
InI. J. Hear Muss Trans/w. Vol. 35. No. 4, pp. 927-943. 1992 0017-9310/92$5.00+0.00 
Printed in Great Britam 8 1992 Pergamon Press plc 

Slip and no-slip velocity boundary conditions at 
interface of porbus, plain -media 

M. SAHRAOUI and M. KAVIANY 

Department of Mechanical Engineering and Applied Mechanics, 
The University of Michigan, Ann Arbor, MI 48109, U.S.A. 

(Received 12 December 1990 and injnalform 19 March 1991) 

AbstracG-The hydrodynamic boundary condition at the interface between a porous and a plain medium 
is examined by direct simulation of the two-dimensional flow field near the interface of a porous medium 
made of cylinders. The existing slip boundary condition, which contains a slip coefficient a, and the no- 
slip boundary condition, which contains an effective viscosity p’, are examined. The dependence of a on 
the direction of the flow (with respect to the interfacial plane), the porosity, the Reynolds number (based 
on the unit cell length and the Darcean velocity), the selection of the interfacial location, and the 
arrangement of the cylinders (structure) is examined in detail. The numerical results show that a is not 
only a function of the structure but also depends on the flow direction, the Reynolds number, the extent 
of the plain medium, and the nonuniformities in the arrangement of the surface particles. It is also shown 
that for an accurate prediction of the local velocity near the interface (inside the porous medium), p’ must 
vary within the porous medium. This shows that the Brinkman extension based on a uniform $, and the 

associated screening distance, do not satisfactorily model the flow field in the porous medium. 

1. INTRODUCTION is related to the slip velocity at the interface through 

FOR FLOW through a porous medium bounded on one 
of its boundaries by a plain medium, special attention 
must be given to the hydrodynamic boundary con- 
dition at this porous, plain medium interface. The 
flow in the porous medium is governed by the empiri- 

cal Darcy law (for creeping flows), i.e. 

d(u>A 
d_v = +i (C”>,4,i -“D) (3) 

_“= o+ 

- $ = v(p): (1) 

where p is the local fluid viscosity, K the local isotropic 
permeability of the porous medium, uD the Darcean 

velocity vector, and <p): the fluid phase (or pore) 
averaged pressure. The Darcean velocity is a volume 
(fluid and solid phases) averaged velocity for a local 
representative elementary volume located away from 
the interface, i.e. 

where tl is the slip coefficient, y = O+ indicates that 
the velocity gradient is evaluated at the interface and 

towards the plain medium, (u), denotes the area 
averaged velocity component along X, (u),., is the 
area averaged slip (interface) velocity evaluated at 
y = 0, uD is the component along x of uD defined by 

equation (1) and K is the permeability. In the Beavers 
and Joseph experiments, a one-dimensional Poiseuille 
flow is realized through a channel of width h bounded 
by a porous medium at y = 0 on the one side, and an 
impermeable surface at y = h on the other side. The 

flow in the channel is governed by 

UD = <u>Y(y + -a) (2) 

where the origin of y is taken at the porous, plain 
medium interface. The averages used in equations (1) 
and (2) will be defined in Section 4. When the per- 
meability of the porous medium is very small, i.e. the 
velocity in the stationary porous medium is much 
smaller than the average velocity in the plain medium, 
a zero velocity at this interface is assumed. As the flow 

within the porous medium becomes significant, the 
non-zero interfacial velocity is generally estimated 
using the empirical boundary condition of Beavers 
and Joseph [l], which introduces a slip coefficient CC 
Another approach is the application of the no-slip 
condition formulated by Brinkman [2], which intro- 
duces an ‘effective’ viscosity p’. 

d*u 
_$_=O 

dv* 

and for the porous medium, they assumed a uniform 
Darcean velocity u,,. For this one-dimensional 
problem, we require at the interface that 

dti): dp 
(p)‘y=p and dx=dx. (5) 

Using the slip boundary condition at the interface 
(y = 0), and the no-slip boundary condition at the 
impermeable surface of the channel (y = h), the vel- 
ocity distribution is 

U(Y) = <u),4., (1+~y)+~(y2+2ayK’I’)~ 
In the slip boundary condition, the interfacial shear (6) 
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NOMENCLATURE 1 
c 

d 
h 
K 

K(Y) 
I 

kc 

proportionality constant for the suction 
velocity 
cylinder diameter [m] 

channel size [m] 
bulk permeability [m’] 
local permeability [m’] 
cell dimension [m] 
mass flow rate per unit depth through the 

channel [kgm-’ SK’] 
(ti,/p)(x = 0) volumetric flow rate per unit 

depth at x = 0, 

(~P)(x = 0) = j$, u(O,y) dy [m’ s- ‘I 
(ti,/p)(x = I) volumetric flow rate per unit 

P 
P* 

PP 

(P>’ 

AP 

r 

& 

sr 

&I 

t 
t* 
u 

u* 

% 
(U>A 

ilri;, 
V 
V* 

V” 
X 

x, Y 
x07 Yo 

x*, y’ 

depth at x = /, 

(Wp)(x = 0 = jut, u(L.14 dy [m’ s- ‘I 
volumetric flow rate per unit depth from 
upper and lower boundaries, 
ti,/p = r0 (v(x,y,)-v(x,lz))dx [m’ SK’] 
pressure [N mm ‘1 

dimensionless pressure, p/(puh) 
average pressure for plain medium 

[N m-‘1 
cell averaged pressure taken over fluid 

volume [N m- ‘1 
pressure difference applied across the cell 
[N m- ‘1 
radial coordinate [m] 
Reynolds number based on the Darcy 
velocity, unljv 
source term in the radial component of 
the momentum equation 
source term in the tangential component 
of the momentum equation 
time [s] 
dimensionless time, tu,/l 
velocity in the x-direction [m s- ‘1 
dimensionless velocity in the x-direction, 

4% 
Darcy velocity [m s- ‘1 
area averaged velocity [m s ‘1 
volume averaged velocity [m s- ‘1 
area averaged interface velocity [m s- ‘1 
velocity in the y-direction [m se ‘1 

dimensionless velocity in the y-direction 
blowing velocity [m se- ‘1 
position vector [m] 
Cartesian coordinates [m] 

reference point for stream function 

[ml 
dimensionless Cartesian coordinates, 

x/l and y/l 

distance from the nominal interface 
where the boundary condition is 

applied 
lower boundary of the computational 

domain. 

Greek symbols 
a slip coefficient 

6,, 6,, 6, arrangement parameters for the 

E 

0 
I. 

P 

P’ 

P'(Y) 

; 
P 
G- 

bed of cylinders [m] 

porosity 
tangential coordinate 

offset in the y-direction between two 
adjacent interfacial cylinders, for in- 

line arrangement [m] 
dynamic viscosity [kg m- ’ sm ‘1 
Brinkman effective viscosity 

[kgm 1 -I s.- I 

variable effective viscosity [kg m ’ sm ‘1 
kinematic viscosity [m’ s- ‘1 
position vector [m] 
density [kg m ‘1 
k/K ‘I* 

$(x, y) stream function [m’ s- ‘1 

A* stream function increment [m2 s- ‘I. 

Subscripts 
A area 
D Darcy 
i interfacial 
1 at .Y = I 

P plain medium 

; 
radial direction 

total 
V volume 
.x x-direction 

J’ y-direction 
0 tangential direction 

+ plain medium side 
_ porous medium side. 

Superscripts 
* dimensionless 
f fluid. 

