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The hyperoctahedral group (the Weyl group of the root system B,) has seven 
distinct nonsplit double covers (for n>4), and hence, seven families of projective 
representations. We give constructions of all the irreducible representations of these 
seven double covers in terms of symmetric group representations, and determine the 
associated character tables. As a corollary, we also obtain the irreducible projective 
representations and characters of the Weyl group of the root system D,. 87) 1997 
Academic Press, Inc. 

The hyperoctahedral group is the Weyl group of the root systems B, and 
C,, or equivalently, the symmetry group of an n-dimensional cube. For 
n 3 4, this group (hereafter denoted W,) has a Schur multiplier isomorphic 
to Z, x Z, x Z,. This implies in particular that the projective representa- 
tions of W, (over the complex field) can be viewed as certain linear 
representations of seven distinct nonsplit double covers of W,,. 

Given the close connections between the linear representations of W, 
and the symmetric groups S,, it is natural to expect that similar connec- 
tions exist for projective representations. Indeed, the main result of this 
paper is the fact that the projective representations of W, can be explicitly 
constructed from the linear and projective representations of symmetric 
groups. To be fair, we should modify this by adding two qualifications. 
First, one should add to this list the representation obtained by restricting 
the basic spin representation of 0, to W,, (embedded via the reflection 
representation). Second, to make the constructions completely explicit, one 
also needs to have at hand the irreducible decomposition of each 
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symmetric group module with respect to the alternating subgroup. In the 
projective case, this can be obtained as a corollary of Nazarov’s work [N], 
but curiously, in the linear case, there does not appear to be any known 
solution in the vast literature on representations of the symmetric group. 

There have been several papers written about projective representations 
of W,, or closely related groups such as the wreath products Z, { S, (of 
which W, is the special case I= 2), or more generally G 1 S, for arbitrary 
groups G. For example, see the papers by Read [R2], Morris [MOM], and 
Hoffman and Humphreys [HHl-21. These papers approach the subject 
from various other points of view. Furthermore, Read’s paper is not as 
explicit, and the other papers not as complete in their treatment of W,, as 
the approach we take here. There is little doubt that the methods of this 
paper could be applied to Z, { S,, and to some extent G l S,, but we have 
deliberately avoided this to preserve simplicity. 

Another aspect of our approach that has not been addressed in previous 
papers is the description of the irreducible characters. In the course of con- 
structing the irreducible representations of the various double covers of W,, 
we will also determine the corresponding characters. We should mention 
that in a recent paper [J2], Jozefiak has also determined the characters of 
one of the double covers; namely, the one associated with the factor set 
labeled [ + 1, + 1, - 11 (cf. Section 9). 

The paper is organized as follows. 
In Section 1 (a reformulation of results in [DM]), we construct the eight 

twisted group algebras corresponding to the eight factor sets (2-cocycles) of 
W,; the fact that there are eight was first proved in a case-by-case analysis 
of finite reflection groups by Ihara and Yokonuma [IY]. A uniform 
approach for Coxeter groups has been given recently by Howlett [H]. 

In Section 2, we analyze the structure of the conjugacy classes of the 
seven nonsplit double covers of W,, (Theorem 2.1). Although one can, in 
principle, obtain the same information from an earlier paper by Read 
[Rl], we have included proofs since we will also need more detailed infor- 
mation regarding the centralizers of individual elements (Lemma 2.2). 

In Section 3 we present an elementary idea that leads to a tremendous 
simplification of the task of constructing the projective representations of 
W,,, or more generally, of any group G with a quotient isomorphic to 
Z, x Z,. The fundamental idea is the observation that Z: has a two-dimen- 
sional projective representation p (corresponding to the fact that there exist 
anticommuting involutions in GL,), and so by extension, every covering 
group of Zi has such a representation. It follows that the operation 
V++ p @ V allows one to pass between representations of W, corre- 
sponding to two different factor sets, and the fact that p is two-dimensional 
prevents the creation of “too many” irreducible submodules in p 0 I/ when 
V is irreducible. We use a simple application of the methods of Clifford 
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Theory to classify the irreducible submodules of p @ V (Theorem 3.2) and 
show that the irreducible characters of these submodules can be expressed 
in terms of the difference characters of Wn (or one of its double covers). 

An added virtue of the approach we take in Section 3 is that it provides 
a simple explanation of the “twisted” outer tensor product that has figured 
prominently (in various guises) in many of the recent papers [HHl-2, 
Mo2,Jl-2, Stl-21 on projective representations of S, and related groups. 
In our approach, one starts with irreducible modules V, and V, for two 
groups G, and G, with Z,-quotients (i.e., subgroups of index 2). Using the 
fact that G, x G2 has an obvious Zi-quotient, we define the twisted tensor 
product V, 6 V2 to be one or more of the irreducible submodules of 
PO(~,O~*). 

To complete the preliminary half of this paper, we summarize in 
Section 4 the basic techniques needed to use the algebra of symmetric 
functions to manipulate symmetric group characters (both linear and projec- 
tive). More details can be found in [Ml ] (for the linear case) and [St1 ] 
(for the projective case). In Section 5 we recall the well-known construction 
of the irreducible linear representations of W,,, and show how the methods 
of Section 4 can be used to verify the validity of this construction. This 
technique will serve as the motivation behind our approach to one of the 
double covers of W,, in Section 7. 

Finally, in Part II, we turn to the problem of constructing the modules 
and describing the characters for each of the seven families of projective 
W,,-representations. This task can be roughly divided into two phases. In 
the first phase, occupying Section 5, Section 7, and the first half of 
Section 9, we construct the modules and characters corresponding to four 
of the factor sets of W, (counting the linear representations as one of the 
four cases). The only limiting factor in making our constructions explicit is 
the extent to which one wishes to make the structure of the modules and 
characters of the symmetric groups (linear and projective) explicit. In the 
second phase, occupying Section 6, Section 8, and the second half of 
Section 9, we use the methods of Section 3 to obtain the modules and 
characters for the remaining four factor sets. This task essentially amounts 
to constructing the “associators” (cf. (3.1)) and difference characters for 
the irreducible representations of the first phase. In this second phase, the 
modules are obtained as eigenspaces of certain involutions related to the 
associators. 

We remark that W, has three subgroups of index 2, along with a normal 
subgroup of index 4. For each of the factor sets of these groups that are 
restrictions of W,-factor sets, one may obtain the corresponding irreducible 
representations and characters as immediate corollaries of the work in 
Part II. In the Appendix, we briefly consider the implications of this for one 
particular subgroup of index 2-the Weyl group of the root system D,. 
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Notational Remarks 

We will use P to denote the set of partitions; i.e., sequences of zero or 
more positive integers of the form i” = (Ai b . . . >/ A,). For the most part, we 
will use the same notation as [Ml] for the various parameters and opera- 
tions associated with partitions. In particular, we will use 121 to denote the 
sum of the parts, and I(n) to denote the number of parts. The modifiers E, 
0, and D will be used to indicate that the parts should be restricted to be 
even, odd, or distinct, respectively. For example, the notation DOP will 
thus refer to the set of partitions with distinct, odd parts. Also, we will use 
DP+ (resp., DP-) to refer to the partitions 2~ DP for which 11) -I(1) is 
even (resp., odd). 

PART I: PRELIMINARIES 

1. THE TWISTED GROUP ALGEBRAS OF W,, 

Let s 1, . . . . s, - 1, t denote a set of Coxeter generators for W,,. We will 
assume that these generators are labeled so that for the reflection represen- 
tation, s, corresponds to interchanging coordinates i and i + 1, and t 
corresponds to changing the sign of the first coordinate. Note that the 
Coxeter relations 

Sf = t2 = (sisi+ ,)3 = 1, (sfSj)2= 1 (Ii-j\ >2), 

(s,t)2= 1 (i> l), (s, t)4 = 1 (1.1) 

constitute a presentation of W,. 
Let L, = Hom( W,, C*) denote the abelian group of linear characters of 

W,,. An easy application of the Coxeter relations shows that L, is 
generated by the two characters E and 6 defined by 

&(Si)= -1, c(t)= fl, 6(s;)= +l, d(t)= -1. 

