedure used is based on the so-called EM algorithm (Dempster, Laird and Rubin, 

1977). The name comes from first Estimating the missing cell frequencies, and then 

Maximizing the likelihood, conditional upon those estimates. Then, almost always, 

a better estimate of the latent cell frequencies can be obtained and the cycle con- 

tinues. In our case we improve the latent cell frequencies by making them propor- 

tional to the recently computed expected values in those cells. Perhaps a small 
numerical example will clarify this step. Suppose the number of correct identifica- 
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tions of the letter B is 201, as above, and that the current estimate of the number 

of detections of B and the estimated number of lucky ‘guesses’ of B in the fitted 

model are 75 and 25 and the ‘pseudo-observed’ numbers are 180 and 21. Note that 

the pseudo-observed numbers must add to 201. The new values of the pseudo- 

observed are made proportional to the currently estimated expected values, in this 

case a ratio of 3 : 1 or 150.75 and 50.25. 

This can easily be shown to improve the goodness of fit, so that the iteration at 

every step decreases the G’ measure. Since G2 is necessarily positive it will ap- 

proach a limit point, at which point parameter values and latent cell entries are max- 

imum likelihood estimates. 

The algorithm is very similar to those used in ordinary maximum likelihood solu- 

tions of log-linear problems. A major difference, however, is that the EM procedure 

does not necessarily reach a unique maximum. Fitting the simple guessing model will 

be an example of a problem with a unique solution; fitting the general GMM will 

be an example of a model with a manifold of (LR) equivalent solutions. We begin 

by displaying in Table 7 the J.H. data when the first E (estimating) step has been 

carried out. 

The estimates in the final column are not to be taken seriously. They merely get 

the process started. The single detectability, simple guessing model for this table is 

the same as an independence model for an ordinary table. The column parameter 

for the last column is the detectability parameter P. The other four column 

parameters, when normalized, are estimators of the bias vector. For such a table the 

maximization step is very simple, indeed right out of an elementary text. The max- 

imum likelihood estimate for the ‘lucky guess’ of B is (261)(293)/1201 =63.7 and 

the same value for the B detection cell is (400)(293)/1201 = 97.6, about half again 

more. The new E stage is to change the observed table to reflect the same propor- 

tionality. Instead of 101 and 100, we insert 79.4 and 121.6 in the latent cell table. 

The new latent cell frequencies now add to 201, as they must, and are proportional 

to 63.7 and 97.6, which is as close to the model as one can come with the current 

constraints. Completing this iterative process, taking six cycles for this data set, we 

obtain Table 8 as the final latent cell ‘data’ table. 

Table 7 

Subject J.H. latent data table 

Stimulus 

B 

C 

D 
E 

Guesses Correct 

B C D E 

lOI 23 59 10 100 

37 103 20 50 lo0 

86 41 62 9 LOP 
37 59 23 S! 100 

Totals 261 226 164 150 400 
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Table 8 

Subject J.H. final latent data table 

Stimulus Guesses Correct 

B C D E 

B 52.9 23 59 10 1481 

C 37 56 20 50 158.4 

D 86 41 29.2 9 132.8 

E 37 59 23 2c6 156.4 

Totals 212.9 167.6 131.2 93.6 595.1 

The next cycle would use these to compute a new cycle of expected values, which 

would now be nearly the same as the preceding cycle. The G2 with eight degrees of 

freedom would be 117.5 or F*= 14.7. This model does not fit at all! Neither does 

the model allowing different detectabilities. In fact, it fits even worse, F*= 22.0. It 

is not that detectabilities are different; it is that there are unique confusions for 

specific pairs of stimuli. In particular, stimuli that differ only in whether or not 

there is a short horizontal feature half way up are much more frequently confused 

than any other pair of stimuli. These data cannot be adequately described without 

some notion of similarity. That by itself is interesting when we remember that the 

subject was supposed to examine the stimuli and make his response in 360 ms. 

