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1 

We present a class of decentralized dynamic processes designed to 
converge to message equilibrium. These processes may also be regarded as 
distributed algorithms for computing solutions of the distributed system of 
equations that characterize equilibrium. They may also be interpreted as 
algorithms for learning. Unlike most dynamic processes that have been 
used to study stability of economic mechanisms, these processes are not 
given by differential or difference equations that determine trajectories in 
the space in which the message equilibria live and in which convergence to 

* We have benefitted from conversations with many friends and colleagues. Among them 
are J. Jordan, L. Hurwicz, and E. Green. We owe special thanks to Michael Chwe, who has 
programmed and run some computer trials. They are, of course, not responsible for what we 
have done or not done with their suggestions. This research has had the support of the 
National Science Foundation. 

+ Visitor to the Institute for Mathematics and its Applications at the University of 
Minnesota, January-June, 1990. 
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equilibrium is to take place. The case considered here is that in which the 
equilibrium conditions are linear. In that case equilibrium is stabilized wit 
a message space bigger by just one binary digit than the minimal message 
space needed for static equilibrium. Before discussing the processes in 
detail, we shall briefly discuss the background of the problem and the 
earlier work on stability of equilibrium. 

Comparison of ways of organizing economic activity should include 
comparison of dynamic performance. Leo Hurwicz’s original formalization 
[6] of “adjustment process” was explicitly dynamic. An adjustment process 
is a system of first-order temporally homogeneous difference uations, 
together with an outcome function. Thus, in one version of urwicz’s 
original formulation (not the most general) there are N agents: each agent 
has a space of characteristics, denoted E’ for agent i. The space of environ- 
ments is 

E=EI x ... xEN. 

Each agent has a message space M’ and the messages sent by agent i are 
chosen according to the response function 

fi:MxEi+Mi for i= 1, . . . . N, 

where 

is the message space of the adjustment process. Here it is implicit t 
agent i knows his characteristic ei, but does not know ei for jf i. The 

process is given by a system of difference equations 

m'(t+ l)=f'(m(t),e') for i= 1, . ..) iv, 

where D$ E M’, and ei E E’. The equilibria are the stationary points of this 
system of difference equations and may be described by the syste 
equilibrium equations 

g’(m, e')=f'(m, e') -n.zi= 0. 

(The outcome function, which maps equilibrium messages into outcomes, 
is not relevant for our analysis and so is omitted here.) 

In spite of this explicitly dynamic beginning, between 1960 and 1979 
research on mechanisms was almost completely devoted to studying their 
equilibrium or static properties. can be defined directly 
without reference to a dynamic n the informational si 
research concentrated on static realization, that is, on decentralizes 

’ See, for example, Mount and Reiter [ 111 
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mechanisms capable of realizing a given goal function on a specified class 
of environments (e.g., Pareto optimal allocations on environments with 
nonconvexities, such as increasing returns) and on the size of the message 
space required for realization. 

However, there had already been research into the dynamics of specific 
processes. For example, the work of Arrow and Hurwicz [l], and Arrow, 
Hurwicz, and Block [2] on the price tatonnement antedates formal study 
of decentralized mechanisms in the more general framework. These authors 
established global stability of the price tdtonnement on a subclass of the 
classical environments (gross substitutes), but no stability result was 
obtained for the full class. Scarf’s example [17] showed that this could not 
be done, i.e., that the price tatonnement is not stable on the full set of 
classical economic environments. 

Smale [19] studied a globalization of the Newton process, which is 
convergent provided the initial point is near the boundary of the price 
simplex. However, this mechanism uses a good deal more information than 
the usual price tatonnement-essentially all the partial derivatives of the 
demand functions. 

Saari and Simon [15] showed that for mechanisms defined by systems 
of differential equations almost none of this additional information can be 
ignored while ensuring convergence. Saari [14] showed the analogous 
result for mechanisms defined by systems of difference equations. 

Hurwicz, Radner, and Reiter [6, 71 introduced the B-process, a 
stochastic decentralized mechanism that is dynamic (a Markov process) 
and that converges with probability one to Pareto optima on a class of 
environments that includes the classical ones, but also includes environments 
with indivisibilities or other nonconvexities. In terms of informational 
requirements, while the messages used in the B-process are essentially 
approximations of points in the commodity space, the process involves the 
use of small portions of indifference surfaces in some cases. Analogues of 
the classical welfare theorems are proved for these environments. 

Recent work by Bala [3] and subsequently by Bala, Majumdar, and 
Mitra [4] studies the speed of convergence of the B-process. These authors 
also prove convergence, when the commodity space includes some 
indivisible and some divisible commodities, and introduce modifications 
that improve informational properties. However, the B-process is not 
formally an adjustment process in the sense of Hurwicz’s 1960 definition. 

Reiter [13] studied an example with two persons, two goods, and a 
Walrasian goal function on a class of exchange environments with quadratic 
utility functions. It was known that in this example the minimum message 
space needed for static realization is two-dimensional [9, 111. The question 
studied was whether there could be an adjustment process using a two- 
dimensional message space whose equilibria are stable. By analyzing the 
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characteristic roots, Reiter [13] showed that for difference equations with 
non-zero linear part, there is an open set of parameter values (in E== R4) 
on which the system is not locally stable. This result was suggestive, but 
not complete, since it did not rule out difference equations with vanishing 
linear part. In addition, a (globally) stable aNdjustment process was 
constructed for this example, but using a larger space. This stable process 
can be regarded as an adjustment process with a four-dimensional message 
space, or as a process of the kind later formalized by Jordan [IO] using the 
two-dimensional static message space as the space of state messages, and 
another two-dimensional space of control messages. 

