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Abstract: The presently available asymptotically distribution-free confidence bands for the percentile 

residual lifetime function are formed. Two types of these contain theoretically unknown constants which 

we determine by Monte Carlo simulation. The other two types of bands are based on the bootstrap. The 

four types of bands are compared in an example of estimating the median residual duration time of a 

British strike. 

1. The bands 

Let Xr 0 be a random lifetime, let F denote its distribution function with support 

(O,T,‘,), where T,=inf{t>O: F(t)=l}~oo, and corresponding quantile function 

Q(x)=F-‘(x)=inf{t>O: F(t)rx}, O<x<l, Q(0)=O,Q(l)=TF. Let O<p<l be 

any fixed number. The (1 -p)-percentile residual lifetime at t> 0 is defined to be 

I’ I@“(t) = Q(l -p(l -F(t)))- t. 

Indeed, for any tz0 and O<p< 1, 

R@‘(t) = inf{x>O: P{Xrx+ t 1 X>t} 2 1 -p} 

is the (1 -p)-percentile additional time to failure, given no failure by time t. 

Beginning with Schmittlein and Morrison (1981), many papers suggest potential 

advantages of using the median residual life-time R”“‘(t), tr0, instead of the 

more frequently used mean residual lifetime and, more generally, of using percentile 

residual lifetimes. The basic references are in Csorg6 and Csorg6 (1987) who initiate 

a large sample theory for the estimation of general percentile residual lifetime func- 

tions R@‘(t), tz 0, O<p< 1. The aim of the present note is to produce readily ap- 

plicable simultaneous confidence bands for the function RcP’(t), tr0, where p is 
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fixed, and to make some comparisons among the available four types of bands on 

an interesting example. 

Let X,, . . . . X, be independent observations on X with corresponding order 

statistics X, n 5 ... 5 X, n, and consider the sample distribution and quantile func- 

tionsF,,(t)ln-‘#{l~‘k~n: Xk<t}, t20, and Qn(~)=Xk,n if (k-l)/n<x~k/n, 

k=l ,...,n; Q,(o>=x,,,. The sample analogue of R@‘(t) is then 

f?@‘(r) = n Q n (1 -p(l -F (t))) - t. n 

For any A > 0, introduce the intervals 

+ tj R3) + V’nfn(Rl’(r) + t) ’ I 
l-~(l-F,(t)) + L 

fi 
, 

where, in the first one, f, is an estimator of the density function f =F’, the ex- 

istence of which will be assumed. Also consider a bootstrap sample X1, . . . ,X,,, with 

the corresponding Fn:,, Q, and I?:‘, drawn with replacement from the original sam- 

ple X,, . . . . X,, and, for a given 0~ (Y< 1, form the intervals 

@)(a.t) = C,(G P, T) 
n ' R’L$) _ cJa,p, T, n fi' R:)(t) + 1 fi' 
d")(a;t) = z@)(t)- d,(a,P, T) d,(v,O n fi ~(0, Rf"(O + fi o,(t) 7 1 

where o,(t) = (p( 1 -p)( 1 - F,(t)))1’2/f,(RF’(t) + t) and, for some T> 0, 

Let B(x), 0~x5 1, denote a Brownian bridge and finally introduce the notation 

V(P) = sup 
F(x)(l - F(x)) If’(x) 1 

Q(l -p)sx< T, f*(X) . 

Our band statements are contained in the following: 

Theorem. Let O<p < 1 and 0~ (Y < 1 be fixed, set 6, = Kn-’ log log n with some 
constant K> 0, and let E, be any sequence of positive numbers such that E, -+ 0 and 

Ir ne,+oo as n+oo. 
(i) Assume that F is twice differentiable on (Q(l -p),T,), f is positive on 

(Q(l -p),TF), and V(p)<m. Iff,(.) is a uniformly consistent estimator off(.) on 
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(QU -p), 7’,‘,), then 

lim P{Z@(t)EA~‘(~(p, a);t), OltlQ,(l -S,)> = 
n+m 

where n(p, a) > 0 is the unique value of ,I for which 

P sup lB(l -p(l -X))-pB(x)( 52 = 1 -aa. 
O<XS 1 1 
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1 -(Y, 

(ii) Assume that F is twice differentiable on (Q(l -p),T,), f is positive on 
(Q(l -p),T,), and V(p)<co. Then 

lim P{R(P)(t)EB~‘(~(p,a); t), Olt<Q,(l -E,,)} = 1 -a, 
n+m 

where I(p,a) is as in part (i). 