This shows in particular that L, z Z, x Z,. 
Let o! be a factor set for W,, and let C Wz denote the corresponding 

complex twisted group algebra [CR, Sect. 8B]. To describe this algebra 
explicitly, let GI, . . . . B,_ ,, t denote generators for C W; corresponding to 
si, . . . . s,- i, t. Note that scalar multiplication of these generators has the 
same effect as replacing a with an equivalent factor set, so there will be no 
loss of generality in requiring that tl be chosen so that cf = ~~ = 1. 
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PROPOSITION 1.1. The algebra C Wz has a presentation of the form 

rT;=T2=(a,a,+,)3= 1, (o,oj)’ = El (Ii-j1 3 21, 

(c,t)* = E2 (i > I), (~l~)4=E3, 

(1.2) 

for suitable scalars E, , ~2, ~3 = _+ 1 (depending on a). 

ProoJ: If X, y E C Wz are involutions, then so is (xv)“ x for any integer 
k. If (~y)~ is a scalar, it must therefore be k 1. In particular, since (1 .l) 
shows that each of (o~o~+,)~, (~;a~)’ (Ii- jl 32), (air)* (i> l), and (0,~)” 
must be scalars, they must all be * 1. In other words, CI may be taken to 
be F 1 -valued. 

We may now substitute di-+ -(T,, if necessary, to ensure that 
(o,(T;+ J3 = 1. 

Let W,(a) denote the double cover of W, generated by pi, . . . . o,~-, , r, 
and - 1. If the images of x,y~ W,(u) are conjugate in W,, then there exists 
an element ZE W,(a) such that zxz ~’ = -&. In particular, this shows that 
x2 and y* are W,,(a)-conjugates. Therefore, since the involutions sisj 
(Ii-j1 22) are all W,,-conjugates, then the scalars (a,~~)’ must all be 
W,Z(ct)-conjugates. In other words, there exists a scalar Ed = _+l inde- 
pendent of i and i such that (a,oj)’ = E,. Similarly, the involutions sit are 
conjugate for i > 1, so there exists a scalar E* = t- 1 so that (air)’ = ~2 for 
all such i. 

To complete the proof, note that since (1.1) defines a group of order 
1 W,l, then (1.2) defines an algebra of dimension at most ( W,,I. Therefore, 
given that the relations (1.2) are satisfied by some algebra of dimension 
1 W,l (namely, C WE), then these relations must form a presentation of that 
algebra. 1 

An issue that this proposition does not address is whether there actually 
exist nonzero C-algebras that satisfy the relations (1.2) for each of the eight 
possible choices for E, , Ed, and Ed. This can be settled by noting that in 
Part II, we will construct explicit representations for each of these choices. 
From this one may conclude that there do exist factor sets corresponding 
to each of the eight possibilities. We will use the expression [Ed, e2, ~~1 

to denote the (equivalence class of the) W,-factor set corresponding to 
El, 82, E3. 

Note that the relations (o;o,)* = E, exist only for n 2 4, and the relations 
(0~2)~ = ~2 exist only for n > 3. It follows that the factor sets [ f 1, Ed, Ed] 

are identical for n = 3 and the factor sets [k 1, + 1, Ed] are identical for 
n = 2. It is easy to check that these are the only isomorphisms between the 
factor sets, so the Schur multiplier of W, is Z i for n 2 4, Zz for n = 3, and 
Z, for n = 2 (cf. [IY, HI). 
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It will be convenient to record here a few basic identities that will be 
needed later. To simplify the notation, let us define 

ti=s-, . ..s.ts, .‘.Sj-l E w,, 

?Si=uj-,...u,Tu,...u,-IE W,(cc) 
(1.3) 

for 1 6 id n. Note that t,, . . . . t,, are the reflections corresponding to the 
short roots of the root system B,?; we will refer to them as the “short 
reflections.” 

In the following, [x, y ] = xyx - ‘-r ~ ’ denotes the group commutator in 
W,,(r). 

PROPOSITION 1.2. Assuming c1= [E~,E~,E~], we have 

[Ioi, Ojl =&I (Ii-J 2 21, Co;, t,] = e2 (j- i # 0, I), 

CT,, t,l = + (i# j). 

Proof. The first relation is just a restatement of (1.2). To prove the 
second relation, note that the involutions siti (j - i # 0, 1) are all W,,-con- 
jugates, so by the same reasoning used in the proof of Proposition 1.1, 
the commutators [cri, s,] must be independent of i and j. Therefore, 
[B,, rj] = [o,, z] =s2, by (1.2). To prove the third relation, note that the 
involutions t,t, (i # j) are W,-conjugates, so [r;, r,] is also independent 
of i and j. Therefore, [It,, r,] = [r?, z,] = [o,ro,, r] = (~,t)~= sj, again 
by (1.2). I 

We remark that for factor sets c1 with E, = + 1, the subalgebra of C W; 
generated by cr, , . . . . crnm , is the group algebra CS,; for c1 = -1, the 
corresponding subalgebra is a twisted group algebra for S,. We will 
denote this latter algebra by CSL. Also, we will use the notation 3, for the 
corresponding double cover of S,,, i.e., the subgroup of CSL generated by 
(Jl 3 ‘.‘, u,, - I and -1. 

2. CONJUGACY CLASSES 

A projective representation of W,, can be regarded as a module for one 
of the twisted group algebras C Wz, or equivalently, as a linear representa- 
tion of the corresponding double cover W,,(E) in which the central element 
- 1 E W,(a) is represented faithfully. The latter will be referred to as spin 
representations cf W,(a). In this section, we will classify the conjugacy 
classes of each group W,,(m) in order to simplify the task of describing the 
irreducible characters. This has also been done more generally by Read 
[Rl] for the wreath products Z, 1 S,. 
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First, consider the conjugacy classes of W,,. These are indexed by 
ordered pairs of partitions (A, p) with I;(( + (~1 =n. To describe the mem- 
bers of a given class, let us identify W,, with the group of n x n monomial 
matrices with entries chosen from Z,. References to the cycles of an 
element WE W,, will thus refer to the cycles of the underlying permutation 
matrix. We will say that a cycle of w is positive or negative according to 
whether the number of -1’s in the matrix entries of the cycle is even or 
odd. In these terms, the class indexed by (i, ,u) consists of those w E W,, 
whose positive (resp., negative) cycles have lengths A,, I,, . . . (resp., 
pL1, pLz, . ..). We remark that the values of the linear characters E and 6 on 
the (A, p))-class are ( - 1)” ~ ‘(‘I ~ lcfl) and ( - I)@), respectively. For further 
details, see [JK, Sect. 4.41 or [Z, Sect. 71. 

Now, choose a particular W,-factor set c1= [E,, .s2, ~1, and let C(a) 
denote the inverse image in W,(a) of some WH-class C. If any w E C(a) is 
conjugate to -w, then C(a) is a W,(a)-class; otherwise, C(a) splits into 
two such classes. Thus, the essential structure of the W,,(a)-classes can be 
inferred from knowledge of which pairs (A, p) index W,-classes that split in 
W,,(a). 

THEOREM 2.1. For each nontrivial factor set a, the pairs of partitions 
(1, p) that index split classes of W,,(a) can be found in Table I. 

The lists in Table I have been broken up into four columns according to 
the four possible values of E and 6 on a given W,-class. For example, the 
entry in the fourth column for the factor set [ + 1, - 1, - l] is (DOP, 
DEP). This means that if (A, cl) indexes a W,,-class with E = 6 = - 1, then 
the inverse image of this class splits in W,( [ + 1, - 1, - 11) if and only if 
the parts of A are distinct and odd and those of p are distinct and even. 