Subsequent papers by Jordan [lo], Mount and Reiter [12], and 
Williams [ 191 studied differential equations rather than difference equations. 
Jordan introduced a broader class of processes, already mentioned above, 
which accommodates the traditional price tatonnement, a process not 
formally included in the class of adjustment processes as defined in IS]. 
These papers differ in the class of processes allowed, in the concept of 
stability used: and in other assumptions and conclusions. Their impact is 
that a decentralized process capable of stabilizing the equilibria of a static 
mechanism (that realizes a given goal function.) requires more i~for~at~~~ 
i.e., a message space larger in dimension than the minimum needed for 
static realization or verification of equilibrium. The analysis in these papers 
is not restricted to linear equilibrium conditions. 

These papers also made it clear that there are open sets of e~v~ro~~e~~s 
on which there are stable processes. Saari and Williams [lb] showed 
the agents could provide enough information (in a decentralized way 
identify a region of the parameter space in which the environment lives and 
thus to permit choice of an appropriate differential equation system. This 
involves a two-stage process, thus not temporally homogeneous, and an 
increase in the size of the message space to include the finite number of 
messages needed in the first stage.’ 

Almost all of the analysis of dynamic processes has been done by 
studying differential equations. This seems quite natural, since there is 
considerable mathematical knowledge about differential 
(and about difference equations), as compared to other 
processes. Consideration of examples referred to earl 
difference or differential equations use information in a more sensitive an 

‘Temporal homogeneity and convergence from arbitrary initial conditions are important 
properties of dynamic economic processes, because together they ensure convergence to the 
new equilibrium without additional information when an underlying environmental parameter 
changes and equilibrium is displaced. These properties do not have the same importance when 
the process is an algorithm designed to converge to the solution of a given system of equations 
characterizing a fixed equilibrium. 
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responsive way than is necessary to achieve convergence to equilibria. In 
the presence of decentralization requirements, this excessive sensitivity is 
potentially a source of instability. A differential equation process needs to 
know at every point in the space a direction or a set of directions in which 
to move. When the class of environments is large, the minimal (static) 
message space does not allow the decentralized transfer of enough informa- 
tion to pinpoint the correct decision at each point. Therefore, a larger 
message space is needed. Indeed, the work of Saari and Simon [15], 
Jordan [lo], and Williams [20] shows that any stable process given by 
differential equations must use nearly all the partial derivatives of the 
equilibrium equations. 

Processes like the price Gtonnement involve “black boxes,” in the sense 
that differential equations can describe the results of the functioning of a 
system that is not otherwise specified and whose existence is not 
established. There may be no fully specified decentralized institutional 
arrangement that exhibits the dynamic behavior described by the differen- 
tial equations. 

It is a commonplace metaphor to see an economic process as a way in 
which the economic organization computes an equilibrium. One can 
reverse the perspective and consider any algorithm or computational pro- 
cedure that is capable of computing economic equilibria as a possible 
dynamic process for the economy. Decentralization requirements rule out 
many such processes, including various fixed point algorithms. Considera- 
tions of this sort led to the reconsideration of the example of [13] and to 
generalizations of th?t example in which the number of agents (and there- 
fore equations) may be more than two, while the linearity of the individual 
equations is retained. 

The class of processes presented in this paper include some that are 
globally stable on the full class of environments considered. In particular, 
the examples of Scarf [17] and of Reiter [13] are stabilized by such 
processes. 

The processes in this class use a message space that is the minimal 
message space needed for static realization augmented by one bit. That is, 
if M is the minimal space of equilibrium messages, then M v ( 1, - 1 } (the 
disjoint union of M and (1, - 1 }) suffices for the dynamics.3 

But, the size of the message space required, which may be interpreted as 
a measure of capital costs of communication associated with a dynamic 
mechanism, is not the only relevant dimension of informational costs. 
Computational complexity is also important. While the computations 

3 In the formal development of these processes, the messages in M u_ { 1, 0, - 1 } are used, 
0 being used to identify equilibrium, but the processes use only the additional messages 
{ 1, - 1 }; the element 0 comes in only in the limit. 
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required vary among members of this class of processes (algorithms), the 
class includes at least one process for which the requirements are: 

(1) a density function to generate points of the space; 

(2) the evaluation of the sign of a function at a point: 

(3) the computation of the average of two points. 

The dynamic processes we describe have a number of advantages over 
the other mechanisms we have mentioned. First, as we have emphasize 
they are distributed so that each agent uses only his own private informa- 
tion and not that of other agents. Second, no private agent is required to 
evaluate her equilibrium function, but only to determine its sign at a given 
point m. This is, of course, a much weaker requirement: whether in 
meted as a computation or as an act of behavior. For example, in 
Walrasian setting, it is more natural for an agent to estimate whether a 
given allocation gives him more or less than he wants (positive or negative 
excess demand) than it is to quantify the precise amount by which the 
allocation differs from his demands (the exact value of the excess demand 
function). Finally, the procedure which underlies this algorithm entails 
more natural behavior and decision processes from the agents and c 
dinator than do other mathematical procedures in the literature, sue 
the global Newton method or various triangulation schemes. 

These processes can also be interpreted as distributed algorithms for 
solving systems of linear equations, where each equation of the system is 
known by only one processor (computer) in a network. Since the standard 
methods for solving linear equations work on the whole matrix, i.e.: are 
distributed, it is difficult to compare this class of processes with 
standard ones. 

The processes presented in this paper can also be interprete 
learning about sets determined by distributed information. 