(iii) Assume that f is positive and continuous on (Q(1 -P) - E, 
Q( 1 -p( 1 -F(T))) + E), where E is any small positive number and T< T,. Then 

lim P{R(P)(t)EC~)(cr;t), 01 I5 T} = 1 -cz. 
n-m 

(iv) Assume the conditions of part (iii). If f,(. ) is a uniformly consistent 

estimator of f( . ) on (Q( 1 -p) - E, Q(l -F(T)) + E), then 

lim P{R@)(t)E@(a;t), 05 tl T} = 1 -cz. 
n-m 

Part (i) follows from a modified version of Theorem 4 (given without proof) in 

Csorg6 and Csorg6 (1987) with a very lengthy proof given by Viharos (1988). Part 

(ii) is formulated as a part of Theorem 5 in C&g6 and Csorg6 (1987) without 

proof. Its proof is again in Viharos (1988). These two proofs use standard strong 

approximation techniques established for the general quantile process. Parts (iii) 

and (iv) are contained in Example 7 of S. Csorg6 and Mason (1989), with the proofs 

indicated there spelled out in detail in Viharos (1988). 

The asymptotically distribution-free bands in (i) and (ii) are not applicable as they 

stand since they involve the constant I(p,o) expressed through a theoretically 

unknown distribution. In the next section we report on an extensive Monte Carlo 

simulation study to determine this unknown distribution and tabulate 1(p,o) for 

various values of a and p. By this study the bands in (i) and (ii) become readily ap- 

plicable once and for all. 

The band in (ii) is particularly attractive, in principle at least, since it does not 

involve any density estimation. An unpleasant feature of the bands in (i) and (ii) is 

the presence of the sequences 6, and a,,. On the other hand, they appear to be valid 

almost on the whole support, this is why the strong regularity conditions are needed 

here. While validity on the whole support may seem desirable at first glance, we 

shall see in the example of Section 3 that it can also be the cause of obtaining use- 

lessly wide bands. Unfortunately, we don’t have the flexibility of narrowing these 
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bands by restricting them to a fixed time interval [O,T] of interest. The very reason 

that they are asymptotically distribution free is that they are valid asymptotically on 

the whole support. 

In case of the constant width bootstrap band in (iii) and the standardized or ‘equal 

precision’ bootstrap band in (iv) we have the just mentioned flexibility, and working 

on a fixed interval [0, T] requires less regularity conditions. The price we pay is that 

at each single application we have to conduct a bootstrap Monte Carlo simulation 

to approximate c,, =c,(a,p, T) and d,, =d,,(a,p, T). Suppose we draw from 

Xi, ..*, X,, bootstrap samples b times and accordingly compute both 

b times and denote the resulting ordered values by r,(l, b)l... sT,(b,b) and 

d,,(l,b)l...5d,&b,b), respectively. Then, if b is large enough, r,([(l -a)b],b) and 

A,([(1 -a)b],b] are the respective bootstrap approximations of c, and d,,, where 

[ . ] denotes integer part. 

Following the strike example in Section 3, a small scale simulation study of actual 

coverage probabilities is reported in Section 4. 

The problem of estimating percentile residual life from randomly censored data 

is considered by Chung (1986) and S. Csorgi; (1987, 1988). 