Proof Let w I-+ G denote the canonical epimorphism W,(a) + W,. The 
class of w will split if and only if the normalizer N( f w) actually centralizes 
w. To decide when this occurs, it suffices to identify a set of generators for 

TABLE I 

a E= +1,6= +1 E= -1,6= +1 E= +1,6= -1 E= -1,6= -1 

[+I, -I, +11 (P. PI VP> 0) (DOP, DOP) (0, -1 
c-1, +l, +I] (0P;OP) (DP, DP) (OR OP, (Df’, DP, 
c-1, -1, +11 (OR OP, (DEf’, 0) (DP, DP, (0, D-W 
c+1, +1, -11 (OR 0) 0 (0, DP) (0, DP) 
[+l, -1, -11 lop, 0) (0, DP) (07 op, (DOP, DEP) 
c-1, +l, -11 (OK -W (0. DOP) (0, P) 
c-1, -1, -11 top, -W (0, PI (OK Ef’, 
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N( f W) and determine if any of these generators fail to commute with W. 
To choose a canonical element w = Wj,~ so that W belongs to the class 
indexed by (A, p), let us define 

W j.+:= w1w2...w;w;..., (2.1) 

where wi and w: are 

wi= CT a,-,+l--.~,,-2~0,-1 (q=I, + .‘. +&) 

U’:=~.h,~,+I’.‘~.h,~2~h,~ITh, (hi= IAl + /Ll + ‘.. +/A(), 

Note that Wi (resp., Wi) is a positive &-cycle (resp., negative pj-cycle). 
The image of N( 2 wj,,) in W,, is the centralizer of W,,, which can be 

identified as a direct product of wreath products [JK, Chap. 41. From this 
structural decomposition, it is not hard to deduce that a set of generators 
for this centralizer (as a group of monomial matrices) consists of: (1) the 
cycles of W,,, (2) for each positive cycle of WiP, the diagonal matrix with 
- l’s in the positions indexed by the cycle, and (3) for each pair of positive 
(resp., negative) cycles of the same length, an involution that interchanges 
corresponding positions in the two cycles. Therefore, a set of generators for 
N( F Wj.,) consists of the central element - 1 and 

(1) The “cycles” w, and ~3:. 
(2) For each positive cycle M”~, the element zi = z,,~, + , . . . t,,_ I r,,. 
(3) For each adjacent pair of positive cycles of length k (so that 

Ai=Ai+I=k), the element u~=((T,,~,+,...~,,+,~~~~,+,~,)~. 
(3’) For each adjacent pair of negative cycles of length k (so that 

j~=p,+~=k), the element uI=(~~,~,+,...~b,+,-~~b,+,-~)~. 

The following result determines which of these generators commute 
with wlP. 

LEMMA 2.2. Assume I = n - l(l) - l(p). 

(a) rfi,=k, then [wj,,, w,]=E(~~~‘)(‘-‘)E:~~‘)‘(~). 

(b) Ifp;=k, then [w~,~,w:]=E, (k-l)(/-l)F(k-l)I(~)+Igl(~‘)-l 

Iflj=k, then [w,,, zi] =$‘E~(~)+*-~~ 
3 . 

(c) 

(d) IfAi= Ai+ 1 = k, then [wAp, u,] =E~+~--‘E~‘(~). 

(4 IfPi=Pi+ 1 =k, then [w,,, u:] =F~‘+~-‘@‘)E~. 

Given this lemma, one may easily verify each of the 28 entries in Table I. 
For example, consider the factor set [ - 1, + 1, - 11, and suppose that 
n-l(A)-/(p) is even and 1(p) is odd (so that E(w~+)= +l and 
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6(w;,,) = -1). In that case, the five commutators listed above simplify to 
(-l)“-‘, (-l)k-~‘, - 1, ( - l)k- ‘, and ( - 1 )k, respectively. This implies 
that one of the generators of N( f wj,+,) will fail to commute with M’~,~ if jV 
has any parts (by part (c)), if p has any even parts (by part (b)), or if p 
has any repeated odd parts (by part (e)). Conversely, if there are no such 
parts, it is easy to see that each of the five commutators is trivial. Thus, we 
conclude in this case that (A, ,u) indexes a split class if and only if A = $3 
and p E DOP, which agrees with the corresponding entry in Table I. The 
remaining cases follow by similar arguments; the tedious details are left to 
the reader. 1 

Proof of Lemma 2.2. If x E N( + w,,,) has the property that each of the 
commutators [wi, x] and [w:, x] are scalars (i = 1, 2, . ..). then [w,,, x] 
will factor as the product of these scalars. For example, by repeated 
application of Proposition 1.2, we have 

cwj, wi] =E;J.- l)(i.,-~ 1) (iZ.i) 
CM,! 

.I’ wl 
, 1 =E(p- IH+l)E(& 1) 

2 

CM,! U,!]=e’~,~‘“~“~l)E(~,‘/‘l+(~‘~‘)E 
I’ 1 I 2 3 (i# j). 

Therefore, since [wjj, MJ~] and [wl, bvi] are both scalars, it follows that 

CWIj” w,l = CJQ,, ~‘ilC~‘2, WJ “. [w;, w,][wk, w;] .” 

=E(k-l)(/~k+l)F(k-l)l(~c) 
1 2 2 

where k=i; and I=n-l(l) -I(p). This proves part (a) since 
(k - 1 )(I - k + 1) = (k - 1)(1- 1) mod 2. One can prove part (b) similarly 
by noting that 

For part (c), repeated application of Proposition 1.2 shows that 
[MI,, z,] =E$(~J~“) for i# j, and [WI, zi] =s~(i~~‘)~$. Hence, 

[WA,, Zi] = &yk+ l)&yqWi, z,] = &y&y[wi, z;], 

where k=Ai. To evaluate [wi, z;], let z=T, ...z~E W,(a), and note 
that [cri,z]=~:~~~~, since [a,,rj]=s2 for j>2 and [o,,T~T~]= 
[a,, 26, za,] = (DOT)' = s3. Furthermore, the IV,-images of ojz (1 <j< k) 
are all conjugate, so for the same reasons we used in the proof of 
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Proposition 1.1, the scalars [cri, z] must be independent of j. Hence, 
[wi,zi]=[o,...a,~,,~]=[o,,z]k~‘=~~-1)(k~2)~~~1=~~-‘, and thus 
part (c) follows. 

For the proof of (d), we claim that [N;, ui] = E:(~~~ ‘) (j- i# 0, l), 
[wj, UJ =&y-l)&;, and [w~w~+,,u,]=E~~‘, assuming ,l,=A;+,=k. The 
first two of these formulas are direct consequences of Proposition 1.2; the 
third is not quite as routine (see Lemma 2.5 of [St1 ] for a proof). We 
therefore have 

Cwip3 uil = Cwfwj+ 1, U,l 
jti.i+ I i 

=Ek(l~~2k+2)+k~lekl(~)=Ekl+k~1Ekl(~) 
I 2 I 2 . 

For the proof of (e), we claim that [wj, u,!] =&/;(‘/‘-I), [wi, u,!] =E~(~~~ ‘)E; 
(j-i#O, l), and [w:w:+~, u:] =E:-‘E~, assuming pi=pi+l =k. Again, 
the first two of these formulas are easy consequences of Proposition 1.2; the 
third requires more explanation. If we define w = 0, . . . CT~ _, ok + 1 . . crZk ~ I 
and u=(o~...~~~~~ )k, then [w, u] = ET-’ by (d). Furthermore, the 
IV,,-images of the pairs {wiwi, 1, u,} and {wrkrZk, U} are simultaneously 
conjugate in W,, so cw:w:+ ], ui] = [WTkT2k, u]. Since the W,,-image of u 
is a product of disjoint, positive 2-cycles, and ~~~~~ E N( +u), we have 
[Tk Tzk 2 u] = Ed, by (c). Hence, 

c4w:+,, U;] = [WTkTZk, U] = [W, U][TkT2k, U] = ET- ‘g3, 

as claimed. The formula for [wj,+, ui] may now be deduced by the same 
reasoning used in the proof of (d). 1 

We remark that a basis of the center of C Wz can be generated by the 
W,,(a)-conjugates of the u’~.,‘s that split. This implies in particular that the 
number of irreducible spin representations of Wn(a) is the number of split 
pairs (2, p). 

If x is the character of any representation of W,(a) (or in fact, any func- 
tion defined on W,(a)), we will write x(,4, p) as an abbreviation for ~(w?.,). 
Clearly, any such character is determined by its values on these elements. 
More particularly, the character of a spin representation is determined by 
its values on the split classes, since in that case, x(-w) = -x(w) = 0 
whenever w and -w are conjugate in W,,(a). 

We will follow a similar convention for the characters of S, and 3,. For 
each partition 2 of n, define w;, = w j,,Qr, regarded as a member of S, or 3, 
according to whether E, = + 1 or E, = -1. In these terms, given any charac- 
ter 1 of S, or s,, we will write ~0~) as an abbreviation for X(wj,). 

