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Let X,,, s . . . s X,,, be the order statistics of n independent random variables with a common distribution 

function F and let k, be positive numbers such that k, + CC and k./ n + 0 as n --) 00. With suitable centering 

and norming, we investigate the weak convergence of the intermediate-sum process C!$l,.,+, X,,+l_i,n, 
astGb, where O<a<b<q and the weak convergence of the extreme-sum process 

~~~;’ X,+,_,, , Oh t 5 b. Convergence is with respect to the supremum norm and can take place along 

a subsequence of the positive integers {n}. 

order statistics * intermediate-sum processes * extreme-sum processes *weak convergence * extreme-value 

domain of attraction 

1. Introduction and statement of results 

LetX,X,,X, ,..., be a sequence of independent non-degenerate random variables 

with a common distribution function F(x) = P{X s x}, x E R, and for each integer 

n 3 1 let X,,, S 1 . . S X,,, denote the order statistics based on the sample X,, . . . , X,,. 

Let {k,} be a sequence of positive numbers such that 

k,+a and k,,/n-+O as n+co, 

and consider the sum process 

(1.1) 

of intermediate order statistics, where O< a < 6, and the sum process 

E,(t)=E,(t; k,,)= 
%+I--r,n, l/k s ts b, 

(1.2) 

(1.3) 

b-4 Ost<l/k,, 
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of extreme order statistics, where 1x1 is the smallest integer not smaller than x and 

an empty sum is understood as zero. 

The asymptotic distribution of the intermediate sum I, (a, 6) for fixed 0 < a < b 

has been thoroughly investigated in [3]. We found necessary and sufficient conditions 

for the existence of constants A,, > 0 and C, E R such that A;‘(l,,(a, b) - C,,) con- 

verges in distribution along subsequences of the positive integers {n} to non- 

degenerate limits and completely described the possible subsequential limiting 

distributions. Exactly the same programme has been carried out previously in [2] 

for the extreme sums E,(l). The aim of the prsent paper is to investigate the weak 

convergence of the suitably centered and normalized processes I,,( a, * ) and E,( . ) 

in the supremum norm on [a, b] and [0, b], respectively. 

Consider the inverse or quantile function of F defined as 

Q(s)=inf{x: F(x)as}, O<s<l, 

and introduce the associated left-continuous non-decreasing function 

H(s)=-Q((l-s)-), OSSCl. (1.4) 

Consider the centering functions 

I 

I'k,lln 

@"(a, t)=,w,(a, t; k)= -n H(s) ds, 0~ a < t. (1.5) 
F&l/n 

We say that a sequence {t,,(t): a c t =S b}z=:=, of stochastic processes has a distribu- 

tionally equivalent version { 7, (t): a s t s b}z= I if the distributional equality 

{#$(t): astsb} =9 {v,(t): u G TV b} holds for each n 2 1, that is, all finite- 

dimensional distributions of &,( *) and q,,( 0) are the same on [a, b] for each n a 1. 

Theorem 1. Let {k,,} be a sequence as in (1.1) and fix 0 < a, < b,, < 00. Suppose that 

there exist a subsequence {n’} of the positive integers and positive numbers B,, along 

it such that for a function cp continuous on [a,, b,], necessarily non-negative, non- 

decreasing and satisfying q(aJ = 0, we have 

cp,,(a,; x) := j-1 dH( 9)/B,,. +cp(x) at each XE[U,, b,] as n’-,a. 

(1.6) 

Then on a suitable probability space, for any choice of a, < a < b < bO, there exist a 

sequence {l( a, t): a < t < b}c=, of distributionally equivalent versions of the sequence 

{I,,(a, t): a s t s b}z==, and a standard Wiener process W(t), t 2 0, such that 

,y;, &it@, t) -/da, t>> - I 
I 

W(s) G(s) + 0 as. (1.7) 
n’ n’ n 

as n’+ a?. 

We note that by Theorem 1 in [3] for convergence in distribution of the process 

Y,l(% r):={L(4 t)-rUn(a, r)~l{~&J, (1.8) 
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at a fixed point a s t s b with a, < a < b < b, along a subsequence of {n} we can 

always choose 

B, =A,(aO, b,):=max(H(b,k,/n)-H(a,k,,/n), l)>O. 