Other symbols 

< )A area averaged 

< >Y volume averaged 
0( ) order of magnitude. 
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where the slip velocity (u)~,, is given by 

(U)& = - $(C)$ (7) 

by using d = h]K I”. The mass flow rate through the 
channel per unit depth becomes 

where p is the liuid density. Experimental evidence of 
the validity of the proposed boundary condition was 
presentedin refs. [I, 3,4], by varying the channel size 
while keeping the pressure gradient constant. It was 
shown that for a given porous medium, a constant c( 
is needed to correlate the mass flow rate ri?, for all 
the gap sizes considered. In the experiments, various 
porous media (different permeabiiities and structures) 
were used and z ranged from 0.1 to 4.0. 

The slip boundary condition has been theoretically 
examined by Saffman [S], where he used a statistical 
approach to postulate a generalized Darcy iaw for 
flow in non-homogeneous porous media. According 
to his formulation, the flow through the porous 
medium is given by 

where (v,)~ denotes the volume averaged component 
of the velocity vector, k&x, <) the flow resistance 
kernel, and x and { are position vectors. The vector x 
indicates the position where the resistance is being 
evaluated and 4 indicates the points contributing to 
this resistance. The Darcy Iaw, given by equation (1), 
is a first-order approximation of this generalized equa- 
tion (9), i.e. 

k&&5) -$x-e, 
where 6 is the Dirac delta and 6,, is the Kronecker 
delta. At the interface, this first-order approximation 
of the kernel is not valid, and other terms of the 
expansion (with higher derivatives of the delta func- 
tion) have to be included. Saffman considered a one- 
djmensional model, governed by equation (4) in the 
plain medium. He used equation (9) for the porous 
medium and normalized this equation with Kif2 and 
(p/K) dQ)C/dx, as the length and the velocity scales. 
He obtained a general, asymptotic solution for flow 
near the interface, and with an order of magnitude 
analysis, based on the screening distance K ‘12, he 
arrived at the boundary condition 

where n denotes the normal to the interface. We also 
found that IL depends strongly on the position and 

decreases noticeably over a distance of the order of 
K’12, a result confirmed by the present investigation. 

An experimental and an analytical investigation of 
this interfacial hydrodynamic boundary condition 
were conducted [6, 71. The model used in this inves- 
tigation consisted of a grooved plate, separated by a 
gap from a moving parallel plate (resulting in a 
Couette flow through the gap and in the grooves). 
The experimental results [6] showed that for gap sizes 
Larger than half of the spacing between two adjacent 
grooves, 01 reaches an asymptote (becoming inde- 
pendent of the gap size). The analytical study [7] 
showed that CI increases as the permeability decreases. 
This result contradicts the experimental results [l] for 
real porous media, where it has been shown that c( 
increases with an increase in the permeability. The 
discrepancy is due to the idealization of the actual 
inter-connected pores by a grooved plate. 

Larson and Higdon [8, 91 considered a more 
realistic model, i.e. the Stokes flow through a semi- 
infinite, periodic structure (two-dimensional) made of 
cylinders, with flow either parallel or perpendicular to 
the cylinder axes. The boundary integral method was 
used to solve the Stokes equation for flow around 
different arrangements of cylinders (square and hex- 
agonal arrangements). When the flow was per- 
pendicular to the cylinder axes and parallel to the 
interfacial plane, they obtained slip velocities which 
were in the direction opposite to the velocity in the 
plain and the porous medium for E < 0.9. This non- 
physical result is due to their choice of the interfacial 
location. Their slip velocity was calculated using the 
volumetric flow rate above the interface (for shear 
flows), i.e. 

!$ = {u)“.,h+ :yh’ (11) 

where y is the applied veIocity gradient at the imper- 
meable boundary of the channel (y = h). In their cal- 
culation of the slip velocity, the interfacial location 
was chosen to be the plane passing through the axes 
of the interfacial row of cylinders. However, the plain 
medium flow occurs above the surface tangent to the 
top of the interfacial cylinders. The contribution to 
Gz2,, of the how between this surface and their defined 
interface, is small for t: < 0.9. This is due to the vor- 
tices present between adjacent cylinders. Due to this 
over-estimation of& a slip velocity opposing the direc- 
tion of the plain medium flow, is obtained using equa- 
tion (11). They state that due to the ambiguity in the 
definition of the interfacial location, any reasonable 
value for 51 can be correct. 

In the no-slip boundary condition, the interface is 
treated as a part of a continuum. In this approach, as 
formulated by Brinkman, a macroscopic shear term 
is added to the Darcy law, to account for the velocity 
gradient present at the interface. With the addition of 
this shear term, equation (I) becomes 
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where $ is the effective viscosity and is presumed 
constant in the original Brinkman model. This will 
guarantee the continuity of the velocity and the shear, 
at the interface. The one-dimensional solution (for a 
Poiseuille flow) of the Brinkman equation was com- 

pared in ref. [lo] to that based on the Beavers and 

Joseph slip boundary condition, given by equation 
(6), and it was found that for this flow $/p = a2. This 
model has been used in ref. [l l] to treat a jump in the 

permeability across the interface with the addition of 
a velocity-squared term (bulk inertia effect) to the 
Darcy equation. This bulk inertia term does not unveil 
the effect of the flow inertia on the pore level hydro- 

dynamics especially at the interface where it is more 
important than away from the interface. 

As will be shown, the effective viscosity $, when 

treated as being uniform throughout the porous 
medium (including the interface), does not lead to an 
accurate prediction of the velocity distribution near 

the interface. When allowance is made for the vari- 
ation of p’ with y, we have for one-dimensional flow 

_ !++ $ ,r’(y)5d_$ = ---;- (13) _ [I u ‘I d(p)fL 
where p’(y) is the variable effective viscosity which 

accounts for the presence of the interface. The pres- 
ence of the interface could also be modeled through 
the permeability variation, i.e. 

(14) 

This model has been used in refs. [ 12, 131 to predict the 
momentum and heat transfer at impermeable surfaces 
bounding packed beds. Sangani and Behl [14] used a 

combination of the variable permeability and viscosity 
models (i.e. a combination of equations (13) and (14)) 
to solve for a shear flow over a porous medium made 
of spheres. They used the void distribution of their 
bed of spheres to model the variations in the local 
permeability and viscosity. They assumed inverse and 

direct proportionality between the local K and $ 
and the local planar void fraction, respectively. Their 
predicted interfacial velocity was in good agreement 
with the results from their local simulation. It should 
be mentioned that if such arbitrary relationships for 
the local K and p’ are not assumed, then the sim- 

ultaneous determination of these relations, using the 
results from local simulation, is not possible. A more 
detailed review of the slip and no-slip boundary con- 
ditions can be found in ref. [ 151. 

In this study, the flow at the interface between 
porous and plain media is investigated by the direct 
simulation of the flow in a porous medium made of 
cylinders. Unlike the previous studies, the full Navier- 
Stokes equation is solved, enabling us to study the 
inertial effect which exits at the interface (even for 
cases where the flow in the porous medium, away 
from the interface, is Darcean). Also, previous studies 
of the interface have been on parallel flows (Poiseuille, 

or Couette) and flows oblique to the interface have 
not been studied. This has resulted in an ambiguity in 
the role and the significance of a second shear stress 
term arising from the normal velocity. In this study, 
parallel and oblique flows are studied in order to 
examine the effect of the two-dimensionality of the 

flow on a. Also, in contrast to the previous studies, CI 
is computed using the local velocity and the local 
velocity gradient (instead of ti,). In the experimental 

investigation [4], it was established that the surface 
structure (in contrast to the bulk structure), also 
influences a significantly. In this study, structural non- 
uniformities (at the surface) are considered, and it is 

shown that tl changes appreciably with these non- 
uniformities. Thus, establishing the dominance of the 

surface hydrodynamics over the bulk. 