The rest of this paper is organized as follows. Section 2 describes the 
class of processes, and in particular one process and a variant of it, in the 
context of the two-agent example mentioned above. The presentation is 
informal and intuitive. In Section 3 the processes are formally define 
N agents, i.e., for a distributed system of N linear equations, where N 3 2 
and a proof of convergence is given 

2. A COMPUTATIONAL DYNAMIC PROCESS 

We first describe the process in informal, intuitive terms in the context 
of the two-agent, two-commodity example. This may seem rather special, 
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but in fact the transition to higher dimensions brings few new significant 
qualitative properties.4 

The example consists of two (private) agents and two commodities, with 
each agent characterized by two parameters so that E’= R2, i= 1,2, with 
ei=Oi=(et, Q~)eR2 f or ei E E’. The equilibrium message correspondence 
of private agent i is given by 

g’(m, e’) = 0, i= 1, 2, (1) 

so that the equilibrium message m* = (m:, rn;) is the solution of the equa- 
tion system (1). It is known for the (Walrasian) performance function 
underlying this example that the minimal message space for (static) realiza- 
tion is two-dimensional and that the equation for each agent is linear 
(affine) in the message components with the parameters of agent i as coef- 
ficients (and also linear in the coefficients). (See [12] and the references 
therein.) We will assume further that each of the functions 

g’:MxO’+R, i= 1, 2, 

changes sign on the sets given by (1) and only there, so that g’(m, Si) > 0 
for all m in one half-space determined by the corresponding equation of 
(1 ), and g’(m, 0’) < 0 for all m in the other. 

Agent i knows his own parameter value 8’ and his own function g’. In 
addition there is the role of coordinator, a role that may be played by one 
of the agents or by a special additional agent recruited or created for this 
purpose. The coordinator can address messages to each agent and identify 
individual messages received from them. If one of the private agents serves 
as coordinator, she knows what the coordinator knows in addition to her 
information as a private agent. 

We consider this example in two cases: first, when one of the private 
agents, say agent 2, plays the role of coordinator; second, when an 
additional agent, agent 0, is the coordinator. 

It is convenient to describe the process in the two phases, Phase I and 
Phase II.5 In each phase the coordinator sends messages to the private 
agents. In Case 1 the coordinator, who is agent 2, sends messages to 
agent 1, and receives agent l’s response to each message sent. In Case 2 the 
coordinator sends separate messages to agents 1 and 2 receives their 
responses. We consider Case 1 first. 

4 In the case of Algo I, higher dimensions bring no new properties, while for Algo II, a 
variant of I, a significant difference is pointed out at the end of this section. 

‘It is not strictly necessary to distinguish two phases. The behavior of agents can be 
characterized by a single set of conditional rules, not time dependent, so that the process is 
temporally homogeneous. 
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Agent 2, acting as coordinator and as private agent, knows that any 
equilibrium must satisfy her equilibrium condition, 

g2(m, 6”) = 0, (2: 

and can use this knowledge in the process. Therefore her message at any 
step t of the process is a point satisfying her equilibrium condition. Let 
pn(l) denote the message sent by the coordinator to agent 1 at step t. The 
response of agent 1 at t is 

1 if g’(m(t). 6*) > 0, 

0 if g’(m(l), Q’) = 0, 

-1 if g’(m(t), 6”)<0. 

We may visualize agent 2 as having two storage registers in which messages 
sent are recorded according to the responses of agent 1. These are label 
‘“1” and “ - 1,” respectively. The messages m(t) is stored in register 
replacing whatever was there, if the response of agent f to it at time 1 is 1, 
and in register - 1 if the response is - I. The initial state of these registers 
is “empty.” If at any time the response of agent 1 is 0, then the message sent 
by the coordinator at that time is the equilibrium message, and the process 
stops. 

Phase I 

The coordinator has a density function on R2 that is positive on the line 
given by (2) and 0 elsewhere. In other words, the coordinator works only 
with points in R2 which satisfy (2). The co nator’s message is chosen 
independently at each time according to this sity function. Phase I ends 
at the first time t at which both storage registers are nonempty. At that 
time there are two messages, si and s- r in registers I and - 4, respe 
These form the initial state for Phase II. Denote this state by 
(x1, s-i). At this point it is known by the coordinator that the solution to 
(1) (i.e., the equilibrium) lies in the interval [s’, s-l]. 

It is convenient to represent this structure by a function 

11=A,:M-* (IlO, -I>: 

called a labeling function for agent 1. A set of messages {m’, m” ) in the line 

{x E 5x2 / g2(x, S2) = 0) 

is cornpleteiy labeled if one of the messages is labeled 1 and the other - 1. 
An initial state for Phase II is a completely labeled set of messages. (This 
is a different usage of the term “completely labeled” than that used in the 
statement and applications of Sperner’s Lemma. See, for example, [18].) 
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FIG. 1. m is the midpoint of s1 and s-‘. 

Phase I1 

Phase II consists of a procedure (an algorithm) for replacing a com- 
pletely labeled set by a “smaller” one, in such a way that the sequence of 
completely labeled sets converges to a point. That point must be the 
solution of the system of Eqs. (1). There are many different procedures or 
algorithms for transforming a completely labeled set into another smaller 
one, thereby generating a class of process. These processes would generally 
have different informational and computational requirements. The present 
case illustrates a common feature of such processes. 

In the (essentially one-dimensional) example under discussion, one 
method of replacing a completely labeled set {s’, S-‘} by a smaller one is 
to choose a point in the interval (line segment) 

[s~,s-~]~{XEiW~~X=~S~+(1-~)s-‘,O<a<1}. 

This can be done by specifying a value for a, e.g., a = i, and choosing 

m=as’+(l--a)s-‘. 

The coordinator then transmits m to agent 1, who replies6 

h(m)= -1 
i 

+l if g’(m, 6’) > 0 
if g’(m, 0’) < 0. 