Then, with this choice of B,, for the non-decreasing, left-continuous functions 

cp,(a,; x) we have 0~ cp,(a,; x) 6 1 on [a,, b,]. Hence by a Helly selection one can 

always find a subsequence {n’} c {n} and a non-negative, non-decreasing, left- 

continuous function cp on (a,, b,) such that cp,,(a,; x) converges to p(x) as n’+ ~0 

at any continuity point x of p. Theorem 1 in [3] shows that one can hope for weak 

convergence of I,,,( * ) in the supremum norm on [a, b] only in the case when cp is 

continuous on some interval containing [a, b]. This is the underlying reason for 

condition (1.6). 

Now we trun to the weak-convergence problem of the extreme-sum process 

E,(t) = Z,, (0, t), 0 S t G b. Even though the problem is now the behavior in the vicinity 

of zero, we still need a reference point a,> 0 as in (1.6), which can in principle be 

chosen to be b,. 

Theorem 2. Let {k,,} be a sequence as in (1.1) and jix 0 < a, c b, < ~0. Suppose there 

exist a subsequence {n’} of the positive integers and positive numbers B,, such that for 

a function cp continuous on (0, b,], necessarily non-decreasing and satisfying q( a,) = 0, 

we have 

cp,,(a,;x)= JaldH($)/B.,,+Ip(x) ateachxE(O,b,] (1.9) 

as n’+a and 

liilimsup 0fid~,4a,,x)=0 J 
u 

n’+rn 0 
and lip J J;; dq(x) = 0. (1.10) 

0 

Then on a suitable probability space, for any choice of 0 < b < b,, there exist a sequence 

{ I$,( t): 0 s t s b}z= 1 of distributionally equivalent versions of the sequence {E,(t): 0 s 

t s b}z=, and a standard Wiener process W(t), t z 0, such that 

oEzb & {~“O) - P”,(O, t)l - 
J 
’ W(s) dds) ‘~0 

n’ n’ 0 

as n’+ cx). 

We note that it is easy to see using integration by parts that if (1.9) holds and 

there exists a constant p > -i such that IpnC(ao, x)1 < xp for all n’ large enough and 

all x>O small enough, then condition (1.10) is also satisfied. 

Now we formulate a corollary to Theorems 1 and 2 under the classical condition 

of extreme value theory. We say that F is in the domain of attraction of an extreme 

value distribution if (X,,, - ~,)/a, converges in distribution to a non-degenerate 

random variable Y, where a,, > 0 and c, E Iw are some constants. As pointed out in 
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[2], with earlier references, this happens if and only if there exists a constant y E [w 

such that 

l im H(sx) - H(SY) = 1 (xPy -y-‘)/(u-‘- Vy), if y # 0, 

SC0 H(W) -H(W) logWY)llog(~l~), if y = 0, 
(1.11) 

for all distinct 0 <x, y, u, 2, < 00. In this case we write FE A,, where, with suitable 

choices of a,, and c,, 

exp(-y”‘), Y > 0, if y>O, 

A,(y)=P{YGy}= exp(-exp(-y)), yER, if y=O, 

exp(-(-v)“‘), y<O, if y<O. 

For any y E R, set 

( 

1, if y>O, (l+y)-“y, if y>O, 

u, = e, if y = 0, and V, = 1, if y =O, 

(l- Y)-“~, if y<O, 1, if y<O, 

so that u;~-v;~= -y if y # 0 and log(uo/vo) = 1. For a sequence {k,} satisfying 

(1.1) we define 

Choosing the reference point of Theorem 2 as a, = 1, introduce now 

v,(x) = cp,(l, xl = 1; ~+f”)/~n~~) 

={+)-H(:)]/&(Y), (1.12) 

which is well-defined for 0 < x < n/k,, . Then, if F E A, for some y E R, we obtain 

from (1.11) that 

P,(X) + P,(X) := 1 (1-xPy)/y, if yf0, 

log 4 if y = 0, 
for any x>O (1.13) 

as n + CO, that is, we have (1.9) with the continuous function cp = ‘pv along the whole 

{n} and for any b. > 0, or, what is the same, (1.6) for any 0 < a0 < bo. Hence the 

first statement of Corollary 1 below follows from Theorem 1 and the second statement 

will follow from Theorem 2 after proving (1.10) for the present (P,, and cp = ‘pv. 