The no-slip condition and the associated variable 
K and p’. are also examined in order to determine 
their variations near the interface. 

2. ANALYSIS 

For a better understanding of the slip and no-slip 
boundary conditions, a direct (point-wise) simulation 
of the flow around the interface is performed. The 
Navier-Stokes equation is solved for a porous 
medium made of cyhnders, as shown in Fig. 1 (a). The 
arrangement shown is a general one for mono-sized 

cylinders. Figure l(b) shows the arrangement at the 
interface, and shows the nominal location of the inter- 
face (y = 0), which is taken to be at the top of the 
interfacial cylinders. Different arrangements of cyl- 

inders are obtained by selection of the distances 6,, 
6,, and 6, shown in Fig. l(a). In this study, both 
in-line and staggered arrangements of cylinders are 

studied. In these simple periodic structures, the flow 
field far away from the interface (i.e. bulk behavior) 
is determined by obtaining the point solution for a 
unit cell which generally contains only one particle 
(cylinder). This is shown in Figs. l(c) and (d). When 
the flow near the interface is simulated, the domain 

under study includes the plain medium as well as 
several cylinders, as shown in Fig. 1 (b), depending on 
the particular arrangement considered. 

The two-dimensional momentum and continuity 
equations are solved by discretization using the finite- 
difference approximations. Since the boundary of the 

unit cell and the computation domain are planar, a 
cylindrical-Cartesian grid over-laying scheme is used. 
A bilinear interpolation is used to communicate 
between the two coordinates. This method has been 
successfully used in ref. [ 161 to predict the flow and 
heat transfer in tube banks and in ref. [17] to predict 
forced convection evaporation from a curved cavity. 

The momentum and continuity equations are 
solved for the dimensionless, primitive variables, u*, 
9, and p*, in each of the coordinate systems. In the 
Cartesian coordinates, the dimensionless continuity 
and momentum equations, for laminar, incom- 
pressible flows are 
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(15) 

!?+&*!q _!!!T 

" +i[g+$,, (16) 

g+u*g+l.*!q=_!f 

+ +;[g+gJ (17) 

where the scaling is done using u,, for the velocity 
scale, I (unit cell length) for the length, and l/u, for 

(4 

the time. The particle Reynolds number Re, is u,l/v. 
In the porous medium and far from the interface, the 
bulk (i.e. not affected by the interface) flow behavior 
is observed, and the periodic boundary conditions can 
be applied to the unit cell. These periodic boundary 
conditions are given in Figs. I(c) and (d) for in-line 
and staggered arrangements. The flow is driven by 
the prescribed pressure gradient Ap*. The pressure 
gradient and the particle Reynolds number are not 
known a priori, because the volume averaged velocity 
un is not known. Thus, an arbitrary pressure gradient 
and Reynolds number are assigned. Then, the actual 
pressure gradient and Reynolds number are obtained 
by re-scaling, using the computed volume averaged 
velocity. For Couette flows, the flow is driven by the 
impermeable boundary of the channel (y = h). Since 

Pfmaibed Normal velfeity v, 

‘F$m$yl, Normal Veloaty 
0’ 

FIG. 1. (a) Generalized arrangement of mono-sized cylinders used to model the interface between plain 
and porous media, (b) location of y = 0 (nominal interface), (c) and (d) periodic boundary conditions for 

a unit cell in the porous medium, for in-line and staggered arrangements, respectively. 
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0 C 

I v - 0, u (x,4,) = u (x. -4*) I 
lJ (0, Y) - u (4 Y) 
v (0, Y) - v MY) 

u (C Y) = u (0, Y) 

P (0. Y) - P (4 Y) +ap 
Y (4 Y) - Y (RY) 

Y, v 1 
P (4 Y) = P (0, Y) -ap 

- 
0 x,u L 

1 

v = 0, u (x, -42) = u (x, 42) 

In-line 

YB v L 
0 x,u 

u (0, Y) - u (LY’) 
v (0, Y) - v (CY’) 

P (0, Y) - P (LY’) +AP 

u (1. Y) = u (0.Y’) 

v (L Y) = v (0.Y’) 

P (4 Y) = P (Oh”) -AP 

FIG. 1 .-continued. 

no pressure gradient is applied, the volume averaged 
velocity u,, is zero. Thus for this case, the velocity at 
the impermeable boundary is used for the scaling. 

Whenever the plain medium is included in the com- 
putational domain, the no-slip boundary condition is 

applied at the impermeable channel wall. For oblique 
flows (Fig. 1 (a)), the left- and right-hand side bound- 
aries are treated differently to account for the lateral 
volumetric flow into the control volume (from the 
upper and lower boundaries), i.e. 

3 s P 
= : [u(x,y,)-~(~,~)l dx 

where y, is the lower boundary and where u(x, y ,) 
and u(x, h) are the prescribed velocities at the lower 
and upper boundaries of the computational domain. 
For the right boundary (x = I) and for a given y, the 

velocity u(l, y) is equal to the inlet velocity ~(0, y) plus 
a fraction of the lateral volumetric flow. This fraction 
is determined by the ratio of ~(0, y) to the total inlet 
volumetric flow, i.e. 

T (x = 0) = 
s 

‘* ~(0, y) dy. 
?’ / 

Then, the boundary condition becomes 

similarly, at x = 1 

!$ (x = 1) = 
s 
/a ~(1, y) dy 

J’I 

and 



Slip and no-slip velocity boundary conditions at interface of porous, plain media 933 

@,Y) = @,A - . 
UKY) 3 0 !+=I) p . 

The boundary condition for the v component for 
oblique flows is periodic (similar to the parallel flows) 
atx=Oandl. 

For the cylindrical coordinates, the dimensionless 
continuity and momentum equations are 

where the source terms S, and S, are 

and the boundary conditions are v,* = v$ = 0 at 
r* = d/21. 

3. SOLUTION METHOD 

The equations are discretized by integrating the 
above equations over a finite control volume. The 
discretized equations are solved using the pressure 
correction method as described by Patankar [ 181. The 
power-law scheme is used to evaluate the fluxes at the 
control volume faces. 

As mentioned previously, iterations are performed 
alternatively in the two grid nets, and the values of 
the unknown at the boundaries of these grid nets are 
obtained using the bilinear interpolation. This bilinear 
interpolation is performed in the overlaying region, 
which extends 34 grid nodes. An unknown variable 
on the boundary of the cylindrical grid net is obtained 

by the bilinear interpolation, using the four sur- 
rounding nodes in the Cartesian grid. The same pro- 
cedure is used for a variable on the boundary of the 
Cartesian grid net. In order to solve for u*, u*, and p* 
fields, five iterations are done in the Cartesian domain. 
The bilinear interpolation is then used to find the 
boundary conditions for the cylindrical domain, 
where the next five iterations are performed. After 

these iterations, interpolations are made back to the 
Cartesian grid (for every cylinder in the domain). 
More detail about the numerical technique is available 

in ref. [17]. 
For most of the simulations, only one cylinder is 

needed, since the numerical experiments show that the 
bulk flow behavior is approached at the lower half of 
the first row of cylinders (i.e. the interfacial cylinders). 
More cylinders are needed for the staggered arrange- 
ments, since the interfacial effect penetrates much fur- 
ther into the porous medium. Also for the staggered 
arrangements, two columns of cylinders are used 

because the boundary conditions shown in Fig. 1 (d) 
cannot be used. Figures 2(a)-(c) show some examples 
of the constant stream function contours for different 

flow types and arrangements. They also show the 
typical domains used in the computations. The stream 
function is obtained by integrating the velocity field, 
i.e. 

bm7Y) = - 
s 

’ GYO) di+ 
J 

s 
4x,0 di (23) 

50 Y” 

where (x,, y,,) is a reference point with a prescribed 
value of zero for the stream function. In Fig. 2(a), this 
point is taken at the center of the cylinder at the lower 

boundary of the domain. For Figs. 2(b) and (c), it is 
taken at the center of the only cylinder used. Note that 

near the interface unequal increments of the stream 
function are used due to the higher velocities. Both 
Figs. 2(a) and (b) are for Poiseuille flows and Fig. 
2(c) is for an oblique flow. The penetration of the 
interfacial effect for the staggered arrangement is 
clearly shown in Fig. 2(a), where flow becomes sym- 
metric after the third row of cylinders. Note that for 
the staggered arrangement shown in Fig. 2(a), the 
cylinders are in-line in the y-direction which results in 
an anisotropic packed bed. 