This gives a new completely labeled state, in which m replaces s1 if 
A,(m) = 1 and s-l if A,(m) = -1. The new completely labeled set is smaller 
in the sense that 

[m, s’] c [s’, s-l], 

where x E { 1, - 1 } and x # A,(m). Figure 1 shows the situation graphically. 
This is, of course, the familiar but essentially one-dimensional method of 

6 Here we ignore the possibility that n,(m) = 0, i.e., that m satisfies g’(m, 0’) = 0. 
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bisection. The method of bisection is a well-studied (see, for example, 
Conte and de Boor [S]) method for finding the zeroes of a real-valued 
continuous functionf of one variable using only information about the sign 
off and not its actual values. The mechanisms we describe in this report 
can be considered as n-dimensional distributive generalizations of the 
method of bisection. It is intuitively evident that this procedure generates 
a decreasing sequence of intervals that converges to the solution m*. 

While this essentially one-dimensional case is overly special, it still 
permits the existence of several different algorithms for going from one 
completely labeled set to another. These include probabilistic choice of a 
point in the interval [s”, 3: ‘1. 

Notice that for this special case of two agents with one acting as cow- 

dinator, the linearity of g’ and g2 is an unnecessary assumption. 0ne only 
needs that g’ and g2 are continuous and that the set (xl g”(x, Q”) = 01 is 
a parametrized curve in the plane. 

In Case 2, the coordinator is agent 0, and there are two private agents, 

agents l. and 2. This case allows almost all the significant features of the 
general case.’ 

In this case the coordinator knows only that the space in which the solu- 
tion is sought in R2. For i= 1,2, agent i knows only the function gi( ., Si) 
and, given any point x of IF!?, can determine the sign of g’jx, B’).’ 

Phase I 

In Phase I the coordinator uses a density that is positive everywhere in 
R2 to select the initial trial points. At each step of Phase I a chosen point 
x is transmitted to each agent i, who responds with /l,(x), the sign of 
g’(x, 8’). 

Phase I ends when the coordinator has accumulated a completely labeled 
set. In R’, a completely labeled set consists of four points, say o 1, v2, ?)3, v4, 
such that a( (v,, Q, u3, v,}) = { 1, - I j2. 

Some aspects of Phase I deserve further comment. First, in an 
unbounded domain, such as R’, it might take a long ti 
completely labeled set, using a fixed density positive everywhere on R’. 
Several devices suggest themselves to deal with this problem. For example, 
choose a bounded region in R?, such as the square S(s) of side sz 1 
centered at the origin. Begin with a density positive on this square and zero 
outside it. If after a certain time no completely labeled set is found, sample 

’ Case 2 can also arise as Case 1 for N= 3 with the role of coordinator played by agent 3. 
s As we mentioned earlier, this is a weaker requirement thax being able to eva!uate g’(x, 8’). 

(For example, it would be sufficient to be able to calculate the sign of the first digit of 
g’(n. @‘).) In some setting it would be natural to consider determining the sign of g’jx, B’j to 

be a behavioral act rather than an act of computation. 
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from the square S(s’) of side s2 centered at the origin (perhaps with extra 
weight given to S(s2)\S(s)), and so on. Generally speaking, one could 
increase the variance of the density exponentially if it is taking too long to 
find a completely labeled set. 

Second, the problem of convergence to equilibrium is naturally posed 
under the assumptions that the equilibrium exists and is unique. But in the 
computational setting this assumption is less natural. In the linear case 
Phase I can be used to help detect singularity, even though the matrix of 
the system of equations is not known by anyone. If certain labels are not 
observed by the coordinator for sufficiently many rounds of Phase I, then 
the probability that the corresponding region is non-empty becomes very 
small. 

For example, suppose, for N= 2, that 

g2(m, e2) = gym, e’) + c, 

as shown in Fig. 2, where the + and - signs indicate respectively the 
positive and negative half spaces defined by g’( ., @) = 0. 

In this case the label (- 1, 1) can never be observed. Even using a fixed 
positive density on R2, the coordinator can eventually conclude that there 
is no solution, with prespecilied probability of error. On the other hand, 
the coordinator may have to use many trials of Phase I to distinguish the 
case where the lines given by g’(m, 0’) = 0, i = 1, 2, coincide, from the case 
in which they intersect but very close to being parallel. We remind the 
reader that the singular matrices (matrices A for which the system Ax=0 
does not have a unique solution) are rare in that they form set of measure 
zero in the set of all square matrices. 

Finally, as noted above, Phase I provides the initial state for Phase II. If 
the Phase II algorithms are regarded as algorithms that converge only from 
certain initial conditions, i.e., minimal completely labeled sets, but not from 
all initial contitions, then Phase I can be conceptually separated from 
Phase II and the problem of finding an initial completely labeled set left 
open. 

FIG. 2. A configuration with no (-, + ) region. 
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FIG. 3. Notation for Phase III. 

We describe two different processes for Phase II in this example: Algo 
and Algo II. They share a common feature, which can be described first. 

A completely labeled set in R2 consists of four points, say V= 
{vl, v?, v3, uq}. Let A= (J,, /2,): R2 --f { - 1, + 11” be the labeling function. 