Corollary 1. If FE A, for some YE R and {k,,} satisfies (l.l), then on a suitable 

probability space, for any choice of b > 0, there exist a sequence {l?,(t): 0 s t s b}p=, 

of distributionally equivalent versions of the sequence {E,,(t): 0~ t s b}z=P=, and a 

standard Wiener process W(t), t s 0, such that for the sequence { i,,(a, t) = l?,,(t) - 
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,??,,(a): a s t s b}zzP=, , being a distributionally equivalent version of the sequence 

{Ma, t): a<ttb}z=,, andforany O<a<b, 

-5 
f 

W(s)s-‘-’ ds + 0 
a 

almost surely as n + a. Furthermore, if y ~4, then for any b > 0, 

Notice that if FE A, and ?a+, then we have (1.13) but condition (1.10) is not 

satisfied by the limiting function p = ‘p,,. In this case, according to Corollary 2 in 

[2], the appropriately centered extreme sums E,,(t) - p,,(O+, t) require a norming 

sequence A,, > 0 to converge in distribution (denoted by +9) to a non-degenerate 

random variable V that is heavier than the one needed by the centered intermediate 

sums. Namely, it follows from Corollary 2 in [2] tht if FE A,, for some 724, then 

there is a sequence A, = A,(k,) > 0, completely specified in [2], such that 

{I,,(a, b)-p,,(a, b)}/A, +,,O for all O<a<b 

and 

{E,(t)-p,,(O+, t)}/A, +9 V for all t>O, 

where if y = $, then V is the same standard normal random variable for all t > 0, 
and if y > 5, then V is the same stable random variable with index l/y for all t > 0. 

Our next corollary discloses a curious Darling-Erd6s type behavior for the 

extreme-sum process. Whenever FE ‘4, for some y < $ and {k,,} satisfies (1.1) write 

e,(t):= cytY-‘/2 
E,(t)-n~~‘kfil’nQ(l-s)ds 

Jk7;4(~) ’ 

where 

a7 = ($(l- y)(l -2y))“‘, 

and for T>O and y<$ set 

A(T) = (2 log max( T, e))“2 

and 

BY(T) = A( T) + (log(G/2#‘/A( T) 

(1.14) 

(1.15) 
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where 

h,=$(l-27). (1.16) 

This behavior will be a consequence of the weak convergence of a time-changed 

variant of e,( . ) to the stochastic process 

V,(x) := oy e(‘/z-y)x 
I” 

W(u)u-‘-y du, OSx<cc. 
0 

It is readily verified that V.( *) is a sample-continuous mean zero stationary Gaussian 

process with covariance function given, for x 3 0 and h 2 0, by 

r,(h)=EV,(x+h)V,(x) 

}, y<iand y#O, 

y = 0. 

Corollary 2. Assume that FE A, with y <$ and let {k,} be a sequence satisfying (1.1). 

Then for any fixed 0 < c < 1 the sequence {e, (e-“): 0 c x G log( l/ c)} of processes 

converges weakly in the Skorohod space D[O, log(l/c)] to the process {V,(x): 0~ x G 

log( l/c)}. Furthermore, 

I 
sup e,(t)-B,(log(l/c)) 

cet=1 

= exp(-e-“) 

for all x E R. 

Finally we would like to connect Theorem 1 to the classical theory of domains 

of partial attraction for the whole sums X1 +. . * +X, and thereby show that Theorem 

1 is not empty for any choice of O< a < b and non-negative, non-decreasing con- 

tinuous function cp on [a, b]. In particular, we claim the following: Let 0 ( a < b < cc 

be arbitrary and let cp be any non-negative, non-decreasing, continuous function on 

[a, b]. Then there exist a distribution function F, a subsequence {n’} = { nj},“=, , and 

a sequence k( = k,; satisfying kj + 00 and kj/ ni + 0 as j + 00 such that for the versions 

f,,, of the intermediate sums I,,, pertaining to F in Theorem 1 we have (1.7) as n’+ ~0. 