In order to test the accuracy of the finite-difference 

scheme and the bilinear interpolation, grid accuracy 
tests were performed. In this test, the grid size depen- 
dence was tested. For example, by doubling the num- 
ber of grid points (in each direction) from 100 x 100 to 
200 x 200, a 0.01% difference in the volume averaged 
velocity un is obtained for Re, = 1 and Ap* = 660 for 
the in-line arrangement. The same test was performed 
for Re, = 150 and Ap* = 5.3, and a 1% difference in 
un was found. This convergence test establishes the 
accuracy of the numerical scheme, particularly the 
bilinear interpolation. 

The computed results are also compared to the 
available experimental results. Figure 2(d) shows the 

dimensionless pressure drop as a function of the Reyn- 
olds number for flow over in-line cylinders from 
experiments for isothermal flows of oil over a bank of 
in-line tubes [19]. The difference between the numeri- 
cal and experimental results is within 10 and 20%, for 
low and high Reynolds numbers, respectively. This 
discrepancy can be due to some experimental limi- 
tations such as the finiteness of the bed, where the end 
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(0) 

(4 

300 

100 

10 

3 

(b) 

400 

. Experiment 
(from Bwgelh et al.) 

- Numerical 

:,\ 

0 
0 

3 10 100 300 

Rer 
FIG. 2. Stream function contours for different interfacial 
flows. (a) Poiseuille flow for staggered arrangement $ = 0.2- 
3.4 (A$ = 0.2) ; 4.25 ; l&50 (A$ = 20) ; 50-550 (A$ = 50), 
(b) Poiseuille flow for in-line arrangement (I/ = -0.4-0.2 
(A$ = 0.2): IO-50 (A$ = 20); X&400 (A$ = 50), and (c) 
oblique flow for in-line arrangement I/I = -0.6-o 
(Ad, = 0.2); o-O.8 (AI/ = 0.4); 10-40 (A$ = 10). (d) Com- 
parison of the numerical and e~perjrnen~~l pressure drop 
across in-line packed bed of cylinders, as a function of the 

Reynolds number (for I: = 0.497). 

effects may influence Ap. The numerical results were 
also compared with the finite-element results on com- 
puted permeability for various arrangements (avail- 
able in ref. [20]) and a 2% agreement is obtained. 

4. RESULTS FOR SLIP CONDITION 

The point variation of the velocity and pressure are 
obtained by solving the point conservation equations 

(15))(20) along with the prescribed boundary con- 
ditions. In order to relate these point (pore-level or 
micro) variations to the macro or the Darcean 
behavior, area and volume averages must be taken. 
The area average is defined as (for example for u) 

(24) 

The interfacial, tangential velocity (u),,,., is defined as 

(ZI),&, = (U)“(?:,) (25) 

where _r, is the selected interfacial location. The vol- 
ume average for a cell, as shown in Figs. 1 (c) and (d), 
is defined as 

The pressure is averaged on the fluid phase only, i.e. 

Later in the discussion of the no-slip condition, we 
will introduce a volume averaging that uses a variable 
volume size. 

4.1. Inter&e position 
A major difficulty associated with the Beavers and 

Joseph boundary condition is the choice of the inter- 
facial location, where the boundary condition is 
applied. Beavers and Joseph suggested the tangent to 
the surface of the outermost pore as the interface. For 
the a~angement of cylinders considered here, this 
would be the tangent to the top of the interfacial layer 
of cylinders, which we have defined as the nominal 
interface and assigned as the origin of the y-axis as 
shown in Fig. 1 (b). 

Because the interfacial effects generally penetrate in 
the porous medium over distances of the order of the 
Brinkman screening distance K ‘I’, we need to examine 
the magnitude of this distance for a bed of cylinders. 
Our numerical results show that the permeability for 
the in-line arrangement of cylinders is given by 

K = 0.0602&*.‘1~ 

= 0,0602& ;C? 0.40 d E d 0.8 (28) 

e.g. for e = 0.5, we have K’!’ = 0.0525d. Note that in 
practice, for small d, the accurate (to within K”‘) 
determination of the interfacial position is difficult. 
We now use the numerical simulation to examine the 
dependence of CI on the uncertainty in the assignment 
of the interfacial location. 

Using the numerical results for the area averaged 
velocity (u},, the siip coefficient evaluated at an inter- 
facial position ~1, (measured from the nominal inter- 
face) is determined from equation (3), i.e. 
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d(u), K1’2 

c( = dy (u)A,i-uD’ (29) 

Figure 3(a) shows the variation of c( with respect to 

yi. The results show that for a change in the selected 
interfacial location from y,/Z = 0 to 0.04 (y,/d = O.OS), 
the distance corresponding to K”*, the slip coefficient 
drops more than 50%. Saffman predicted that the 
inverse of CI is linear with respect to y,, i.e. 

This is also plotted in Fig. 3(a), where C is the inverse 
of the slip coefficient determined from the numerical 
results at the nominal interface. The prediction of 
Saffman is in excellent agreement with the present 
numerical results. The variation of the slip coefficient 
with respect to yi is not well behaved for y,/l < 0. This 
is because just below the nominal interface, separation 
of the flow occurs and wakes are formed. This is 
shown in Figs. 2(a) and (b), where the recircula- 
tion region is especially evident for the staggered 
arrangement. 

The slip coefficient computed from the point solu- 
tion is used in the one-dimensional solution of velocity 
given by equation (6). This velocity distribution is 
compared with the area averaged solution (obtained 
from the point solution) in order to examine the accu- 
racy of the slip boundary condition and the effect of 
the interfacial location. As shown in Fig. 3(b), the 
one-dimensional solution using the slip coefficient cor- 
responding to yi = -0.11 predicts higher mass flow 
rates in the channel than the area averaged solution. 
However, the one-dimensional solution with c[ evalu- 
ated at the nominal interface shows excellent agree- 
ment with the area averaged solution. This agreement 
is good even near the interface, where the boundary 
layer effects are expected to be important. As an ex- 
ample, the slip velocity evaluated using equation (7) is 
within 7% of the one from the area averaged solution. 
This error in velocity is much smaller for points away 
from the boundary. The error in the mass flow rate 
through the channel computed using equation (8) is 
less than 1% when compared to the area averaged 
solution. 

The assumption of one-dimensional flow (Poiseuille 
flow) given by equation (4) does not hold at the inter- 
face because of the presence of the inertial and two- 
dimensional effects. These effects are easily detected 
from the behavior of the velocity gradient adjacent to 
the interface, as shown in Fig. 3(c). In this figure, the 
velocity gradient near the interface, normalized with 
respect to its values at the nominal interface, is pre- 
sented for two different Reynolds numbers (Re, = 
0.01 and 30). For the Poiseuille flow, the velocity 
gradient in the channel is linear, whereas near the 
interface, this linearity ceases to exist due to the iner- 
tial effects as shown for Rel = 30. 