For l2 = +l or - 1, write (*, &) for the two labels (- 1, 12) and (+ 1, 12). 
Think of (*, 12) as determining an edge in the unit square [ - 1, l] x 
L-1, l] in R2, C-1, +1]={Z2f, as illustrated in Fig. 3. (By abuse 
of notation, we also consider (*, I,) as denoting the two vertices on this 
edge: (- 1, 12) and (+ 1, I,).) We use ?. to carry these labels back to the 
completely labeled set V, so that we write v E Y as $ -, say, if A,(v) = -+-I 
and n,(v) = -1. The edges of [ - 1, l] x [ - 1, l] correspond in a natural 
way to line segments in R2, which we still call “edges.” For example, if 
n(v,) = (+ 1, + 1) and /z(u,) = (+ 1, -l), then we write [Iv,, v2] to denote 
the line segment from v1 to v2 and note that it corresponds to the edge 
(+ 1, *) in Fig. 3. We call [vi, v2] an edge for agent 2 or a ‘?-edge,” 
because only the second agent’s function changes sign along [v,, vJ; that 
is, [v,, u2] corresponds to (+ 1, *) where the * is in the second componen. 
In Fig 4., the edges for agent 1 are [v r, v2] (corresponding to (*, + 1)) an 
[v,, uq] (corresponding to (a, - 1)). The edges for agent 2 are [u,, v3] (for 
(+ 1, *)) and [vz, u4] (for (- 1, *)). Agent l’s zero-set (g”(x, 8’) = 0) cuts 
the two l-edges, while agent 2’s do not; agent 2’s zero set (g2(x, a”)= 0) 
cuts the two 2-edges, while agent l’s do not. 

FIG. 4. m(t) is the midpoint of u, and u2 
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In each algorithm, the coordinator 

(i) calculates the midpoint m(t) = l(vj+ vi,), where [vj, vi,] is an 
i-edge of the current completely labeled set of vertices, V(t), 

(ii) announces m(t) to agent i, if the edge [vi, uj,] is an edge of 
agent i, and 

(iii) replaces with m(t) the vertex whose label is the same as that of 
m(t). 

For example, in Fig. 4, the edge [ul, vz] has midpoint 

m = $(vl + vJ. 

Since this is an edge of agent 1, 

Mm) = MuI) = Mud. 

Suppose that A,(m) = A,(v,) = +l. 
Form the new set of vertices V(t + 1) = {m, v2, v3, v,}, replacing v1 with 

m, resulting in the polyhedron shown in Fig. 5. 
On the other hand, if l,(m) =121(~J, then m replaces v2 in V(t + 1) and 

the new set of vertices is {m, vl, uj, v4}, the new polyhedron is as in Fig. 6. 
Call the replacement of ui by m as in Figs. 5 and 6 a step in the algorithm. 
The two algorithms differ in the order in which edges are considered. 

ALGO I. Let V(t) = {VI(t), vZ(t), o,(t), v,(t)} denote the completely 
labeled set at step t, where l(vj( t)) is independent of t for each i. 

First, the edges of agent 1 are considered in the order 

“2 ++ m(t) 

Y7 

+- “3 . “1 

FIG. 5. m(t) is the midpoint of u, and u2. 
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Let 

and 

“2. 

FIG. 6. m(t) is the midpoint of u, and oz. 

dm(O))= 
Q(O) if .A,(m(O)) = A,(v,(O)) 
v (o) 

2 otherwise. 

The set V(l) of vertices at time 1 is 

In words, the midpoint m of v1 and v2 replaces the vertex for whit 
A(m) = A(v& so that V( 1) is still a completely labeled set. 

After considering both edges of agent 1, a process which we call agent l’s 
round, the coordinator works with the edges of agent 2, starting with the 
completely labeled set V(2), and replacing vertices with midpoints of edges 
of agent 2 in turn. 

Thus, 

V(3) = (V2)\Mm(2))H u W2)L 

where m(2) is the midpoint of the first edge of agent 2 considered. T 
the edge given by the vertices with labels, say, (1, 1) and ( - 1, I ), and 

V(4) = (V3)\(P(M3))I)U {m(3)), 

where m(3) is the midpoint of the segment whose vertices are those with 
labels (1, -1) and (-1, -1). 

The process continues by successive rounds of cuts of the edges of 
agents 1 and 2 in turn. 

642156%13 
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The vertices V(t) and the four associated line segments define polygons, 
which we call boxes. These boxes are, however, not necessarily convex. It 
is intuitively evident that eventually these boxes shrink to a point. 
However, that process of shrinking is not monotonic with respect to set 
inclusion; as Figs. 4 and 5 show, the box corresponding to V(t + 1) may 
properly include the box corresponding to V(t). It is also the case that, 
although at each step the length of some edge is cut in half, the distance 
between the vertices that span that edge does not decrease monotonically 
in t. In fact, it is difficult to find any measure of size which decreases 
monotonically step by step in this process. 

Before sketching Algo II, it is interesting to consider the information and 
computational requirements of the class of processes introduced here. 

The process defined by either Algo I or II in Case 1 or Case 2 stabilizes 
the equilibrium in the example under discussion for all environments (O’s) 
for which the system (1) is not degenerate. It does so with messages from 
the coordinator that are points of iR2, while messages from the private 
agents are one binary digit, i.e., “yes” or “no.” Thus, while conclusions 
of the various “impossibility” theorems that deal with informational 
requirements of local stability are not violated in the sense that the message 
space used by the class of processes presented here is larger than R2, it is 
larger by only one binary digit.’ This tells us that the processes presented 
here minimize communication, as measured by the size of the message 
space. 

It may also be of interest that the process presented here stabilizes the 
equilibrium in Scarf’s example of an environment with a unique unstable 
competitive equilibrium. 

The computations.required to carry out the Phase II algorithms are sur- 
prisingly small. The coordinator must record points of R2 and their labels. 
This requires two units of memory. The coordinator must calculate the 
average of two points of the space, which entails summing two pairs of 
numbers and dividing each sum by two. Each private agent must determine 
whether his function is positive or negative at a given point of the space. 
In an economic, rather than a computational setting, this evaluation may 
represent a behavioral rather than a computational act. It is difficult to 
imagine a computational procedure or an adjustment process capable of 
finding equilibrium in this class of problems that involves less computation 
per step than this. 