In fact, there is a universal F that does the job for all 0 < a < b and all functions 

rp on [a, b] with the described properties. 

Indeed, let 0 < a < b be arbitrary and rp be any continuous, non-negative, non- 

decreasing function on [a, b]. Choose 0 < a,< a < b < b,< ~0 and extend the 

definition of cp so that the extended cp is continuous and non-decreasing on [a,, bo] 

and cp( a,) = 0. Now define 

cp(ao)-dbo), 'J<ssao, 

ao<scbo, 

s>bo, 
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and introduce R(x) = -inf{s > 0: $(s) 2 -x}, x > 0. Consider the spectrally right- 

sided infinitely divisible distribution without a normal component, the right Levy 

measure of which is R(x), x> 0. Then by the classical theorem of Khinchin [4, 

p. 1841 there is an F in the domain of partial attraction of this infinitely divisible 

law. Using Theorems 3 and 5 in [l], this means, in particular, that there exists a 

subsequence {n,},“,, of the positive integers such that if Q denotes the quantile 

function belonging to F then we have 

-Q((l-S/nj)-)lB~-t ccl(S), ~‘0, (1.17) 

as j + ~0, where B: > 0 are some constants. Now define nJ = [n:“] and kj = [n,f”l/n,, 

j = 1,2,. . . . Then kJ + 00 and ki/ ni -+ 0 as j + 00, and it follows from (1.17) that 

for each a,~ s G b,. This means that condition (1.6) is satisfied and hence by 

Theorem 1 we obtain (1.7) along {n’} = {nJ},El, with B,; replaced by the present Bi. 

A universal F is obtained by using the distribution function F of any of the universal 

laws of Doeblin [4, p. 1891. 

In order to give a flavor of the content of Theorems 1 and 2, we close this section 

by an illustrative example. Set 

Q(l-~)={/3+sin(logs)}s-?, O<s~l, 

where y > 0 and p > (1 + y)/ y. Differentiation shows that Q is an actual quantile 

function. For j = 1,2,. . . , set 

ni = ]exp(4rrj)] and kj = k,,; = nJ exp( -2nj), 

so that kiln; = exp(-2nj), j = 1,2, . . . . Also let 

Bj= B,;=exp(2Tyj), j=l,2,.. . , 

and choose a, > 0 arbitrarily. Then for any a, s x <CO and all j large enough, 

= {/3 +sin(log s)}xey -{/3 +sin(log a,)}&’ 

-. P(X). -. 

We see that Theorem 1 applies along {n’} = { nj};, for all y > 0 and all a, < a < b < 03 

and, moreover, it is easily checked that Theorem 2 is also applicable when 0 < y < +. 

Notice that by (1.11) the distribution function corresponding to such a Q is not in 

the domain of attraction of AY for any y. 

2. Proofs 

Let U,, U,, . . . , be independent random variables uniformly distributed on (0, 1) 

with corresponding order statistics U,,, < . . . G U,,, . Consider the uniform empirical 
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and quantile processes (~,(f)=&(G,(t)-t) and &(t)=fi(t- U,,(t)), Osrtl, 

where G,(t)=n-‘#{lsI~knn: Ukdt},O<f<l,and U,,(t)=inf{O<s<l: G,(s)2 

t}, O<ts1, U,(O)= U,,,, so that CJ,,(C)=U~,~ if (k-l)/n<tsk/n, k=l,...,n. 

The tail empirical and quantile processes pertaining to the given sequence {k,,} 

satisfying (1.1) are defined as 

w,(s) = (nlkJ”2~,(&l~) 

and 

u,(s) = (n/k,J”2p,(sk,,/n), 0~s~ n/k,. 