4. The full GMM model 

Having ruled out simple guessing we return now to the general GMM of equation 

(9). Now instead of having one additional cell for each row containing the ‘real’ 

detections, we will have to accommodate an entire additional table to hold data 

from the attentive state as well as the one holding guesses. The procedure is just as 

before except that now after every cycle of approaching the maximum likelihood 

solution we go back and adjust the latent cell data to match proportionately the cur- 

rent expected values in each manifest cell. Convergence can be excruciatingly slow, 

although for our data 50 ms on the main frame or 50 s on my micro is adequate. 

Much more important is the fact that the final result will usually depend upon 

the starting point. Fitting our model leads to one manifest table of estimated cell 

entries and thus to one G2 value, but to a whole range of parameter values. Many 

different tables of latent expected values will be obtained, depending on the par- 

ticular starting point of the iteration, but each will aggregate to the same manifest 

set of expected values. Parameters are estimated from latent cell expected values, 

and these will differ from one starting configuration to another as a function of the 

estimated time in the attentive state. Each solution will attribute different amounts 



J.E.K. Smith / Alternative biased choice models 213 

Table 9 

Subject J.H. manifest GMM 

Stimuli Responses 

B C D E 

201 .o 
B 

Obs 23.0 

EXP 198.4 24.0 

C 
Obs 37.0 203.0 20.0 50.0 

EXP 35.7 205.3 23.3 45.7 

D 
Obs 

EXP 

E Obs 37.0 59.0 23.0 181.0 

EXP 40.6 65.5 18.8 175.1 

86.0 41 .o 162.0 9.0 

82.6 35.3 168.3 11.8 

59.0 10.0 

61.5 9.2 

of a manifest cell’s contents to attentive responses and to guesses, even though the 

manifest cell total stays the same. 

The manifest table with observed and expected values is shown in Table 9. This 

model fits with a G* of 5.27. The degrees of freedom should be two because we are 

now fitting an (Y as well, but there may be some question about this because of the 

lack of uniqueness. One set of parameters is given in Table 10 and another in Table 

11. Both of these parameter sets will lead to the same manifest expected values given 

in Table 9. 

Notice that Table 10 has a zero for a similarity, BC, and Table 11 has a zero for 

a response bias, E. This is no accident. I chose these two tables because they are 

end points on a manifold from a null similarity to a null bias. One can plot a con- 

tinuous path through the parameter space from the model of Table 10 to that of 

Table 11. For every model on the path G2 will be 5.27. At one end of the path the 

maximum number of guesses will be estimated and at the other the maximum 

Table 10 

Subject J.H. similarities and biases, GMM solution 1 (8=0.765) 

Stimulus Similarities (q) 

B C D E 

B 1.000 0.000 0.318 0.037 

C 0.000 1.000 0.076 0.236 

D 0.318 0.076 1.000 0.056 

E 0.037 0.236 0.056 1.000 

Biases 0.478 0.348 0.129 0.044 
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Table 11 

Subject J.H. similarities and biases, GMM solution 2 (6=0.809) 

Stimulus Similarities (q) 

B C D E 

B 1.000 0.018 0.330 0.054 

C 0.018 1.000 0.093 0.250 

D 0.330 0.093 1.000 0.073 

E 0.054 0.250 0.073 1.000 

Biases 0.522 0.374 0.104 0.000 

number of ‘attentive’ responses will be estimated. Only if the data table is best fit 

by a parameter set with one similarity parameter and one bias parameter equal to 

zero will the maximum likelihood solution for parameters be unique. The difference 

here may be small, but if one is looking to obtain distance indicators from the 

logarithms of similarity indices, Table 10 will be quite a shock. 

5. Feature patterns in GMM 

In both of the earlier families we examined the fit of the feature pattern model. 

That is the model, remember, in which the similarity of two stimuli depends only 

on which collection of feature differences the stimuli had. I think I have implied that 

this would be a minimally rewarding model to find fitting. If so, I should back down 

slightly. B and D differ with respect to the tiny horizontal bar, as do C and E. But 

the BD pair both have the long vertical bar in common, so they might be more 

similar in terms of proportional differences than are C and E, which have fewer 

features in toto. Surely as one keeps adding identical features to each of two visual 

objects one will arrive at two composite objects for which the one distinguishing 

feature is too insignificant to notice. Tversky (1977), in his work on judged similari- 

ty, cites empirical evidence of this tendency. 