ALGO II. To anticipate higher dimensions the size of a completely 

‘This is true even in Case 1, where one of the agents acts as coordinator. Although the 
problem was reduced to one dimension, the coordinator must still send points of her line as 
points of R2, since agent 1 must test them as points of ~72’. 
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FIG. 7. Working with Agent l’s edges until they are smaller than E. 

labeled set goes up with the number N of agents as 2N. Therefore, the idea 
of saving dimensions is attractive. In two dimensions this can easily be 
done as follows: 

Choose E >O. Reduce the edges of agent 1 for T, rounds of cuts until 
they are all less than E in length, as in Fig. 7, without working with agent 
2’s edges. Then, the midpoints of the intervals [ol( Tr )I ZJ~( Ti)] an 
[vg( T,), oq( T,)] determine a line segment 

shown as a dotted line in Fig. 7. The dialogue with agent 2 can be confine 
to this line, that is, to one-dimension, because the labels of agent 2 for these 
midpoints constitute a completely labeled set in that one-dimensio line. 
Reducing agent 2’s interval to length less than E and taking the m oant 
of that interval would guarantee that the result is within ~6 of the 
solution. 

However, the same idea for N = 3 would encounter an additional 
liculty. Agent 1 would have four edges, as shown in Fig. 8, after reduction 
to length at most s. 

FIG. 8. Simplex for three agents. 
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If we knew four points, one on each of these edges, that lay in a single 
plane, then in this plane the label of agent 1 could be ignored and the 
remaining N- 1= 2 labels would be such that the four points would 
constitute a completely labeled set of vertices in that plane. In that case the 
remaining problem would be reduced from three to two dimensions. 

But in general, the midpoints of the edges of agent 1 do not lie in a 
plane. In order to carry out this reduction of dimension, one would have 
to use three midpoints to determine a plane, and then solve for the inter- 
section of this plane with the fourth edge. This is a significant increase in 
computation. Alternatively, one could determine a plane using three mid- 
points and then go back to Phase I to determine a completely labeled set 
in an appropriately determined plane segment. But this too would entail 
additional computation. Depending on the particular details, it might or 
might not be worth doing those computations in exchange for the decrease 
in dimension. 

In any case, the procedure of Algo II is the same as Algo I, except that 
several rounds of cuts are carried out for one agent before turning to the 
edges of the next. This may be a more efficient procedure especially when 
the equations are sufficiently close to being orthogonal. One can imagine 
many other ways to “shrink” a completely labeled set of vertices to achieve 
convergence. Each such way would in general involve different computa- 
tional tasks and result in a different rate of convergence. 

3. CONVERGENCE OF PHASE II OF ALGO I AM) ALGO II 

This section contains a formal description of Phase II of Algo I and a 
proof of its convergence. The proof for Algo II is similar. We suppose that 
for the current environment 0 the equilibrium functions 

x I-+ g’(x, @) 

are linear functions of x for each i= 1, . . . . N. We write g’(x, Qi) simply as 
Li(x). We further assume that the linear mapping L = (L,, . . . . L,): RN + 
RN is nonsingular so that it has a unique zero in RN. In N dimensions, the 
labeling function 1= (1,) . . . . II,): RN -+ { - 1, 0, 1 }” is defined by 

i 

-1 if L,(x)<0 
&(x)= 0 if L,(x)=0 

+l if Li (x) > 0. 

for i= 1 , . . . . N. For any subset A of RN, write ,J,, : A -+ { - 1, 0, + 1 }” for L 
restricted to ~A. A subset A of RN is called completely labeled if: 
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(1) A consists of 2N points 

(2) 1, is onto { - 1, l>“, or there exists a function X: A -+ 
( - 1, + 11” that is onto such that A,(x) = ,X,(x) for all x and i such that 
ii(X) # 0. 

In other words, a set of 2N points is completely labeled if either its points 
together take on all possible non-zero labels, or, if some labels are zero, 
they can be replaced by labels 1 or - 1 in such a way that the result is a 
set taking all possible non-zero labels. With this definition, if the algorithm 
happens to hit upon a point that satisfies one of the equations Li(x) = 0, 
and so gets the label 0, the coordinator can interpret that 0 as either I or 
- 1 so as to make the set involved a completely labeled one. To simplify 
exposition, the possibility of hitting upon such (zero labeled) points will be 
ignored from now on. With this understanding, t e function 1 maps any 
completely labeled set of vertices onto ( 1, - 1) N in a one-to-one fashion, 

Let{-1,+1}“‘denotetheproductof(N-l)copiesof{-l,+1)with 
the ith factor replaced by the set (*>, i.e., 

(-1, +1)-i= i-1, l> x . . . .(-1,1).(*).(-1,1)x -~x(-n,l>. 
V 

(i- 1)times (N- i)iimcs 

Let L-, = (&, . . . . Jwi-i, *, A,+l, . . . . AN): RN -+ (-1, l>-’ denote the 
corresponding labeling function which ignores L,. Let E-‘: (- 1: 11” --P 
{ - 1, 1 } -’ be the corresponding projection which replaces the ith coor- 
dinate by a *. 

For any I in (-1, l}“i, there are two points in (~“~))‘(l), one with a 
+ 1 in the ith component, which we call I+, and one with a - I in the ith 
component, which we call I-. Geometrically, we think of the elements of 
( - 1, 11” as the 2N vertices of the hypercube [ - 1, + 11” in RN and the 
elements 1 in ( - 1, 1 } m-i to be edges joining I+ and I- in [ - 1, -t 13 No See 
Fig. 3. 

For any completely labeled set V of vertices in RN, with labeling function 
2,: If-+ (-1, +1y, we say two points a and b in Y determine an edge for 
agent i, or simply an i-edge, if Awi(a)=Ami(b)? i.e., Lj(a) and L,(b) have 
the same sign for all j # i, but L,(a) and Li(b) have different signs. 