481145’2.II) 
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3. CLIFFORD THEORY FOR Zi-QUOTIENTS 

Let G be a finite group with a subgroup H of index 2, and let E denote 
the “sign” character of the natural homomorphism G + G/H. If V is an 
irreducible CG-module, we will say that V is self--associate (with respect to 
E) if VZ E@ V; otherwise, we will say that V and E@ I/ form an associate 
pair (with respect to E). 

If V is self-associate, there exists an endomorphism SE GL( V) such that 

gsu = E(g) sgv (3.1) 

for all v E V, g E G. By Schur’s Lemma, S2 must be a scalar. In case S2 = 1, 
we will refer to S as the .+ussociutor of V. This terminology is slightly 
imprecise, since it permits us to refer to both S and -S as the associator. 
Assuming a particular choice for S, let V= V+ 0 V- denote the eigenspace 
decomposition of S on V, labeled so that V+ corresponds to the eigenvalue 
+ 1. Note that (3.1) implies that V+ and VP are CH-modules; in fact, they 
are irreducible and nonisomorphic as such modules. Otherwise, if V and 
E 0 V are an associate pair, then both are irreducible (and isomorphic) as 
CH-modules. (See Lemma 4.1 of [Stl], for example.) Similar remarks also 
apply to modules for any twisted group algebra of G; one merely needs to 
replace G by a suitable central extension c, and H by its preimage in G. 

Given a self-associate CG-module V with associator S and character x, 
the difference character A”x = Ax is the trace function 

Ax(g) := tr A%) = trv+(g)- tr.-k); 

i.e., the difference between the characters of the CH-submodules. Note that 
by substituting -S for S, one obtains -Ax as the difference character. We 
also remark that 

Axh-‘) = 4x1 Ax(g) (3.2) 

is a simple consequence of (3.1). 
We now consider a similar analysis for the case in which G has a normal 

subgroup H such that G/H EZ Z, x Z,. The principal examples for G we 
have in mind are W, and its double covers W,(a), but we also plan to 
apply this analysis to a double cover of W,,, x W,,, relative to the subgroup 
generated by the E = + 1 portions of W,,, and W,,. 

Let L 2 Hom(G/H, C*) denote the group of four linear characters of G 
that arise from the quotient of G by H, and let a be any factor set of G. 
Note that L acts on (isomorphism classes of) CG’-modules via VI-+ .a@ V 
(E E L). We will use the notation L, = {E E L: VZ E @ V} for the stabilizer 
of V. The following result classifies the possible behaviors that can occur 
when a CG”-module is restricted to CH”. 
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THEOREM 3.1. Let V be a finite dimensional, irreducible CC”-module. 

(a) If L v = { 1 }, then V is an irreducible C Ha-module. 

(b) If L “= { 1, E}, then the eigenspaces of the &-associator of V are 
irreducible, nonisomorphic CH”-modules (and similarly for L “= { 1, 6) or 
(1, Ed)). 

(c) Ij”L”=L=(l,&,~,&~}, and S, TE GL( V) are the associators of 
V for E and 6, then ST = ) TS. Moreover, 

(i) If ST= TS, then V is the direct sum of 4 irreducible, non- 
isomorphic CH”-modules; viz., the weight spaces (intersections of 
eigenspaces) of S and T on V. 

(ii) Zf ST = -TS, then V is the direct sum of two copies of one 
irreducible CH”-module; this module is isomorphic to all of the eigenspaces 
of S and T. 

Proof. Let L = { 1, 8, 6, EB }. By passing to a suitable central extension of 
G, if necessary, we may assume that CI is the trivial factor set. In these 
terms, V is an ordinary CG-module, and we claim that 

4 IIxllzH= Ilx(l+~)(1+~)ll~=4 ILVI, (3.3) 

where x denotes the character of V. The first equality is a consequence of 
the fact that (1 + s(g))( 1 + 6(g)) = 4 for g E H and is zero otherwise. The 
second equality follows from the fact that x( 1 + E)( 1 + 6) is a sum of lLVj 
copies of [L: L y] distinct irreducible G-characters. We may thus conclude 
that IlxllL = ILvl. 

Part (a) now follows immediately, since \L,( = 1 implies l\xl\ > = 1. 
For (b), observe that if L, = ( 1, e}, then we have llxjl g = 2, so V must 

be a direct sum of two irreducible, nonisomorphic CH-modules. These 
submodules are clearly the eigenspaces of the s-associator of V. 

Now consider the case L y = L, and let S, T E GL( V) be the associators 
for F and 6. Since ST,!-’ also satisfies the definition for a d-associator (i.e., 
(3.1)), Schur’s Lemma implies STS’ = f T. In case ST = TS, V must be 
the direct sum of the weight spaces V’x’ = (UE V: Sv = _+v, TV = +v}; 
they are nonzero since G acts transitively on them. Therefore, since we 
already know that lIxI\ ‘, = 4 in this case, we are forced to conclude that the 
weight spaces are irreducible and nonisomorphic as CH-modules. In case 
ST= - TS, let V’ be the eigenspaces of S on V. Since TST- ’ = -S, 
it follows that T permutes V’ and V, and therefore, V+ z V- as 
CH-modules. Since we already know that I(x(I L = 4, we are forced to 
conclude that V+ and VP are irreducible. 1 

To construct a complete list of irreducible CH’-modules, it suffices to 
choose one irreducible CG”-module V from each L-orbit, and apply the 
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above criteria. For a given associator S, the endomorphisms 1 f S are 
clearly eigenspace projections, so the extent to which this construction can 
be made explicit is governed only by the extent to which the action of S 
can be made explicit. 

Similarly, the irreducible characters of H can be determined from those 
of G. For each irreducible character x of G, let L, = {E E L: EX = x} denote 
the x-stabilizer. According to Theorem 3.1, there are essentially four 
possibilities for the irreducible constituents of x J H. If L, = ( 1 } then x itself 
is irreducible as an H-character. If L, = { 1, E) then there are two con- 
stituents; namely, 1/2(x _+ d”x). If L, = L and the associators anticommute, 
then there is a single constituent, x/2; it occurs with multiplicity two. 
Finally, if L, = L = { 1, E, 6, e6 > and the associators commute, there are 
four constituents. Assuming that the associators chosen for E, 6, and ES are 
of the form S, T, and ST (rather than S, T, and -ST), we claim that the 
constituents are the four expressions of the form 

~(x_+A”xfA6x+AEhx) (3.4) 

in which an even number of “-” sign occur. To sketch the proof, note that 
S and T act as + 1 on each constituent, so each of x, A”x, A6x, and A”‘x 
can be written as linear combinations of the (unknown) constituents. We 
leave to the reader the easy task of inverting these linear combinations and 
thus verifying the above formula. 

Any group G with a Z:-quotient has a two-dimensional projective 
representation arising from the fact that the dihedral group of order 8 
doubly covers Zz. To be more precise, let p: Zi + PGL, denote the 
projective representation obtained from the reflection representation of the 
dihedral group modulo its center. An explicit realization of p may be 
obtained by assigning p( - 1, 1) = x and p( 1, - 1) = y, where x and 4’ 
denote any pair of anticommuting involutions in GL,, such as 

x=[(: y, Y=[; (J. (3.5) 

We may thus obtain a projective G-representation, also to be denoted by 
p, via 

We remark that p is self-associate with respect to each of the linear charac- 
ters; the associators are +x, f y, and fixy. Note that the associators 
anticommute. 

Let B denote the factor set of p, and observe that if V is any 
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CG*-module, then p @ I/ is a CG”“-module. The following result classifies 
the irreducible constituents of p @ I’. 

THEOREM 3.2. Let V be a finite-dimensional, irreducible CG”-module. 

(a) Jf L ,, = { 1 }, then p @ V is an irreducible CG”‘-module. 

(b) If Lv= { 1, ~1, and S, and S are the E-associators of p and V, 
then the eigenspaces of S,, @ S on p @ V are irreducible, nonisomorphic 
CG pa-modules. 

(c) [f L, = L = { 1, E, 6, ~6 }, then let S, and S denote the 
E-associators, and let T, and T denote the bassociators for p and V. 

(i) If ST = TS, then p Q V is the direct sum of two copies of one 
irreducible CGt’“-module; this module is isomorphic to all of the eigenspaces 
of S,@S and T,@T. 

(ii) If ST= -TS, then p Q V is the direct sum of four irreducible, 
nonisomorphic CG@-modules; namely, the weight spaces of S,@ S and 
T,@ T. 