Nevertheless it is quite easy to study additivity if the feature pattern model is at 

least to some degree supported. The feature pattern model in GMM also has a max- 

imum likelihood ridge. On the ridge G2 is 10.552 with five degrees of freedom, not 

significant at the 5% level. As was noted above, the additive feature model is a 

special case of the feature pattern model for which )?hv= qh&. When we fit that 

model, much to our surprise we find that G2 is also 10.552, now with six degrees 

of freedom, and suddenly insignificant at the 10% level. 

This should not have been too surprising. At one end of the ridge one pair of 

stimuli will have a similarity index of zero, which will almost certainly be the 

similarity between pairs of stimuli that differ on both features. This will be a table 

with extreme super-additivity unless one or the other feature is totally effective by 
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itself. At the other end of the ridge the similarity when both features differ will be 

as large as possible, and frequently large enough to make the system sub-additive. 

If this is the case, by continuity some parameter set in the middle will exhibit ad- 

ditivity, and that is what has happened in the J.H. data. Indeed, by very similar 

reasoning we see that the additivity solution is unique, because of the monotonicity 

in the similarities along the ridge. Only if the entire one-dimensional manifold which 

maximizes the likelihood exhibits super-additivity will there not be an additive 

solution. 

In the J.H. data there is additivity. The similarity parameter estimates are 

9, = 0.0218 and Ij,, = 0.2478, 

showing the almost complete effectiveness of the vertical cue and somewhat in- 

complete use of the horizontal cue. We can calculate likelihood-based 95% con- 

fidence intervals for both parameters. These are 

{0.192<~,<0.310}, and {0.000<~,<0.074}t,. 

These values are obtained by inverting the maximum likelihood test. If we were to 

fix the value 0.192 for Q, and fit the rest of the model we would obtain a G2 just 

3.841 larger than the minimum, which is the 5% significance level for G2 with one 

degree of freedom. The lower limit for qV is interesting. It means that no positive 

value for qV is small enough to increase G2 by a significant amount. Such an 

estimate would be impossible in the BCM unless all cells sharing that parameter had 

zero data entries. The GMM, however, can handle the fact that there are no atten- 

tive responses in such cells because it can attribute such responses to inattentive 

responses or guesses. It is even more constraining in the additive model, since it im- 

plies that the only attentive confusions are those between B and D and those between 

C and E. 

The question of degrees of freedom is still a problem, but not puzzling. If one 

specifies a point on the ridge, like either end point or the additive point, the program 

takes that to mean that one parameter, a bias or similarity, or one contrast, additivi- 

ty, was specified a priori, and hence not estimated from the data. More work is 

needed on the statistical questions when we do not have a unique maximum 
likelihood. 

Whatever the niceties of statistical evaluation the difference between the additive 

feature solution in GMM and the classic BCM is impressive. With Biased Choice 

and the J.H. data the additive feature model produced a G* of 59.709 with seven 

degrees of freedom. GMM on the other hand with six degrees of freedom yielded 

a G* of 10.552. Indeed even the most general form of the BCM produced a G2 of 

12.39 with only three degrees of freedom. 

6. Caveats, qualifications, and comments 

It is tempting to draw conclusions about how line segment letters are processed 
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in deadline conditions, but that would be foolhardy on the basis of this paper. As 

an illustration of this foolhardiness notice that both the ‘triangular bias’ model and 

the GMM fit the data quite well, even though their accounts are not similar. The 

triangular bias model sounds rather like a satisfying model. The subject searches the 

alphabet serially until an acceptable response appears, or time is running out. If time 

runs out she emits the response corresponding to the most similar stimulus so far. 

The fit is good, but the similarity parameter estimates are puzzling. 

On the other hand, GMM would have it that on a fourth to a fifth of the trials 

J.H. was unprepared, emitting a stimulus independent response just to meet the 

deadline. On the rest of the trials he seemed to be using an additive feature model 

with the vertical feature almost entirely processed during the 360 ms period, but 

with only a beginning use of the horizontal feature. We remain puzzled with this 

model why his biases are as they are. 