In order to obtain a better agreement with the Poise- 
uille flow in the channel, the slip coefficient can be 
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FIG. 3. (a) Variation of the slip coefficient with respect to 
interfacial location from the present numerical solution and 
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velocity in the plain medium, obtained numerically (point 
solution), and by the one-dimensional analysis using differ- 
ent interfacial locations, and (c) distribution of the shear 
stress normalized with respect to its value at the nominal 
interface, for two Reynolds numbers, showing the inertial 

and the two-dimensionality effects. 



936 M. SAHKAOUI and M. KAVIANY 

determined by imposing a linear variation of the vel- 
ocity gradient at the interface. As shown in Fig. 3(c), 
this is achieved by extrapolation from a point in the 
channel. In the numerical experiments, this extra- 
polation point is generally found to be located around 

a distance of 0.11, where the boundary layer effects do 

not penetrate further. In order to be consistent with 
this velocity gradient, the slip velocity is also extra- 

polated from the same point. For the Poiseuille flows, 
the equation for the velocity is a second degree poly- 
nomial with three coefficients that could be found 

using the velocity gradient and the velocity at the same 
point in the channel, and the extrapolated gradient at 
the interface. Then, the interfacial velocity is evaluated 

with this second-order polynomial. Using r calculated 
with this approach, the slip velocity predicted using 
equation (7) is within 3% of the extrapolated one. 

It is generally believed that the slip coefficient 
depends only on the surface and bulk structural prop- 

erties of the porous medium. However. we expect LX 
to change as different flow regimes are encountered. 
Here, we only consider steady-state, laminar flows. 
The flow at the interface changes due to the inertial 
effects as the Reynolds number (based on flow in the 
porous medium) increases. These inertial effects on 
the velocity gradient at the interface are clearly shown 
in Fig. 3(c) for Re, = 30. Figure 4(a) shows the vari- 
ation of c( with respect to the Reynolds number. For 
small Reynolds numbers, the viscous forces dominate 
and SI remains constant (the flow field at the interface 
is invariant). For Reynolds numbers larger than 0.1. 
the inertial forces at the interface become significant, 
and the slip coefficient increases. Our numerical exper- 
iments show that for a unit cell located away from the 
interface (bulk behavior), the inertial effects begin to 
be important at a Reynolds number of about 3. The 
slip coefficient begins to decrease for Reynolds num- 
bers larger than 10 because of the extrapolated shear 
at the interface. As shown in Fig. 3(c). for high Reyn- 
olds numbers the extrapolated velocity gradient 
underestimates the actual gradient, which results in a 
decrease in the slip coefficient. The slip coefficient 
without extrapolation increases monotonically for the 
range of Reynolds numbers shown in Fig. 4(a). 

The inertial effects causing flow separations at the 

interface are clearly shown in Figs. 4(b) and (c), where 
the constant stream function contours are presented 
for Re, = 0.01 and 30. For high Reynolds numbers, 
separation of the flow from the cylinder occurs closer 
to the top of the cylinder making the recirculation 
region larger, as shown in Figs. 4(b) and (c). For the 
low Reynolds numbers, the separation of the flow 
from the cylinder occurs further down on the cylinder 
surface. Because of these larger recirculation regions 
for high Reynolds numbers, the flow below the nomi- 
nal interface and the slip velocity are both smaller. 
The difference in the interfacial velocity (normalized 
with the Darcean velocity) is about 20% between the 
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FIG. 4. (a) Variation of the slip coefficient with respect to 
the particle Reynolds number, (b) and (c) inertial effects at 
the interface are demonstrated by stream function contours 
for Re, = 0.01 ($I = 0-I .6 (A$ = 0.2) ; 5- 85 (A# = 10)) and 
30 (r/j = 0 1.6 (A$ = 0.2) : 595 (A$ = 100)). respectively. 

Reynolds number of 0.01 and 30. In addition to this 
decrease in the velocity, there is also an increase in the 
shear stress due to the inertial forces. All these effects 
combine to give a significant difference in IX as the flow 
changes from viscous to inertial. These inertial effects 
have also been reported in the numerical study [21] 
where gradient destruction in flow through a periodic 
structure was considered. 

4.3. Paralleljiow~.~ 

The interfacial flow also changes for the different 
flow types (Poiseuille, Couette, or oblique) that can 
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(b) variation of the slip coefficient with respect to the blowing velocity at the impermeable boundary of 
the channel, (c) porosity dependence of the slip coefficient for the in-line arrangement, and (d) interfacial 

velocity for bed of cylinders, and for real porous media, for the Poiseuille flow in a channel (h = 3.0). 

be present in the plain layer. In this section, we study 
the effect of the two parallel flow types, without intro- 

ducing the two-dimensional effects (i.e. oblique flows). 
The Couette flow condition is similar to the exper- 
iment and analysis in refs. [6, 71 and to the shear flow 
over a bed of cylinders [8, 91. 

The numerical results show that GI depends on the 
type of fow considered, as shown in Fig. 5(a). This is 
due to the inertial effects present at the interface for 
the Poiseuille flow. The effect of increasing the gap 
size, for the Poiseuille flow, is very similar to that of 
increasing the particle Reynolds number. As the gap 
size is increased, the velocity at the interface increases, 

and the inertial effects become important, as observed 
with an increase in the Reynolds number (Figs. 4(b) 
and (c)). This is shown in Fig. 5(a), where a increases 
as the gap size increases. For the Couette flow, the 
slip coefficient is independent of the gap size due to 
the absence of these inertial effects. This agrees with 
the experimental results in ref. [6] for flow over a 
grooved plate. According to Fig. 5(a), the assumption 

that a is the same for the two flow types is correct 
when the channel dimension is between one and two 
cell sizes. As the gap size increases, the effect of the 
inertial forces becomes more pronounced and the 
difference in the slip coefficient between the two flows 

becomes larger. 
When Beavers et al. performed their experiments, 

the slip coefficient was computed for different gap 
sizes using equation (8). From these different values 
of the slip coefficient, they computed the average value 
for the specimen considered. In Fig. 5(a), the average 
slip coefficient ~2 is given for the in-line arrangement 

of cylinders, as it would be found by the procedure 
used by Beavers et d. For the porous medium made 
of cylinders with slip coefficient presented in Fig. 5(a), 
the mass flow through the channel was computed 
for gap size h/l = 0.5 (0 = 13.5) using the slip coeffi- 
cient at h/l = 0.5. The mass flow was also computed 
using the average slip coefficient E.. The difference 
obtained between the two values is about 1%. Thus 
the averaging procedure used for the different 
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gap sizes gives an error well within the experimental 
uncertainties. 

4.4. Obliquejows 

All the available experimental results for the slip 
coefficient are based on parallel flows. This is because 
experiments with oblique flows are more difficult and 

because the relationship between the mass flow rate, 
X, and the gap size can be found in a closed form, as 
given by equation (8). The two-dimensional effects 
are examined here for an oblique flow with an imposed 
constant pressure gradient along the channel, a blow- 

ing velocity V,, at the upper boundary, and a suction 
velocity CV, at the lower boundary. Figure 5(b) 
shows the variation of c( with respect to the blowing 
velocity V,. The slip coefficient decreases as the flow 

deviates from the Poiseuille flow ( V0 = 0), and a 24% 
difference is attained for V,/u, = - 30. This is due to 
the fact that the flow is two-dimensional, whereas the 
Beavers and Joseph boundary condition treats the 
flow as one-dimensional. To account for the two- 
dimensional effects, the addition of another term to 
the slip boundary condition was suggested [22] giving 
an expression that is similar to the balance of the 
shear stress (instead of the velocity gradient across the 
interface). This is 

(31) 

When considering a single cell, as shown in Fig. 