Proof Let G be a representation group of G [CR, Sect. llE], and let 
i? be the preimage of H in G. We may regard V and p as (?-representations. 
The central elements of i? will be represented by p as scalar roots of unity, 
so the c-character 19 of p will be of absolute value 2 on fi, but otherwise 
zero (cf. (3.5)). Hence, IQ(g)1 = l/2 I(1 +s(g))(l +6(g))l for all gEc, 
which implies ll0xll$ = l/4 II( 1 + E)( 1 + 6) XII;, where x denotes the 
e-character of V. We may therefore use (3.3) to conclude that ll@ll j$ = ILKI. 

Parts (a) and (b) now follow by the same reasoning used in the proof of 
Theorem 3.1. For (b) in particular, note that S, @ S commutes with the 
CG@-module structure of p @ V, so its eigenspaces are necessarily 
CG”‘-modules. 

For (c), observe that since S, T, = -T,S,, then S, @ S and T, @ T will 
commute if S and T anticommute, and conversely. The claimed conclusions 
now follow by the same reasoning used in the proof of Theorem 3.1(c), 
except for the following minor detail for (ii): One knows that the four 
weight spaces of p @ V are nonzero from the fact that 1 @S and I @ T 
permute them transitively. 1 

c 

Every irreducible CGP”-module V is (isomorphic to) a submodule of 
p @ V’, for some CG”-module v’. In fact, since p is self-dual, V is a sum- 
mand of p 0 p 0 V. Therefore, a complete list of irreducible CGB”-modules 
can be constructed by choosing one irreducible CG”-module V’ from each 
L-orbit, and decomposing p @ V’ according to the above criteria. In 
Part II, we will apply this technique to four of the factor sets of W,,. 

To describe the character analogue of Theorem 3.2, suppose that x is an 
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irreducible character of the representation group G. If L, = ( 1 } then 8% is 
also irreducible. If L, = { 1, e} and V is a module for the character x, then 
we have 

tr pm .((S,OW g) = A”&.!?) MgL 

where S, and S denote associators for p and V. Since S, @S is an involu- 
tion that commutes with the action of G, it follows that d”Od”x is the dif- 
ference between two characters, so that l/2(& + d”Bd”x) are the irreducible 
constituents of 0~. If L, = L and the associators of x commute, then l/2@ 
is the only irreducible constituent of ~8. Finally, if L, = L and the 
associators anticommute, then fix has four constituents. Assuming that the 
difference characters are labeled so that d”‘O(g) nEsX(g) is the trace of 
(S, T, 0 ST) g (rather than its negative), these constituents are the four 
expressions of the form 

$(0x + A”OA”~ _+ A%A”x f A”*8A”6x) (3.6) 

in which an even number of “-” signs appear (cf. (3.4)). 
These remarks show that once the irreducible spin characters for one 

of the double covers W,,(tx) have been determined, one only needs to 
construct the associated difference characters to obtain the spin characters 
for W,( /3cl). 

4. SYMMETRIC FUNCTIONS 

Let /1 = en /1” denote the graded ring of symmetric functions in the 
variables x,, x2, . . . . with coefficients in Z, and let /1, = C @A denote the 
corresponding C-algebra. For f E n we will sometimes write f(x) for 
fb,, x 2, . ..). and similarly f(y) for f(y, , y,, . ..). The two most important 
bases of A, for our purposes are the power-sums pi. and the Schur 
functions So. For definitions and further details, see [Ml 1. 

There is a well-known inner product on /i,; it is characterized by the 
fact that 

<si, sp> =zj~‘<Pi, P,> =61p7 (4.1) 

where zj. denotes the order of the centralizer of any permutation with cycle- 
type /2; i.e., z,=m,! Iml.m2!2m2.-~, where mi denotes the multiplicity of i 
in 1. Closely related to the inner product ( ., . ) are the generating 
functions [Ml, I.41 
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To explain the connection between these generating functions and the inner 
product, suppose that fA and g, are any pair of homogeneous bases of A,. 
In that case, the expression C f;(x) gA(y) will depend only on the bilinear 
form B defined by B(f,, g,) = Sj+. We may thus refer to 

FB(x7 Y) = 1 f?.tx) gj.(Y) 

as the generating function of B. Iff; and g>. are any other pair of families 
of homogeneous symmetric functions with F,(x, y) = C f>,(x) gj( y), then 
they must form a pair of dual bases with respect to B [Ml, 1.41. From this 
point of view, the information in (4.2) says that n (1 -xiy,))’ is the 
;;;“4’4;lng function of ( ., . ) an 1 a so implies the orthogonality relations d ‘t 1 

Let cl(S,) denote the space of complex-valued class functions on S,, and 
recall that x(a) is an abbreviation for x(w& according to the conventions 
established in Section 2. The inner product of any pair x, q E cl(S,) can 
therefore be expressed in the form 

(x9 cp> = c ‘,‘XW @(a). (4.3) 

In addition to the internal ring structure of cl(S,), there is also a natural 
graded ring structure for cl(S) := @,, cl(S,). Given x E cl(S,) and 
cp E cl(S,), one defines their product by induction from S, x S, to S, + n via 

This product is well known to be commutative and associative. 
Symmetric functions and S,-characters are closely connected by means 

of the characteristic map of Frobenius. For x E cl(S,), the characteristic of 
x is the symmetric function 

ch(x) = C z?&) PAX). 
a 

Clearly, ch : cl(S,) -+ A; is an isomorphism of vector spaces, and a 
comparison of (4.1) and (4.3) shows that it is an isometry; i.e., 
(x, cp) = (ch(X), ch(cp)) for x, cp E cl(S,). In fact, the orthonormal basis of 
irreducible S,-characters is mapped by ch to the orthonormal Schur func- 
tion basis (sj,: 121 = n}. Furthermore, it can be shown that ch :cl(S) -+ A, 
is an algebra isomorphism; i.e., 

for x~cl(S,), q~cl(S,) [Ml, 1.73. We will exploit this equivalence 
between symmetric functions and characters in the next section. 
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There is also a close connection between symmetric functions and the 
spin characters of S,,. Let a, = en Q& denote the graded subalgebra of 
/1, generated by 1 and the odd power-sums p,, p3, ps, . . . . Note that 
{ pI : CI E OP} forms a basis for no. Another important basis for our pur- 
poses will be Schur’s Q-functions, Qi, defined for i E DP. See [Stl, Sect. 61 
or [S] for their definition, or substitute t = -1 in the corresponding 
Hall-Littlewood function [M 11. 

There is a useful inner product [ ‘, .] on 0,; it can be defined by either 

2p”“‘[Q,, Q,] = hj.,, or 2’%3P,, Ppl = 4, (4.4) 

for 2, p E DP and c(, p E OP [St1 1. Furthermore, in view of the identities 
[Ml, III.41 

c 2-““‘QA(4 Qi(y) = 1 F p,(x) p,(y) = n -, 
,,j 1 -XiYj 

(4.5) 
2eDP ntOP x 

we see that n (1 + xi y,)( 1 - x, yi) ’ is the generating function of [ ., .]. 
Let cl’(S,) denote the complex vector space spanned by the spin charac- 

ters of s,, i.e., the space of C-valued class functions x on 3, for which 
x(-w) = -x(w). Since the split classes of 3, are indexed by the partitions 
c1 E OP u DP- [Stl, Sect. 23, it follows that the inner product of any pair 
1, cp E cl’(S,,) can be expressed in the form 

There is a “spin” characteristic ch’ :cl’(S,) + 52;. that connects spin 
characters with symmetric functions [Jl, Stl]. Given x E cl’(S,), we define 

ch’(x)= 1 l-1) (n~I(I))12Z,‘2/(a)/2X(Cl) p,(x), 
ZGOP 

By a theorem of Schur, one knows that the irreducible spin characters of 
3, are mapped by ch’ to (scalar multiples of) the symmetric functions Q, 
[S] (see also [Jl, Stl]); we will have more to say about this in Section 7. 
Although ch’ is clearly surjective, it has a nonzero kernel containing those 
x~cl’(S,) whose restriction to d, (the preimage of the alternating group 
in 3,) is zero. In view of (4.4), we have 

Cch’(x), ch’(cp)l= Cd,, cplA”,)s,= 1/2(x, q)a,, 

so the spin characteristic is nearly isometric. 
We remark that our definition of the spin characteristic includes a factor 

( - 1)(nP’@))/2 that is not present in the original definition in [Stl]. It is 
needed to compensate for the fact that we are using characters of the 
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double cover of S, in which oj has order 2, whereas [Stl] uses the double 
cover in which oj has order 4. To pass between representations of these two 
groups, one needs to multiply the representing matrices for (TV, . . . . on-, 
by the factor i. This multiplies the representing matrix for the canonical 
representative w, by jnP’(r). 