The conditions of this experiment seem very suggestive of those labeled ‘state- 

limited’ by Garner and Hahn (1978). Would these models be useful in studying 

‘process-limited conditions’ as well? Of course we do not know any of those things 

from the data of one long-gone subject, chosen who knows how. 

One final comment about the GMM. Measurement models for a long time have 

included a ‘noise component’. Frequently this component is assumed to be unbiased 

on average, which leads to a strategy of using large samples to wash out the effects 

of the noise. But large samples in confusion matrices do not wash out the effects 

of stimulus independent responses. The stability due to averaging measurement data 

may be attained with categorical data by using mixture models like the GMM. 

7. Summary 

The objectives of this paper were to propose some alternatives to the classical 

BCM and to suggest some situations in which they might be useful. When general, 

non-structural forms of the three models are used there will not often be a lot to 

choose between them. This may not necessarily extend to studies of their special 

cases or to the meaning of the parameters they use. 

In the data set we studied here so extensively we observed that additivity in the 

GMM actually fit better than the general form of Biased Choice with twice the 

number of degrees of freedom left for error. 

We saw that, like many other aggregative log-linear models, GMM often may not 

provide unique solutions. Sometimes, as in the current example, the ambiguity may 

be turned to advantage. 

Appendix A 

Any model satisfying ‘quasi-symmetry’ (Bishop et al., 1975) can be 

reparameterized as a Lute Biased Choice Model (BCM). 
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Bishop et al. define quasi-symmetry as 

mti=a,bjdti, with dG=dji, Vi,j. 

We define 

dij 

‘I,- = i(&Q’ 

p/ = bj/~. 
and 

ai = Lli/fi, . 

WI 

642) 

(A3) 

(A4) 

In terms of these parameters then 

Here pij is the conditional probability of response j given the presentation of 

stimulus i and mi+ is the total number of responses to stimulus i. By construction 

vii is one for all i, as was required. It should, however, be noted that sometimes the 

Lute BCM is taken to be restricted to that part of the parameter space in which 

vii’ 1 for all i, j. If that definition is accepted, then the BCM is only a subset of the 

quasi-symmetry models, since nothing in the preceding development precludes some 

I?;j, if j, from being larger than 1. 

Appendix B 

Because the numbers pij = m,/m;+ are maximum likelihood estimators of the 

population of conditional probabilities they are necessarily consistent estimators. 

We show here that a square data table [m;j] satisfies the BCM if and only if 

mijmjkmki = ?TljiF?likt?lkj, Vi, j, k. @I) 

The necessity is obvious on substitution of the BCM into equation (Bl). Sufficien- 

cy requires more effort. We assume at the beginning that all m’s are strictly positive 

or, rather, include this constraint in what we will refer to as a BCM. Certain patterns 

of zero expected values could be allowed in an extended version of the BCM. In par- 

ticular we can allow mu to be zero if we insist that mj, also be zero and that the 

system of equations (Bl) not include equations involving those cells, or other such 

empty pairs. 

Notice also that equation (Bl) puts no constraint on m,. We will assume that all 

diagonal cells have strictly positive entries. Real applications almost always have 

large correct identification frequencies. Models that propose no probability of a cor- 

rect response are not considered here. We will assume a strictly positive set of m;i 

which might as well be the observed observations nii in any application. 
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We now define a set of column construct parameters Yij: 

When we multiply two of the parameters, Yij and yjk, we obtain: 

Yij Yjk = 
mkjmjimii 

= Yik, 
mijmjkmkk 

using condition (Bl). Summing equation (B3) over k we obtain: 

(B3) 

YijYj+ = YI+ 

or 

Y ij = Pi/P, * (B4) 

Mutatis mutandis we can define 6, = a/a, for rows. Using equations (B3) and (B4) 

we find that 

mij 
ai/;i=Gaj8, 

or 
m- 

2 mji 
= - = (say) d;, . 

aiPj ajPi 

Thus, d, is symmetric and the conditions of (Bl) are sufficient to have a quasi- 

symmetric model and, by Appendix A, a BCM. 
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