2. Monte Carlo determination of I(p,a) 

If we generate the random numbers U,, . . . , U, uniformly distributed in (O,l), 

consider their empirical distribution function G/((x) = k-’ # { 1 <j< k: Uj”X> and 

form the uniform empirical process ak(x) = k”2(Gk(~) -x), 0 5 XI 1, then, since 

ak(. ) converges weakly to Z3(. ) as k -+ 03, the asymptotic distribution of 

A’p’(k) = os”,p,l Iad1 -PU -x))--pa&)/ 
c 

is the unknown limiting distribution in (i) and (ii) of the theorem. Fixing a large 

enough sample size k and repeating this operation m times, the number of Monte 

Carlo trials, denote by A\:;(k) 5 ... ,A”’ m,m(k) the order statistics of the resulting 

realizations A?‘(k), . . . , AZ’(k). Then Acp) 1c1 _+],,(k) is the respective Monte Carlo 

approximation to h@,a). 
As mentioned in Point (4) of Section 4 in C&g6 and CsdrgG (1987), theoretical 

considerations suggest that the sample size k = 50 should be sufficient. However, in 

order to be on the safe side, we have chosen and used k= 100. Also, trying to pro- 

vide the highest affordable protection against instability when simulating large 

quantiles belonging to (Y = 0.01, we have worked with the large trial size m = 5 000. 

The 21 rows of Table 1 contain our Monte Carlo values of lJp,a) for the 21 selected 

values of p as indicated and for 6 selected values of a, leading to the most usual 

asymptotic coverage probabilities 1 - a. 
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Fig. 3. The band of (i) corresponding to the solid-line histogram estimate in Fig. 2. 

(1981)) records the durations of 840 strikes in the United Kingdom that commenced 

in 1965 and lasted longer than 1 day. Using these data, Csorgi; and Csorgi; (1987) 

have constructed the asymptotically 1 - CI = 0.9 confidence band for the percentile 

function R”PP’(3), 0.14rp~0.86, of a strike lasting longer than 3 days. Here we 

construct bands for R(“2)(t), tr0. 

For the longest 69 strikes longer than 20 days the data are grouped by 5 days up 

to 50 days with remaining 8 strikes longer than 50 days. In the present study we have 

taken the liberty to redistribute these grouped data more or less uniformly within 

each group and assumed that the longest 8 strikes lasted for 51,52, . . . ,58 days. This 

arbitrary change is just to make the jump structure of R(1’2)(. ) and of the band 

contours somewhat finer, but the difference otherwise is hardly noticable. 

For the bands in (i) and (iv) of the theorem we had to construct the corresponding 

density estimates. We have chosen histogram estimates, corresponding to the ob- 

vious choices of 1, 2 and 3 days as cell widths, and kernel estimates 

6o ldays I 

IO 20 30 40 50 days 

Fig. 4. The band of (i) corresponding to the dotted-line normal kernel estimate in Fig. 2. 
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Fig. 5. The band of(i) corresponding to the broken-line Bartlett-Epanechnikov kernel estimate in Fig. 2. 

corresponding to the standard normal density and to the Bartlett-Epanechnikov 

density 

K,(Y) = r +(l-Y2), lYl<l, 
0 

9 IYI 2 1, 

as kernels K, and in the latter varied the window width h, to obtain curves that 

match the histograms. Of course, the larger is h,, the flatter and smoother are the 

kernel estimates. As a typical picture, Figure 2 gives the two-day histogram (solid 

line) and the virtually coinciding normal-kernel (with hsho =0.6; dotted line) and 

Ko-kernel (with h,,, = 1.3; broken line) density estimates. 

Figures 3, 4 and 5 depict the three bands of (i) corresponding to the density 

estimates in Figure 2 with I(O.5, 0.1) = 1.1 taken from Table 1, all for the median 

residual duration R(“2)(t), TV 0, and for asymptotic coverage probability 1 - a = 0.9. 