Let Sck,nPk) denote the Young subgroup of S, (isomorphic to Sk x S,_,) 
consisting of permutations that leave (1, . . . . k} and {k + 1, . . . . n ) invariant. 
We will use the notation Sck+ k) for the inverse image of Stk,,, _ k) in s,,, 
and C%,,-k, for the corresponding subalgebra of CS:. There is a natural 
way to define an operation (V,, V,) F+ I’, @ I/, that creates irreducible 
modules for CS&,, from irreducible modules for CSg and CSi_,. Once 
given, this will permit us to create a CS;-module by induction from 
S,k,nm k, to s,,. We will use the notation 

as an abbreviation for this operation, and we will also use 6 to denote the 
corresponding operation on characters. 

To define the G-operation, let I/, and V, be irreducible modules for CS; 
and CSL _ kr with CS:,_k regarded as the subalgebra of CSL generated by 

n-1. &+g&:, _ k 
The usual tensor product I/, 0 I/, is a module for 

; this will not be a module for CS;,,,_k, unless k = 1 or 
k = n - 1. The essential problem is that the generators of CS; and CSL-, 
will commute on V, 0 V,, whereas they must anticommute on V, 6 I/,. 
This problem can be fixed by recognizing that S, x SnPk has an obvious 
Z2,-quotient, and thus, a two-dimensional projective representation p as in 
(3.5). It follows that we may impose a CS&,,-module structure on 
pO(V,OV,) via 

(T,(u@q002)= 
XV@OjV,@V, if j<k 

.YvOv~Oojv~ if j> k, 

with x and y as in (3.5). We now define V, & V, to be any of the 
irreducible submodules of p 0 ( V1 0 I’,). By Theorem 3.2, there are essen- 
tially three possible types of structure: 

Case 1. If neither I’, nor V, is self-associate with respect to the sign 
character E, then p 0 (I/, 0 V,) is irreducible, so in this case, we have 
v, 63 vz=Po(~,o~*). 

Case 2. If only one of k, or I/, is self-associate, then there are two 
distinct irreducible submodules of p 0 ( V, @ V,) (cf. Theorem 3.2(b)). The 
&notation is somewhat sloppy in this case as there are two choices for the 
product. In situations where we need to emphasize the existence of these 
two choices, we will write ( I/, 6 I’,) + . 
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Case 3. If both V, and V, are self-associate, with associators S, and 
S,, then S, 0 1 and 10 S, are a pair of commuting associators for 
V, @ V,. Consequently, Theorem 3.2(c) implies that p@ (V, @ Vz) is a 
direct sum of two copies of one irreducible module, so in this case there is 
only one choice for I/, 6 V, (up to isomorphism). 

The same construction of the &product appears in [Stl-21, and a 
similar construction has been given by Hoffman and Humphreys [HHI]. 
If we ignore the fact that 6 is sometimes multi-valued (cf. Case 2) the 
c-operation would give cl’(S) = 0, cl’(S,,) a graded algebra structure. 
Furthermore, ch’ : cl’(S) + D, is nearly an isomorphism of this pseudo- 
algebra in the following sense: 

ch’(X G rp) = 2ch’k) ch’(cp) if x and q are not self-associate 

ch’(x) ch’(cp) otherwise, (4.6 1 

for irreducible spin characters x and cp [Stl, Sect. 51. 

5. THE LINEAR REPRESENTATIONS OF W,, 

For each partition A of n, let X’ denote the irreducible representation of 
S, indexed by A, and let x’ denote the corresponding character. The 
irreducible linear representations of W, are indexed by ordered pairs of 
partitions (A, p) with /A/ + I,u[ =n (e.g., see [Z]). We will write X”+ for the 
representation and x’+ for the character indexed by the pair (A, p). In the 
usual parameterization, X”,0 is the extension of A’” from S, to W,, in which 
the short reflections tj act trivially, and X O,i. is 6 @ X”vO. (Recall the defini- 
tion of 6 in Section 1.) In the general case, assuming II/ = k and 1~1 = n -k, 
one defines 

where 0 denotes induction from W, x W, -k to W,,; i.e., 

for any C W,-module V, and C W,- ,-module I/,. We will also use 0 to 
denote the corresponding operation on characters, so that ~‘3” = ~‘3” 0 xO*r. 

Let cl( W,) denote the space of W,-class functions, and let 
cl( W) : = en cl( W,) denote the graded C-algebra structure associated with 
the o-product. The inner product of any pair x, cp E cl( W,) can be expressed 
in the form 
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where z, P = 2 ‘(*) + ‘@)z,zD denotes the order of the centralizer common to 
the class’indexed by (a, /I). 

There is an analogue of the characteristic map for W,, that maps a given 
class function x E cl( W,) to ch(X) E /i 0 A via 

ch(x) = 1 & x(a> B) P,(X) P,Ax’L 
%P 

using the obvious embedding of n@n in C[[x, x’]] in which the two 
copies of /1 are identified with the symmetric functions of x,, x2, . . . and 
<x; ) x;, . ..) respectively. A similar map has been defined by Macdonald for 
all wreath products of the form G < S, [M2]. 

It is easy to see that ch : cl( W) --f LI @ LI is a vector space isomorphism. 
We may therefore define an inner product ( ., ) on n @ /i by transferring 
the corresponding structure from cl( W,). The power sums p,(x)p&x’) are 
orthogonal with respect to this inner product, and furthermore (cf. (5.1)) 

(P,(X) P/w), P,(X) P&‘)) = Z,Zp)+/(A). 

We remark that by (4.2) one may deduce that 

c 2’(3)+~(p)z~1z~‘P1(x)Pl(Y)Pp(x’)PB(Y’) 
% P 

= sf (1 -t.,.y (l-1.!y!)2 1 I 1 I 

(5.2) 

is the generating function of this inner product. 
We also claim that ch is an algebra isomorphism between cl(W) and 

A 0 A; i.e., 

Wocp) =ch(x) ch(cp) (5.3) 

for x E cl( W,), cp E cl( W, _ k). The proof of this is similar to the argument in 
[Ml], so we merely provide a sketch. One defines a n 0 /i-valued class 
function TL, on W,, by setting 

n,(w) = 2 I(‘)+lc~)p,(x) po(x’) 

for w belonging to the class indexed by (a, /I). Since the restriction of rc, to 
W, x W,, Pk is rrk @ IZ,_~, it follows that 

ch(xocp)= <PR ~,)w,= (xocp, ~,)wkxw,_~ 

= CL n,>(cp> n,,-k) =ch(x) ch(cp), 

by Frobenius reciprocity. 
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It is well known that the Schur function si, is the image of xi under the 
characteristic map [Ml 1. To describe the analogue for IV,-characters, let 
us define an algebra automorphismf(x, x’) H f*(x, x’) of A @A by setting 
p,*(x) = p,(x) and p,*(x’)= -p,(x’). (In the notation of [Ml], one has 
f*(x’)=of( -xl).) Note that since (p,(x)p,,(x’))*=( - l)“p’p,(x)p&x’)= 
6(c(, /I) p,(x)~~(x’), it follows that this involution is isomorphic to the 
action of 6 on cl( IV,,); i.e., 

ch(&)(x, x’) = ch(X)* (x, x’). (5.4) 

PROPOSITION 5.1. We have ch($+) = SJX, x’) s,*(x, x’). 

ProoJ: In view of (5.3), (5.4), and the fact that x1’“= ~‘3~ 0 x”‘~‘, it 
suffices to prove ch(X’,“) = Sj.(x, x’). For this, note that since x”,~(cx, p) = 
~‘(a u p), we have 

ch(x"*O) = C & x% u P) P,(X) P,@‘) 
l.fi L 

= ;i: ; X”(Y) ;=;“a 2 P,(X) PDW 

If m, (resp., n,) denotes the multiplicity of i in c( (resp., /I), then we 
have z,,~/z,z~=~ (“‘2,’ I). It follows that the inner sum in the above 
expression simplifies to p.$(x, x’), and so we have 

ch(x-‘) = C z,-‘x”(y) p,(x, x’) = ch(x”)(x, x’). 