Write [a, b] for the line segment joining a and b in RN. The function L, 
changes sign on [a, b] and has a unique zero there. Each of the ot 
(N- 1) Lis has the same (non-zero) sign throughout [a, b]. 

ALGO I. Let V,, be the initial completely labeled set of vertices (perhaps 
given from Phase I) and let A r,O: I’, + ( - 1, + l>” be the labeling function. 
The coordinator chooses a sequence i,, . ..) i, determining the order in 
which the agents (or equations) will be considered. This choice can change 
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as the algorithm proceeds; or to keep Algo I temporally homogeneous, it 
can be lixed for all time. For simplicity of notation, we will assume the 
natural order: 

ii= j, j= 1, 2, . . . . N. 

Agent 1 has 2N-1 edges, one for each label I in { - 1, 1 } -I. For one such 
1, let Z+ and I- be the corresponding points in (rc”‘)-‘(1) in { -1, +ljN. 
Let a+ = n,‘(Z+) and a- = l;O’(Z-) be the corresponding points of V,, so 
that [a+, a-] is an edge for agent 1 in RN. The coordinator calculates in 
the first step, the midpoint of [a+, a-], 

m=$l+ +a-), 

and communicates the point m to agent 1. Agent 1 responds with A,(m). 
Define p(m) by 

if /l,(m)=A,(u+) 

if A,(m) = l,(C). 

The coordinator forms a new completely labeled set V, by replacing 
p(m) by m: 

vl = (Vo\{p(m)l) u {ml. 

This process is called a step in the algorithm. It is completed for each Z in 
{ -1, +1)-l, i.e., for each edge of agent 1. The implementation of these 
2N- ’ steps is called agent l’s round. The coordinator then works with the 
2N-’ edges of agent 2, taking the midpoint of each and then forming a new 
completely labeled set by using the midpoint of each edge to replace the 
vertex of that edge which has exactly the same labels as the midpoint. In 
this way the coordinator carries out a round for each of the N agents, thus 
completing a cycle of Algo 1. To prove that Algo I converges, we would like 
to find a function which decreases at a uniform rate at each step, like a 
Liapunov function for a system of differential equations. It turns out that 
the obvious candidates, e.g., volume of the enclosed polyhedron, sum of the 
lengths of all the edges, or aggregate distance of the vertices from the actual 
zero sets, do not work. 

We will work with the function 

where V, is the set of completely labeled vertices after round t, 
(e,, . . . . e*.+l} are the edges for agent i corresponding to V,, and e,+ and eJ: 
are the vertices of edge ei, so that V, = {e:, e;, . . . . e&, , ez>-, }. Then, 
Ki( V,) is the length (in &-terms) of the largest of the images under L of 
the edges for agent i after round t. It is easy to see that Kj( V,, 1) = iKj( V,) 
if the (t + l)“th round is a round for agent i. However, during agent j’s 
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rounds (for j # i), Ki ( V,) can actually increase. We will see that the halving 
at agent i’s round uniformly dominates the combined increases during the 
other agents’ rounds in any cycle so that there is a uniform decrease in K, 
after each cycle. 

Before presenting the general proof, let us see how the algorithm and 
proof works for an example with two agents. In Fig. 9A, the lines represent 
the zero sets of L, and L2, and the four points (vl, 1;*, M’~, w2 > form the 
initial set V,, of completely labeled vertices. We will work with K,( P’,) and 
focus on L,. Let A&= -L, for vertices (wl, wZ> below the (L2=O> set. 

Let a, =&(zI~), a,=&(~,), b, = M2(w1), b,= M,(tv,), all positive. In 
round 1, the coordinator takes the midpoints 2;3 = (ul f v,)/2 and 
w3 = (IVY + ~iJ2 of agent l’s edges [ZIP, VJ and [IV,, w,], respectivety. 
Then, he forms a new completely labeled set replacing v1 or L’* by v3 and 
u’, or M’? by 1~~. For example, in Fig. 9B, v3 replaces V, and w3 replaces 11’~. 
Suppose that 

sothata,+b,>a,+b,.Then,if V(1)=(uz,v3,w1,w2j asinFig.9 
new edges for agent 2 are [TV,, w3] and [v,, wl]. Since 

lL*(v,)l + IL,(W,)l =L?(U*) + M,($Wi + 4 W,) 

= LAu2) + $f,(w,) + &ww,) 

= a2 + $b, f $b, 

and 

it follows that KZ( V( 1)) < tK,( V(0)). 
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C 

FIG. 9. A. Choosing midpoints of Agent l’s sides. B. Using the new midpoints to build a 
smaller simplex. C. Choosing midpoints for Agent 2 on the new simplex. 
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Now, carry out the round for agent 2. In Fig. 9C, y1 is the midpoint of 
2-edge [u,, wj] and y, is the midpoint of 2-edge [u,, w,]; y1 replaces v2 
and y, replaces wr. The new completely labeled set V(2) = ( yi, u3, w3, JIM). 

lJ%(Yl)l + Mw)l = ~*($b + $4 -&k%) 

= g&2) - &Lz(w3) 

= w2w + l&(%)1). 

Similarly, 

Therefore, 

K,(Y(2))=max(lL,(y,)l+ 

= ;max{ IL,(v,)l -I 

= $K#ql)). 

Since K,( V(2)) = $K,(V(l)) and K2( V(1)) < sK2(V(Q)), K2( V(2)) 9 
Pa WJ)). 

After the first cycle, K, is at most three-fourths its value before the cycle. 
Similarly, K, loses at least 4 of its value during the first cycle. A similar 
reduction occurs during each cycle so that after c cycles, each K, < ($>‘rC, 
which tends to 0 as c --f co. It follows that the lengths of the edges of the 
hypercubes go to zero and that the process converges to a point i at whit 
all the gi( ., (3’)‘s are zero. 