As pointed out in [6], w,,( .) converges weakly in the Skorohod space D[O, T], for 

any T > 0, to a standard Wiener process. Then by a Skorohod construction and the 

left-continuous version of Lemma 1 of Vervaat [8] (both also in [7]) we see that 

the sequences {w, (. )}T= 1 and {v, (. )}r=, have distributionally equivalent versions 

{k’, ( * )}z=, and { fi,, ( . )}y= I on a rich enough probability space that carries a standard 

Wiener process W such that 

sup JJixs- W(s)l+O and sup I&(s)- W(s)\+0 a.s. (2.1) 
OS.SST “SFGT 

as n+m. 

In order to obtain the distributionally equivalent copies ?,, of Theorem 1, we first 

note that from (1.4), 

(X1$, . . . > XI,,) =a (-H(u?,,), . . . , -H( U,.,)) for each n 2 1. 

Define B, > 0 arbitrarily for an n which is not a member of {n’} in (1.6). Then, 

using the notations in (1.2) and (1.5), starting out from the equality 

{r,(a,t)-~CL,(a,t):a~t~b} 

U>I(tk,Iln) I%l/n 

='J) - 
I/ 

nH(u) dG,(u)+ 
I 

H(u)du:astsb , 
> 

nal, 
U.,(&ln) i&l/n 

and then integrating by parts, for the processes Y,, (a, t) in (1.8) and for 

YZ(a, t):=J@(a, t)-R:(a)+R;(t), 

where 

Wf(a, t) =kgn 
Irk,,l/n 
,ak,,,,n (G,(u) - u) dH(u) 

and 

R:(t) =&rB, 
U,,(fk,,/n) 

(G(u) - u> dH(u) Irk,,,,n 

we obtain 

1 Y,(a, t): actsb} 

=~{Yf(a,t)=M~(a,t)-R~(a)+R~(t):asttb}, nal. (2.2) 
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Substituting now u = sk,/ n and transferring to the probability space of the versions 

C’, and 6, in (2.1), we get 

{ Y?z(a, t): UGftZ?} 

=~{~~(a,t):=~~(a,t)-~,(a)+~,(z):a~t~b}, nal. (2.3) 

where, with the obvious extension of the definition of (P,,~ for an arbitrary n, 

and 

Proof of Theorem 1. Relations (1.8) and (2.3) show the existence of versions {i(u, t): 

I( c t c b} of {I,,(u, t): a s t 4 6) as claimed in the statement in the theorem once 

we prove that 
I 

sup I&(t)/+0 a.s. as fl’+cc 
a=r=h 

(2.4) 

and 

(2.5) 

By(2.1)andthefactthat)W(.)/’ b IS ounded on any finite interval with probability 

1, there exists an almost surely finite random variable K > 0 such that for all n’ 

large enough, 

sup I~nO)l 
acr=%/I 

J K 
G K sup 

d H( [tk,Jn’+x~/n’) 

a-;r=/J -_K & 

= K sup 
H( [tk,,l/n’+ K&/n’) - H( [tk,,c]/nt- KG/n’) 

u-:t_;h Bd 

ifkcl K -- 
k,, a 

almost surely. Since cp,( a,, .) is non-decreasing, by condition (1.6) and the continuity 

of cp this bound goes to zero as n’-+o~ and hence we have (2.4). 
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To prove (2.5), first notice that (2.1) and (1.6) easily imply that 

a;uEbIS.(a, I)-~,~~~~~:~~~ W(r)drp,,(a,,s)l +O a.s. as n’+a. 

Next, for all n’ large enough, 

II 

I$llk,,. 