The claimed formula is now a consequence of the fact that ch(x”) = Sj; 1 

We remark that a corollary of this result is the fact that the class func- 
tions ~‘3~ are indeed the irreducible characters of W,. Certainly they are 
characters, so it suffices merely to prove that they are an orthonormal basis 
of cl( IV,). For this, observe that (4.2) implies 

C si(x2 x’) s%(Y, Y’) = n(x; Y) n(x’; Y) n(xi V’) n(x’; V’h 

where D(x; JJ) = n( 1 - xi y,) ~ i, and similarly, (3.8) and (4.3’) of [Ml] 
imply 

1 qx, x’) s,*(y, y’) =17(x; y) z7(x’; y’)/I7(x; y’) rI(x!; y). 
F 

By Proposition 5.1, we know that the generating function 

C chX’,@(x, x’) chx’+(y, .Y’) 
i., 1‘ 
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is the product of the two previous expressions; i.e., 17(x; y)’ n(x’, y’)‘. 
Since this is the generating function of the inner product ( ., . ) (cf. (5.2)) 
it follows that the symmetric functions ch(X”p) are an orthonormal basis of 
/i 0 A, and hence the characters ~‘3~’ must form an orthonormal basis of 
cl( W). 

As a second remark, we mention that there is a simple way to evaluate 
the characters xi.“. Given any partition c1 and any subset Zc 11, . . . . l(a)}, 
we will use the notation a, for the subpartition of a indexed by Z, i.e., the 
partition obtained by selecting the ith part of r for each i E I. Also, we will 
write cr; for the complementary subpartition, so that tl= (x,u a;. Using 
standard techniques for evaluating induced characters (e.g., [CR, 
Sect. lo]), one may show that 

(5.5) 
I, J 

where I and J are restricted to those subsets for which (CI~U pJ\ = IE,I. By 
combining this with the Murnaghan-Nakayama rule for symmetric group 
characters [JK], it is possible to give a combinatorial rule for evaluating 
xi,/‘. (See for example [St3, Sect. 71, where a more general rule is given for 
characters of the groups G < S,,.) 

PART II: REPRESENTATIONS 

6. THE FACTOR SET [+l, -1, +l] 

Let 0 : W, -+ PGL, denote the projective representation obtained by 
composing the natural homomorphism W,, + Z: with the representation 
p: Z: + PGL, of Section 3. One may define 0 more explicitly by setting 
@(ai) = x and O(r) = y, where x and y are any pair of anticommuting 
involutions, such as (3.5). By Proposition 1.2 we see that [ + I, - 1, + l] is 
the factor set of 0. In this section, we consider the irreducible decomposi- 
tions of the representations 0 0 x”,p. According to the program laid out in 
Section 3, the constituents of these representations (if not already 
irreducible) can be constructed from the associators of 0 and p,” with 
respect to each of the linear characters of W,,. 

First consider 0 and its chargcter 8. The associators of 0 with respect 
to E, 6, and ES are + y, f x, and + ixy. In the following description of the 
difference characters, we have specifically chosen (- 1 )+ ’ y, x, and 
(- 1)” ixy as the associators. 
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PROPOSITION 6.1. The only nonzero values of t3 and its difference charac- 
ters are 

@(a, p) = 2( - 1 y2 !f ~(tl, /II)= +l and&cr,B)= +1 

A”(q(y, /jJ) = 3 - l)(‘(“‘- ‘)I2 if ~(a, p)= +l and6(a, /?)= -1 

A%( a, p) = 2( - 1 )l(fi)‘2 zf ~(a, p)- -1 and6(u, p)= +l 

A”“(j(,q /j) =2i( - l)(‘(fi)-1)/2 if E(c(, 0) = -1 andb(cr, 8) = -1. 

Proof. From the definition of wXP (2.1) and the fact that 
O(r,) = (- l)j-’ y (cf. (1.3)), it is easy to show that 

where I, = n - l(a) - 1(p) and I, = 1(/I). Therefore, e(w,,) = 0 unless 1, and 
I, are both even. In that case, we have 1,(2n - I, - 1)/2 = l(p)/2 mod 2, 
which yields the claimed formula for 0. The difference characters can be 
treated similarly. For example, since the .&associator S of 0 is ( - 1)” ixy, 
we have 

SO( w,& = ( - 1) Iz(2fl - (2 - I )/2 + II + nix/, - 1 12 - I Y ) 

which has nonzero trace only if 1, and I2 are both odd. Under these 
circumstances, we have 1,(2n - I2 - 1)/2 + I, + n = (I@) - 1)/2 mod 2, and 
so the formula for A”% follows. 1 

Now consider the problem of constructing the associators of the linear 
representations X”+ of W,,. It will be convenient in what follows to have 
an explicit description of a module for Xi,” in terms of modules for X” and 
.P. For this we need to specify a particular embedding of W, x W,,- k in 
W,,; the most obvious choice is the inverse image W(k,n-kj of the Young 
subgroup S(k,n-kj (cf. Section 4) in W,,. Given w1 E W, and WOE Wnpk, we 
will identify (w,, w2) with the corresponding element of WCk,npkj. As a 
collection of (left) coset representatives for WCk,n-kJ in W,,, we will use the 
set Wk c S, consisting of all permutations w of 1, . . . . n such that 
w(l)< ‘.. < w(k) and w(k + 1) < . . ’ < w(n). Now, given modules V, and 
V2 for C Wk and C W,- k with characters xiv0 and xPyO, we may impose the 
module structure of x”,P on the vector space C Wk @ V, @ V2 by defining 

w(w,Ov,OV2)=~(w2) WbOW1U1OW2U2, (6.1) 

for all V,E Vi, where wO, WOE Wk, wwO=wb(wI, w,), and (w,, w2)e 
W(k,n-k,. 
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The &-Associators 

It is well known that EX’ = XI”, where v’ denotes the partition conjugate 
to v [Ml]. Hence, x’ is self-associate with respect to E if and only if v E SC, 
where SC denotes the set of self-conjugate partitions (i.e., partitions v such 
that v = v’). Similarly, X”,” is self-associate with respect to E if and only if 
I and p are both in SC. 

Although there are known formulas for the difference characters dx” (for 
v E SC), there does not seem to be any explicit construction known for the 
corresponding associators. This would be equivalent to an explicit decom- 
position of X’l A, into its irreducible constituents. Nevertheless, we will 
show that the s-associator of X”.P can be constructed in terms of the 
associators of X” and P’, and from this we will obtain formulas for the 
difference characters A’x~,@. 

To describe Ax”, recall that there is a well-known bijection SC + DOP 
in which the self-conjugate partition v is paired with the partition v* whose 
jth part is the (evidently odd) hooklength of the jth node on the main 
diagonal of the diagram of v. In these terms, we have Ax”(w) = 0 unless M, 
is of cycle-type v*, and in that case, 

AxY(v*) = j(npd(v))/2 &, (6.2) 

where d(v) := l(v*) denotes the number of nodes on the main diagonal 
of v [JK]. Note that this formula presupposes a particular choice for the 
associator of X”. 

To describe the s-difference characters of W,, we will need a parameter 
E$; indexed by four partitions I, p, ~1, /I E DP with ,l v p = a v p. To define 
this parameter, let (a,, . . . . a,) (resp., (b, , . . . . h,)) denote the parts of (A, 11) 
(resp., (a, b)), labeled so that 

(a ,, . . . . a,)= (A,, A,, . . . . hr p2, . ..I 

(b ,r . . . . b,)= (~1, ~2, . . . . B,, P2, . ..h 
(6.3) 

where I = l(n) + I(p) = I(a) + I( 8). By assumption, there exists a permuta- 
tion 71 of 1, . . . . 1 such that b,,,) = a,; this provides a matching between the 
parts of (A, 11) and (~1, /I). Let ni(~) denote the number of inversions in 7c 
involving parts of the same parity, i.e., 

n,(n)=l{(i, j):i<j,n(i)>n(j) and a,=a,mod2}(, 

and let nz(n) denote the number of parts of p assigned to fi by 7t. We define 

EL; = ( _ 1 )nlw + v(n), 
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Since the partitions involved have no repeated parts, a given integer r can 
appear at most twice among the a;s and twice among the bi’s. For each 
such integer r this allows the possibility of choosing rc so that the r’s are 
matched by n in an inverted or noninverted way. Since these possibilities 
change the parity of both n,(rc) and n2(rt), it follows that s&1:$ is well- 
defined. For example, if (A, ,u)= (973, 741) and (a, p) = (743,971) then we 
may choose rc= (1452)(3)(6), so that n,(rc)=n2(z)=2 and E;$= +l. 