The band of (ii) with the same parameters is contained in Figure 6. The latter band 

cannot be drawn beyond 22 days because, in spite of the large sample size n = 840, 

the argument of QsdO in the upper contour reaches in fact 1 there. The middle graph 

is always the estimate R’,‘,/,Z’(t), t 2 0, with R,,, (“2)(O) = 4 days estimating the median of 
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Fig. 6. The band of (ii) and the constant-width bootstrap band of (iii). 
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Fig. 7. The band of (iv) corresponding to the solid-line histogram estimate in Fig. 2. 

the duration time distribution. In Figures 7, 8 and 9, the three standardized 

bootstrap bands of (iv) are drawn, corresponding to the density estimates in Figure 

2, while the constant-width bootstrap band of (iii) is in Figure 6. All these are again 

for R(“2) and 1 - az0.9. To illustrate the mentioned flexibility, for the four 

bootstrap bands we have chosen the interval (0,40) to work on. All these four bands 

are based on b = 3 000 bootstrap replicas. While it is the constant width bootstrap 

band that looks the nicest here, it is probably always advantageous to draw all the 

bands to get a better feeling of the data at hand. 

Many more figures and a more detailed discussion are given in Viharos (1988). 

Schmittlein and Morrison (1981) argue that the straight-line median residual life 

function R(“2)(t) = (2l”- l)(a + t), t 2 0, of a second kind Pareto distribution func- 

tion F(t) = 1 - (cr/(a + t))’ with estimated parameters Q = & = 4.94 and r = i = 1.83, 

obtained by maximum likelihood, fits the data well. This straight line indeed ap- 

pears to pick the increasing trend quite nicely up to about 20 days following the me- 

dian duration. However, it fails to account for the well-known fact that strikes tend 

to grow tired, and after a certain turning point their tendency is to end sooner or 

later. Figures 2-9 suggest that for longer British strikes in 1965 this turning point 

60 days 

50 

40 1 

Fig. 8. The band of (iv) corresponding to the dotted-line normal kernel estimate in Fig. 2. 
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Fig. 9. The band of (iv) corresponding to the broken-line Bartlett-Epanechnikov kernel estimate in 

Fig. 2. 

was somewhere between 15 and 30 days following the median duration of about 4 

days. 

4. A simulation study of coverage probabilities 

For the standard exponential distribution with mean 1 and the standard Weibull 

distribution with shape parameter 2, we conducted a small scale simulation study 

of the actual coverage probabilities of the bands in (ii) and (iii) when the asymptotic 

nominal coverage probability is 1 -a=0.9. For both of the distributions the 

bootstrap band in (iii) was constructed on the interval (O,Q(O.9)), and for both 

distributions and both bands we used the sample sizes n = 50 and 100, while the 

bootstrap replica size b for the band in (iii) was chosen to be b = 2n. Based on 500 

Monte Carlo repetitions, the actual coverage of the bands in (ii) was between 90% 

and 92% in all four cases, though on intervals with average length considerably 

smaller than Q(0.9). On the other hand, using the same 500 repetitions, the 

bootstrap bands of (iii) turned out to be very wide and conservative with actual 

coverage between 97% and 99% in all four cases. Hence our conclusion is that for 

the two distributions considered the sample size 100 and/or bootstrap replica size 

200 are not enough to make the bootstrap bands work precisely. More details are 

again in Viharos (1988). 
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Abstract: A version of the central limit theorem for the Kiefer-Wolfowitz procedure is stated. One con- 
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1. Introduction and assumptions 

Let us consider the family of real random variables { Y(x)},,~. We want to 

estimate a point 8 E R such that the regression function f(x) = EY(x) attains its 

minimum at 0. We will construct an asymptotic fixed-width confidence interval, i.e. 

two statistics X, and N(d) such that 

~maP(~X,(,,-BI Id) = q (1) 

for the fixed number rl E (91). 

Let X, be given by the Kiefer-Wolfowitz (KW) procedure 

X n+, =x*-(A/n)(Y(X,+c,)-Y(X,-c,))/(2c,), n-1,2,..., 

with A >O, X, E R. Let c, = Cndy with C> 0, and y E (0, a). Let 

,“zf Y(x) -f(x), @” “zi 4&X, +c,, &x,9 1 rim). 

Then X,,,, is S,,-measurable. 
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