2(c), the a(u),/ax term in equation (31) is zero due 
to the periodicity of ~1. In order to assess the effect of 

~(z~),,/~x, we examined a mode1 with two interfacial 
cells laid side by side. Also, the constant blowing 
velocity at the upper boundary giving a periodic flow 
in each cell was replaced by a blowing velocity that 
varies linearly with X. These calculations have shown 
that the difference in the calculated tl is less than I%, 

when the second term is included. Thus, we conclude 
that the second term would not account for the two- 
dimensional effects, since its contribution is not sig- 

nificant. Generally, the first term is much larger than 
the second one, since the averaged velocity across the 
interface varies more significantly than that along the 

interface. These same observations were made in ref. 
[23] when the two-dimensional boundary condition 
was used to analyze the liquid droplet levitation on a 
heated porous layer. It was found that the second 
term did not noticeably change the levitation distance 
(gap size) predictions. 

4.5. Porosity 

When Beavers and Joseph suggested the slip bound- 

ary condition, they suggested that the slip coefficient 
would be strongly dependent on the surface structure 

of the porous medium. Later, Beavers et al. [4] found 
that CI changed by 85% after they machined the surface 
of the porous slab. In the present model, it is possible 
to study the surface nonuniformities by using different 
arrangements of the interfacial row of cylinders. For 
this purpose, we have taken a surface structure for an 
in-line arrangement of cylinders, as depicted by Fig. 

6(a), where the variable distance ,? represents the sur- 
face nonuniformity (e.g. particle dislocation). In ran- 

dom porous media, ,? would represent the surface 
roughness (beyond the nominal surface). The vari- 
ation of the slip coefficient is shown in Fig. 6(b) as the 
distance 3, is varied between 0 and l/2. For a non-zero 
offset, the fluid flow at the nominal interface increases 
giving rise to a higher slip velocity. Therefore, the slip 
coefficient decreases significantly as the offset 
increases. 

In the experiments conducted by Beavers et al. [I, The slip coefficient is also calculated for a staggered 
3, 41, the slip coefficient was evaluated for a wide arrangement of cylinders. In this configuration every 
range of permeabilities spanning over two orders of column of cylinders is offset with respect to the neigh- 
magnitude. Over this range of permeability, a boring ones by l/2, as shown in Fig. 2(a). When the 
decreased monotonically as the permeability slip coefficient for the staggered arrangement is com- 
decreased. This suggests that x has a very strong pared to the one for the in-line arrangement for an 

dependence on the permeability and the porosity. This 
strong dependence is also observed for the periodic 
structure considered here. The slip coefficient com- 
puted for a given Reynolds number and gap size is 
shown as a function of porosity in Fig. 5(c). As 
expected, when the porosity increases, the slip 

coefficient increases showing agreement with the few 
experimental data for random (disordered) porous 
media. 

In order to evaluate the present mode1 and the 

disordered porous media, we have calculated the slip 
velocity for the in-line and for the staggered arrange- 
ments of cylinders and compared it to the data pro- 
vided in ref. [l]. The cell size 1 used to non- 
dimensionalize their permeability is based on their 
reported pore size. The slip velocity for the Poiseuille 
flow, in terms of the Darcean velocity, is obtained 
by combining equations (I) for one-dimensional flow 

and equation (7), which gives 

The results for the slip velocity are presented in Fig. 
5(d) as a function of normalized permeability. Unfor- 

tunately, not enough experimental data are available 
to give a thorough comparison between the two 

media. However, comparison with the limited avail- 
able experimental results show that the slip velocity 
predicted for the two-dimensional periodic structures, 
are within those measured for the disordered porous 
media. 

4.6. Surface structure 
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offset distance /2 = //2, a 2% difference is obtained. 
This shows that tl is mainly a surface property, because 
the two configurations have the same surface structure 
but the bulk structures are different. Note that the 
difference in the permeability for the two cylinder 
arrangements (for E = 0.48) is about 10%. 

4.1. Pressure slip 
In the previous sections, we have discussed the vel- 

ocity slip that occurs at the interface of a porous 

and a plain medium. The slip is due to the averaging 
performed in order to obtain the Darcean flow in the 
porous medium. A pressure slip also occurs, when 
the pressure is averaged in the porous medium. This 
pressure slip has been investigated in ref. [24] using an 
order of magnitude analysis for low Reynolds number 

flow in a periodic structure. Through this analysis, it 
was found that the pressure jump across the interface, 

for parallel flow is comparable to the pressure differ- 
ence across the cell, i.e. 

where pp is the average pressure in the plain medium 

over the cell length. 
Our interfacial simulation allows for the study of 

the pressure slip and verification of equation (33). The 
point solution to the pressure field reveals that this 
pressure jump is mainly induced by the inertial effects 

present at the interface at high Re,. This is clearly 
shown in Fig. 6(c) where the pressure slip, normalized 
by the pressure difference across the unit cell, is given 
as a function of Re,. For low Reynolds numbers 

(< 0.3) the flow at the interface is Stokean and sym- 
metric with respect to the cylinder axis, as shown in 

Fig. 4(b). Due to this symmetry, the point pressure 
gradient in the y-direction varies spatially as an odd 
function of y (with respect to the same axis). Thus, 
when the pressure is averaged in the x-direction (area 
averaged QJ)~), the resulting pressure difference 
across the interface (pressure slip) in the y-direction 
is negligible. From Fig. 6(c), we observe that the press- 

ure slip is very small compared to the pressure differ- 
ence across the cell and can be neglected. This result 
is in contradiction with the results from ref. [24] due 
to the approximate nature of the analysis. For higher 
Reynolds numbers, inertial effects are more impor- 
tant, and as expected, the flow is not symmetric 
because of the flow separation, as shown by Fig. 4(c). 
Inherent in the non-symmetric behavior of the velocity 
field, the variation of the point pressure gradient in 
they-direction does not follow that of an odd function 
at the interface. Hence, when averaging of the pressure 
in the x-direction is performed, a pressure difference 
across the interface (in the f-direction) is found. For 
high Reynolds numbers, this pressure difference is of 
the same order as the pressure difference across the 

cell. 
As with the velocity slip coefficient, the pressure slip 

was also examined with the presence of surface non- 
uniformities. It was found that the pressure slip does 
not vary significantly when the offset 1 is increased. 
For all practical purposes, the pressure slip across the 
interface is negligible on the macro-scale where the 
pressure drop across the porous medium increases 
with the number of cells. 
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5. RESULTS FOR NO-SLIP CONDITION 

When the no-slip boundary condition is used, 
special attention should be given to the choice of 
the averaging volume. The averaging volume must be 
small enough so that the velocity variations near the 
interface are not masked. Moreover, the averaging 
volume should be taken in such a way that the inter- 
facial velocity (as obtained from the local simulation) 
and the Darcean velocity (in the bulk of the porous 
medium) are recovered. If a unit cell is taken as the 
averaging volume, it will mask the velocity variation 
over the Brinkman screening distance. The numerical 
results show that for the range of porosities 
considered, the bulk flow is recovered at the lower half 
of the interfacial row of cylinders. Thus the volume 
averaged velocity should not make this boundary 
layer effect penetrate beyond one cell into the porous 
medium. 