I 

f 

sup W(s) dqn,(ao, s) - W(s) dpn,(ao, s) 
aS_rSh lak~llk~ a 

c-2 sup IW(s)l 
a,srsbo 

and this bound goes to zero again by (1.6) and the continuity of cp as n’+ ~0. Finally, 

(2.5) and hence the theorem will follow from these relations if we show that 

J 

I 

W(s) dp(s) +O a.s. (2.6) 
a 

To verify this, notice that with probability 1 for any given E > 0 there exists a 

(random) partition a = to < f, < * . . < t, < t,,, = b such that 

II t,+, J t1+1 

W(s) drp,,(ao, s)- W(s) drp(s) <$E 
L1 Cl 

and 

for all i = 0, . . . , m and n’ large enough, where m does not depend on rr’. Thus for 

any fj~r4ti+, and i=O,...,m, 

II 

t 

J 

f 

W(s) dw(ao, s> - w(s) ddS) < E 
a a 

almost surely for all n’ large enough, proving (2.6). 0 

Proof of Theorem 2. First we note that it is easily checked that (1.10) implies the 

finiteness of ~~(0, b) for all n large enough, so that the representation (2.2) holds 

true for a = 0. Hence, again defining 8, > 0 arbitrarily for an n E {n’}, 

El(t)-Pn(O, ‘1: Ost__b 

fi Bn I 
=~{(M~(O,u)+M~(u,f)-R:(O)+R:(f):O~u~t~b} 

for each n 2 1. Furthermore, it follows from the derivation of (2.2) and (2.3) that 

for each nal, 

{(M:(O, a), M;(u, t), R;(O), R?(t)): 0s us t G b} 

=‘i. {(fi,,(O, a), lii,(u, t), k,(O), I?,(t)): OS ad ts 6). 
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Hence, in view of the fact that now we have (2.4) and (2.5) for any fixed 0 < u < b < bo, 

it suffices to prove 

(2.7) 

(2.8) 

and 

1~~ lim sup P sup /R:(t)1 > e = 0, 
n’+‘x { OS,SCZ I 

(2.9) 

where F > 0 is arbitrary. 

We have 

E SUP IW%O, f)l 
OStSll > +yE o I 

l+lln 
n’lG,+) - ul dH(u) 

r+llk,z. 
&dH(u) 

where the last inequality holds for all n’ large enough. Hence, using condition (l.lO), 

by the Markov inequality we obtain (2.7). 

Also, f 
W(s) drp(s) 

and hence condition (1.10) and the Markov inequality again imply (2.8). 

Finally, using the fact that for any a > 0, 

fun f% +pu ( > as n+co, 
n n 

which follows for example from (2.1), we obtain that for each a > 0, 

n'(G,,(u) - ul dH(u) 
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as n’+ ~0. But the expectation of the first term here is not greater than 

i 

2a 

fi dw(aO, s), 

0 

and hence we obtain (2.9) as above. 0 

Proof of Corollary 1. Since 

I 
a &dq,(s) = a spyp’/2 ds+O as ai0 

0 I 0 

whenever y < 4, we only have to prove that 

liilim+szp if r<i, (2.10) 

where (P,, is given in (1.12). 

Fix O<a<l. Then we have 

where, using (l.ll), 

r;(n, a)=2-“2{cp,(a/2’)-cp,(a/2’+‘)} 

= 2m’/2 “(2- 
(‘+‘)ak,,/n) - H(2-‘ak,/n) 

“(u,Wn)-“(t&/n) 

= 2_j,2 “(2~‘4,ln) - “(&,ln) 

H(u,Wn)-H(v,kln) 

x Ii H(2- (“‘+‘)ak,/n) - H(2m”ak,/n) 

WI=, H(2p”ak,/n)- H(2p’“-“ak,/n) 

<2-i/2 a~~ 
{ 

IWy - 11 

IYI +a 
“2 

I 
(2Y + a}’ 

for all n large enough, where we use the convention that I((t>-Y - 1)/-r = log 2 if 

y = 0. Hence for all n large enough and all a > 0 small enough, 

Since this bound goes to zero as a&O, (2.10) follows. 0 

Proof of Corollary 2. The first statement follows directly from Corollary 1. 
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Calculation shows that for the covariance function r,,( *) of the process V,( .) we 

have 

r,(h)=l-$A,h2+o(h2) as h+co, 

where A, is as in (1.16). Applying now Theorem 8.2.6 in Leadbetter, Lindgren and 

Rootzen [5], we get that for all XE[W, 

V,(x)-B,(T) 

where A(T) and B,(T) are given in (1.15) and (1.16). This and the first statement 

now easily imply the second statement after a time change. q 
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