We now proceed to the general proof in RN. Let M z 2N- ‘. Let V(R) 
(4, . . . . VM> wl, . . . . wM} be a completely labeled set in 58” after round 
For any edge ej= [e,?, e,:] for agent k, let jlej\lk= \L,(e,?)/ +Lk(e,:)jt so 
that K~(V(R))=max(/le,I/,/Ie,ll,, . . . . lIeMilk). We assume that we are 
focusing on agent 1, that Lj(vi) > 0 and L,(w,) < 0 for j= 1, . . . . M, and that 
ej= [vi, wj] are the M edges for agent 1. 

Suppose first that the (I? + 1)th round belongs to agent 2, not agent 1. 
Since L, does not change sign on any edge of agent 2, each edge of agent 2 
is a [uj, uk] or a [wj, wk]. So, after the (R + 1)th round, the completely 
labeled set V(R + 1) will be comprised of vertices of the form: 

vh, ...% vi, 
vj+vk 0s + 0, w,+wk w,+wi 

2 ? . . . . -, ‘yj, . ..) w,,, ~ ___ 
2 2 ) 2 . 
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If the (R + 2)th round does not belong to agent 1 either, then V(R + 2) will 
be comprised of points of the form: 

vk + vi v, + ub + 0, -t vd 
oh, . . . . 

2 
> -0.3 

4 
, wi, . . . . etc. 

Similarly, if none of rounds R + 1, R + 2, . . . . R + S belong to agent 1, then 
the completely labeled set V(R i- S) will contain only points of the form 

where 

and 

each non-zero LX: or @ equals k/2’ for some integer k, 1 d k d 2’. 

For each of rounds R + 1, . . . . R + S as above, let 

V(R+j)= {vi, . . . . vd, wi, . . . . w’M>, 

(3) 

(4) 

(5) 

where VP = vi and WY = wi and the points in V(R +j) are ordered so that 

each &(t$) = L&J;) for h = 1, . . . . N,i= 1, . . . . M, 

each &(W{) = Lh(W;) for h= 1, . . . . N, i= 1, . . . . M. 

In particular, L,(v{) > 0 and L,(w{) < 0 for i= 1, . . . . M. 

Claim 1. Each vi = ajlvl + . . . + otiMvM, where ai1 3 (4)” and 
cxj1+ ... + oljM = 1. The second part follows directly from (4). To see that 
CQ is non-zero, follow the course of vf as i progresses. In the formation of 
V(R + l), assume without loss of generality that [vi, VJ is an edge of 
V(R). Then, vi is either v1 or (vr + v,)/2, both of which have a non-zero 
coefficient of zli . In the formation of V(R + 2) from V(R + 1 ), assume that 
[vf, v:] is an edge in V(R + 1). Then, v: equals vi or (0: + vf)/2. Since 
vi = v1 or (vi + u2)/2, we see that the coefficients of vi in v: is either 1, i, 
or i, and so on. 

Claim 2. For rounds V(R + 1 ), . . . . V(R + S) as above, none of which 
belong to agent 1, 

K,(V(R+S))&&K,(V(R)). 
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As in the two-dimensional example above, let ai= LI(ui) and b,= 
-L,(w,) z M,(wi) for i = 1, . . . . M. Suppose without loss of generality that 

a,+b+a,+b, for all j. (6) 

Recall that the completely labeled set for V’(R + S) is 

and that es E [vf, wf] is an edge for agent 1. Therefore, 

IieSIl 1 = /LfvS)/ + IL(wS)I 

=Ll (ZNtvi)-Ll (zOiwi) 

= T  aSiai + C Bfjbi 
i 

d C max(& pS;}(a;+ bi) 

By (5) and Claim 1, 

Therefore, \iefii d K,( V(R)). [2 - (l/2)‘]. It follows that 

K,( V(R + S)) = max IIe~II d 
255+1-l 

2s 

If rounds R + 1, . . . . R + n - 1 do not belong to agent 1, 
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On the other hand, if V(R + S) is as in (7) and round R + S+ 1 belongs 
to agent 1, then for each edge es= [v,“, w:] of agent 1, the new 
p= [us = [us, (us + w3/2] or [(u: + wf)/2, w:]. In the former case, 

In the latter case, 

It follows that 

Conclusion. Consider a cycle whose last round (and no other round 
in the cycle) belongs to agent 1. Then, K,(V) increases by a factor 
,(2N+1- 1)/2N during the first N- 1 rounds and decreases by $ during 
the last round. Throughout the cycle, K, changes by a factor 
< (2N+’ - 1)/2 PJ+~ Let V(c) be the completely labeled set after c rounds. . 
We have shown that L( V(c)) lies in a hypercube whose edges have length 

mce L is a diffeomorphism (one-to-one, onto, 
cZr(tEuZu~m~~Zi?siZe ((2 N+1-1)/2N+i)c+Oas thenumberofcycles 
c goes to infinity, V(c) tends to a unique point f. Since each Li takes on 
both signs on every V(c), L(f) = 0, that is, V(c) tends to the equilibrium. 

Remark. The convergence of ((2N - 1)/2”‘)’ as c -+ co is, of course, very 
slow. This rate is the “worst case” rate for the sake of the above proof. On 
the one hand, one can describe completely labeled sets V(0) so that 
K,(l) = (2N- 1)/2NKi(0), after one cycle; so our estimate Kj remains 
constant during the rounds of agents other than agent i. So, mean 
convergence is ($-)c as c -+ co, a rather fast rate especially if the algorithm 
is performed on parallel processor. 
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