Based on these, we choose an averaging volume 
that has an infinitesimal thickness at the interface 
(guaranteeing the no-slip condition). For points away 
from the interface, the averaging volume increases 
with the distance from the interface (to a cell size) so 
that the Darcean velocity is recovered. In the numeri- 
cal computations, the averaging volume is the grid 
size, at the nominal interface, and the cell size at 
.r < -l/2. For any point 4’ existing between 0 and 
-l/2 the averaging volume is taken as - 2~1, and the 
volume averaged velocity is defined as 

u(.Y, y’) dx dy’. (34) 

Using this volume averaging procedure, the three 
no-slip models (equations (12)~-( 14)) are examined 
beiow. 

5.1. Brinkman model 
This Brinkman model is commonly used in the 

analysis of flow and heat transfer in composite 
(porous-plain) media. Some investigators have added, 
in an &hoc manner, a macroscopic shear term to the 
Darcy law (with p’ = p) to allow for the variation of 
the velocity near the boundary. Others, e.g. Lundgren 
[25], have formally proved the validity of the Brink- 
man equation for dilute concentration of particles. In 
applying equation (IZ), the viscosity $ needs to be 
prescribed. Brinkman suggested EC’ L- bi, while later 
Lundgren showed that $ = &L’, E). 

Here, the results of the one-dimensional Brinkman 
model are compared to the volume averaged, point 
solution (direct simulation) in an attempt to examine 
the validity of this model. We begin by using the result 
for a parallel flow from ref. [IO], which gives $/p = c(‘. 
Therefore, we guarantee that the interface velocity 
obtained from the Brinkman equation is the same as 
that obtained from the local simulation (within a small 
error). The boundary conditions used here are similar 
to the Beavers and Joseph model discussed earlier, 

except at the interface where the continuity conditions 
are used, i.e. 

u(O) = (u),(O) and pd” 
, d(u), 

dy O+ 
= /l -d”;-- o (33 

The solution obtained in the plain medium is given 
by equation (6) (using p’/p = CC’) and in the porous 
medium the velocity distribution is [IO] 

This velocity profile is presented in Fig. 7(a) and com- 
pared with the volume averaged point solution. These 
results show that the volume (given by equation (34)) 
and area averaged solutions reach the bulk behavior 
within the interfacial cell, whereas the Brinkman 
model reaches the bulk behavior beyond the second 
cell. The Brinkman model, using a small decay factor 
in equation (36), underestimates the resistance to the 
Row at the interface and makes the boundary effect 
penetrate further into the porous medium. The resist- 
ance at the interface is also underestimated using 
boundary conditions (35) which establish continuity 
of the shear stress at the interface. For E = 0.8, we 
have $1~ zz 16, which gives a small velocity gradient 
at the interface (on the porous medium side). This 
smaller velocity gradient makes the boundary effect 
penetrate more into the porous medium (compared 
to the averaged solution). Note that the screening 
length is K”’ = 0.267d (for F: = 0.8). The Brinkman 
model results in a velocity profile that is much closer 
to the local simulation for c = 0.48, where the ratio 
of the viscosities is very close to unity. However, for 
a staggered cylinder arrangement, as shown in Fig. 
2(a), the Brinkman model gives a faster decay than the 
point solution. Thus, we conclude that the Brinkman 
model with a constant effective viscosity predicts the 
right slip velocity but generally does not result in 
the correct profile in the porous medium near the 
interface. This shortcoming might be overcome by 
using a variable effective viscosity model, as discussed 
below. 

5.2. Variable e#&ctiw oiscosity model 
In the variable effective viscosity model, $(_I~) is 

readily obtained by using the volume averaged point 
distribution by integration of equation (131, i.e. 

$(.l:f = 

I 
dy’ + pu’(O) G$$ 

_ n -.________ _- 
d(u),. 1 

---’ (37) 

where p’(O) is taken as the fluid viscosity 1-1, which will 
give a continuous velocity gradient on both sides of 
the interface as the boundary condition. In Fig. 7(b). 
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from the Brinkman solution, the area averaged local 
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(b) local effective viscosity distribution, and (c) local per- 
meability distribution. Both (b) and (c) are for the in-line 

arrangement of cylinders with different porosities. 

the ratio of the local effective to the fluid viscosity is 
given as a function of y/Z. The results are only for 
y/l > -0.2, because further into the porous medium 
d(u)./dy + 0 and p’(y) is undetermined (large oscil- 
lations of p’ occur). The local effective viscosity, as 

shown in Fig. 7(b), decreases with an increase in 

porosity, because the pore size becomes larger and the 
fluid encounters less resistance. 

The variation of the effective viscosity found above 
for E = 0.8 is used in equation (13) in order to examine 
the accuracy of the predicted velocity distribution near 
the interface. A fifth degree polynomial is used for $, 
which ignores the large oscillations and allows for 
an asymptotic, very large value of p’ away from the 
interface (because of the very small denominator in 
equation (37)). An upper bound is prescribed for $/p, 
and it is found that by changing this bound from lo4 
to lo’, the interfacial velocity changes only by 1%. 

For the condition used in Fig. 7(b) and E = 0.8, this 
variable effective viscosity model is compared with the 
point solution. The model predicts the penetration 
depth and the velocity gradient very well. However, 
the predicted slip velocity is 37% (higher) than that 
of the point solution. The error in the mass flow rate 
through the channel is about 3% (higher). 

The effect of the surface nonuniformity on the local 
effective viscosity was also examined in the same 
manner as for the slip coefficient. Since the local effec- 
tive viscosity depends on the local geometry, it is ex- 
pected to change with the surface structure. As the 

offset 2 between the cylinders of the interfacial row in- 
creases, the flow below the interface increases (because 
of the lower resistance). Thus, the effective viscosity 
decreases as the offset 1 increases. 

5.3. Variable permeability model 
This model has been used previously to study the 

flow and heat transfer in porous media near bounding, 
impermeable surfaces. Commonly, an area averaged 
void distribution s(y) is prescribed based on the exper- 
imental results for random packing of spheres. Then, 
the permeability is calculated using the Carman- 
Kozeny relation. Here, as was done above for the 

variable effective viscosity model, we find the variation 
in the permeability near the interface from the com- 
puted velocity field and by using equation (14) i.e. 

P(U)” 
K(y) = d2@),. d(p);.’ 

/L --dT - -z;- 
(38) 

The computed variation of the permeability near 
the interface is shown in Fig. 7(c) for the in-line 
arrangement for various porosities. Intuitively, we 

expect the permeability to be higher at the interface, 
because of the lower resistance to the flow (compared 
to the bulk permeability). However, the results show 
that the surface permeability is lower than that in 
the bulk, except for E = 0.48. This decrease in the 
permeability is due to the dominating effect of the 
shear stress term in equation (14). From these results, 
we infer that the permeability at the interface cannot 
be modeled using c(y) and the Carman-Kozeny 
relation. 

The variable permeability found above for E = 0.8 is 
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used in equation (14) in order to examine the predicted 
velocity near the interface. Since the local permeability 
does not diverge for points away from the interface, 
the discrete values of the permeability as calculated 
by equation (38) are used. The error in the interface 
velocity is about 24% (higher), and the error in the 
mass flow through the channel is about 2% (higher). 

3. 

4. 

As with the slip coefficient, the effect of the surface 
nonuniformity on the local permeability is also exam- 
ined for the in-line arrangement. As the offset distance 
E. is increased, the local permeability increases 
(because of the lower resistance), showing the depen- 
dence of K(y) on the surface structure. 

5. 

6. 

1. 

8. 

6. CONCLUSIONS 9. 

By direct simulation of the flow at and near the 
porous, plain media interface, we have examined the 
dependence of the slip coefficient in the boundary 
condition commonly used at this interface. We have 
found that 

10. 

II. 

LX = ~((a, Re,, h,y,, bulk flow direction, 

and surface structure). (39) 

We have found that the most appropriate choice 
for the interfacial location is the nominal interface 
(i.e. the top of the interfacial cylinders). We also point 
to the sensitivity of N on the choice of yi and conclude 
that since, in actual surfaces, the measurement of h (or 
I;) involves uncertainties of the order of the Brinkman 
screening distance K Ii’, and since c( changes notice- 
ably over yi = O(K I;*) the experimentally determined 
values of a will be apparatus dependent. 

12. 

13. 

14. 

15. 

The pressure slip across the interface has been 
examined and at low Reynolds numbers (Re, < O.l), 
this pressure slip is very small when compared to the 
pressure drop across a unit cell. At higher Reynolds 
numbers, the pressure slip is of the same order of 
magnitude as the pressure drop across a unit cell. 

16. 

17. 

By examining the Brinkman treatment of the inter- 
facial hydrodynamics, we have found that n’(y) and 
K(y) cannot be given in general forms. 

18. 

19. 

We plan to continue the examination of the validity 
of the one-dimensional treatments by considering heat 
transfer across and along the interface. There, the 
temperature slip will depend on the interfacial hydro- 
dynamic approximation discussed here. 
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CONDITIONS AUX LIMITES DE VITESSE AVEC OU SANS GLISSEMENT A 
L’INTERFACE DES MILIEUX POREUX ET COMPACT 

R&sum&La condition hydrodynamique a l’interface entre un milieu poreux et un milieu compact est 
examinee par une simulation directe du champ d’ecoulement bidimensionnel pris de l’interface d’un milieu 
poreux fait de cylindres. On examine la condition de glissement qui contient un coefficient de glissement a 
et celle de non glissement qui contient une viscosite effective p’. On examine en detail la dependance de a 
et de la direction de l’ecoulement (par rapport au plan de l’interface), la porosite, le nombre de Reynolds 
(base sur la longueur de la cellule et la vitesse darcienne), la selection de la localisation interfaciale et 
l’arrangement des cylindres (structure). Les resultats numeriques montrent que a n’est pas seulement 
fonction de la structure mais qu’il depend de la direction de l’ecoulement, du nombre de Reynolds, de 
l’ttendue du milieu compact et des changements de l’arrangement des particules a la surface. On montre 
aussi que pour une prevision precise de la vitesse locale pres de l’interface (dans le milieu poreux) p’ doit 
varier dans le mi!ieu poreux. Ceci montre que l’extension de Brinkman basee sur p’ uniforme et la distance 

associee ne modilisent pas de facon satisfaisante le champ d’bcoulement dans le milieu poreux. 

GESCHWINDIGKEITSRANDBEDINGUNGEN AN DER GRENZFLACHE POROSER 
EBENER MEDIEN MIT UND OHNE SCHLUPF 

Zusammenfassung-Die hydrodynamische Randbedingung an der Grenzhkhe zwischen einem pordsen 
und einem glatten Medium wird durch direkte Simulation des zweidimensionalen Striimungsfeldes nahe 
der Oberlllche eines poriisen Zylinders untersucht. Es wird eine Randbedingung mit Schlupf, gekennzeich- 
net durch einen Gleitkoethzienten a, und eine ohne Schlupf betrachtet, die eine effektive Viskositlt 
p’ enthllt. Die Abhangigkeit des Begleitkoeffizienten a von der Strdmungsrichtung (bezogen auf die 
Grenzfliiche), der Porositat, der Reynolds-Zahl (gebildet mit der Lange der Einheitszelle und der Darcy- 
Geschwindigkeit), der Wahl des Ortes an der Grenzfllche und der Anordnung der Zylinder (Struktur) wird 
im einzelnen untersucht. Die numerischen Ergebnisse zeigen, dal3 a nicht nur eine Funktion der Struktur 
ist, sondern such von der Strdmungsrichtung, der Reynolds-Zahl, der Ausdehnung des glatten Mediums 
sowie den Ungleichfiirmigkeiten bei der Anordnung der ObetlIIchenpartikel abhlngt. Es zeigt sich such, 
dal3 fur eine genaue Vorausberechnung der ijrtlichen Geschwindigkeit nahe der Grenzlllche (im Inneren 
des porijsen Mediums) $ innerhalb des porosen Mediums variieren mug. Daraus ergibt sich, da8 mit Hilfe 
der Formulierung nach Brinkman auf der Grundlage einer gleichfiirmigen effektiven Viskositat ji und dem 
damit verbundenen Gitterabstand das Strijmungsfeld innerhalb des porosen Mediums nicht befriedigend 

modelliert werden kann. 

FPAHH9HbIE YCJIOBHlI IIPH HAJIHYHM I4 OTCYTCTBHH CKOJIbXEHHR HA 
I-PAHHHE PA3AEJIA IIOPMCTO~ R HEI-IOPMCTOfi CPEA 

Am0Taum-c HCnOnb30BaHHeM npnhforo MoneJIHpoBaHHR AnyMepHOrO nons Teqemin e6Jni3u rpaminbt 
pa3AeJIa nOpHcTOii CpeAM, UJAepxatrurreii UHJlHHApHY~KHe KKHEXJIbI, H 06bIYHOii (HenOpncTOfi) CpeAbl HCC- 
nenyercs rrinpominaMnrecrcoe rpaminnoe ycnoeue Ha rpamiue pa3nena ~THX cpen. PaccMaTpnsamTcn 
rpaHsrHoe YCJIOBHC co cKonbmeHHeM,coAepraruee K03i$@iI&ieHT CKOnbXemin a,u rpaHurHoe ycnoene 
npn OTCyTCTBHHCKOnbXeHBR,BKJl,OWUO~ee3@~KTHBHylO BK3KoCTbji'. AeTaJIbHO HC‘X‘2A,‘eTCS 3BBHCH- 

MocTb 3HaqeHm a OT HanpasneHm Teqexim, IIO~O~HOCTH, YHcna PeiiHonbAca (conepnarrrero pashlep 

eAaHHsHofi KrefiKH H cKop0mb AapcH), m6opa pacnono;ireHm rpamIIbl pasnena H pa3MeureHm 

IDinSiHApOB(CTpyKTypbI). %CJIeHHUe pe3ynbTaTbl nOKZSIBaW)T,STO 3Ha4eHHe o! 3aBHCHT He TOnbKO OT 

CT~YKTY~L.I, HO TaKxe w 0~ HanpasneHun Te-ietiHK, wicna PeBHonbAca, npoTmetiHocTn HenopHcrofi 

CpeAbI. nOKa3aHO TaKXe, 'iT0 Am-l TOqHOrO paC'ieTa nOKaJtbHOii CKOpoCTH s6nu3H rpaHHJ.&I pa3AeAa 
(JJHYTPH nopw2Toii cpeAbQ3HaqeHHe y'cneAyeT CYHTaTb n3MeHmo4Hhwi n npenenax nopncrofi cpe~br. 
$TO CBHAeTenbCTByeT 0 TOM, 'IT0 MOAenb EpHHKMaHa, OCHOBaHHali Ha IIOCTOllHHOM 3HaSeHBH /I' H 

HaJlW',HA o6nacra 3KpaHHpOBaHSiX, HeyAOBneTBOpHTenbHO MOAenHpyeT ItOne reWHHI B IlOpHCTOii 

cpene. 