Let us assume henceforth that i, ~ESC, and let S, and S, denote 
s-associators for V, and V2 as symmetric group representations. We claim 
that the s-associator Sfl of X”sj‘ can be defined on C Wk @ V, @ V2 via 

S”~~(w,0v,~v,)=&(w~)W~OS,v,0S*V2 

for U’*E Wk and U(E V,. 

(6.4) 

THEOREM 6.2. (a) S”,P is the &-associator of X”,p. 

(b) The difference character A”x~‘~(w) vanishes unless w belongs to a 
W,,-class of the form (LY, p) with CC, /I’ E DOP and I* up* = c( u/I. In that 
case, 

A”x’+(cr, /?) = 2’(’ *n~*)El*,~*j(n~d(i.)-d(~))/2 1,cc X&G. 

We remark that a simpler definition of E$~* could have been given that 
takes advantage of that fact that all relevant cycle lengths are odd. 
However, this parameter will also be needed later in situations with both 
odd and even cycle lengths. 

Proof: For any w E W, and any coset representative wO E Wk, (6.1) and 
(6.4) imply 

where wwO=wb(w,, w2). Since w,S,v, =E(w,)S~W,U, (and similarly for 
w,), it follows that the actions of S’,Gw and wS’,” differ by a factor 
of .s(wOwb(wI, w,))=&(w). Since S’-,P is clearly an involution, we may 
conclude that it is indeed the .s-associator. 

The only subspaces Cw,O V, 0 I/, that contribute to the trace of S”,@w 
. are those for which wO = wb, i.e., those for which w,‘wW, E w(/+k). By 

adding the contributions of these subspaces, we obtain 
A”x’,~(w)= c Ed tr.,(S,w,) tryJS2w2) 

“‘,Jt wk 

= c E(w~) 6(w,) A”x’.~(~,) A”x~,~(w,), (6.5) 
11’0 E wk 
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where the sums are restricted to those w0 for which w;‘ww,= 
(WI, W2)E W(k,n-k,. 

For the remainder of the proof, we will assume that w = wllr is the 
canonical representative of some W,-class (c(, fi). Since dx’ is nonzero only 
for cycle-type v*, (6.5) implies that d”~‘.~(w) = 0 unless 2” up* = M u b 
(and thus, a, /I E OP). If there are any repeated parts in a or 8, then there 
is an involution u that centralizes w by interchanging positions in the 
corresponding cycles. Since E(U) = - 1 (the cycles necessarily have odd 
length), (3.2) would imply d”$~“(ti~) = 0. Therefore, we may further assume 
that a, BEDOPand A*up*=aufi. 

Let I= e(cc) + !(/I). For each permutation rr of the parts that sends the 
I-tuple (CI, /I) to (A*, p*), there is a corresponding coset representative 
w0 = b~,Jrr) with M’~- ‘wM’~ = (M., , M.*) in which the S,,-image of (w,, w2) is 
(WA*, WI,* ), and conversely. Furthermore, each inversion in TC involving two 
parts I, and 1, will add 1 to n,(n) and add an odd number of inversions 
(namely, I, I,) to u>,(rc); i.e., E(u’~(~)) = ( - 1 )nl(n). Since @w,(n)) = 
(- l)Wh), we may conclude that eiIjii* = E(M~,J~)) &u~~(z)), so (6.2) and 
(6.5) imply 

Since each summand is independent of n and there are Z’(‘*“l’*)= 2’(2”8) 
such summands, the result follows. 1 

The d-Associators 

gezE;; ,Faz”,;. XT’; andH;zie= $yO 0~~‘~ (by definition), it follows in 
f,P _ P,” i,fi is self-associate with respect to 6 if 

and only if 1. = p. An explicit construction of the S-associators and dif- 
ference characters for J?,’ can be found in [St3, Sect. 71; we will restate the 
results here for the sake of completeness. Note that this amounts to a 
construction of the representations and characters of the Weyl group of the 
root system D, (i.e., the kernel of 6). 

In this case, we may assume that 1, is a fixed partition of k = n/2, and 
Vi = I’, = I/. Let u E S, denote the involution (1, k + 1)(2, k + 2) . . (k, 2k), 
and define an endomorphism T” on C W”” @ V@ I/ by setting 

for u10 E Wnf2 and vi E V. 

THEOREM 6.3 [St3]. (a) p is the S-associator of Xi.‘. 
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(b) The difference character A6x“‘( w) vanishes unless w belongs to a 
W,,-class of the form (2c(, 0) for some partition CI of n/2. In that case, we 
have 

d532a, 0) = 2QE)XL(cl). 

The E&Associators 

We have &jxi.@ = xp’,).‘, so Xj+j’ is self-associate with respect to ~6 if and 
only if 2 = /.L’. As in the previous case, we assume that L is a fixed partition 
of k = n/2, and let V= Vi be a module with character ~“30. To impose the 
module structure of X”.” on CW”12@ V@ V, we need to modify (6.1) to 
take into account the fact that I/, = E@ I’, . In these terms, the action of 
w E W,, can be realized via 

W(W,OV,Ou~)=e6(w,)wbOw,v,O~,~,, 

where ww,, = )I&( w, , wz), as usual. We claim that the &G-associator U* of 
x”,” can be defined with respect to this basis via 

U”(w,~o,~v,)=i”‘*~6(w,) w,uOo20u,, 

where u is the involution defined above. 

THEOREM 6.4. (a) u” is the EG-associator of X2,“‘. 

(b) The difference character AE6x’*“(w) vanishes unless w belongs to a 
W,,-class of the form (0, 2fl) f or some partition j3 of n/2. In that case, we 
haue 

Aedxi..i’(O, 2/j) = i"z/42'(P)x"(fi). 

ProoJ: Continuing the notation defined above, we have 

~“W(W,@V,@V2)=i”‘*E6(W~W2)W&@W2V2@W1V,, (6.6) 

where wwO = wb(ul,, w2). Conversely, to compare this with the action of 
wU”, note that u(w,, w2)u=(w2, w,), so ww,u=(w~u)(w,, wl). This 
shows that wwOu belongs to the coset of wbu, and hence 

so wU’=ES(W) U”w on CW”“@V@ V. Since E~(u)=E(u)=(-1)“12, it 
follows that U” is an involution, so it must be the .sB-associator. 

Observe that (6.6) implies that the only subspaces Cw,@ V@ I’ that 
contribute to the trace of U’w are those for which w0 = wbu. Since the trace 
of any endomorphism of the form v1 @ v2 t.+ Bv, @ Au, is tr(AB), it follows 
that 

Azbx’,“(w) = i”‘2 wOFww,,, ~B(w,,w,) x~T~(w, w,), (6.7) 
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where w0 is restricted to those cases for which w0 = wbu, i.e., to those cases 
for which UW;‘WW,, = (w, , w2) E WcnlZ.niZj. 

If w is not a zero of A”‘x~,~‘, (3.2) would imply that there cannot exist 
any z E: W, with ES(Z) = -1 that centralize w. Since the cycles of w cen- 
tralize w, this eliminates the possibility of any positive cycles of even length 
or negative cycles of odd length. One may also eliminate positive cycles of 
odd length, by using the centralizing elements that appear in Lemma 2.2(c). 
Thus, we may assume for the remainder of the proof that w is the canonical 
representative of some class (a, 28) where p is a partition of k = n/2. 

To determine the representatives for which w0 = wbu, first consider the 
case in which t( fl) = 1, so that w is a negative 2k-cycle whose S,-image 
is (1, 2, . . . . 2k). One finds that there are two choices for w,; namely, the 
permutations whose one-line notations are 2,4, . . . . 2k, 1, 3, . . . . 2k - 1 and 
1, 3, . . . . 2k - 1, 2, 4, . . . . 2k. In the first case, we have uw~‘u’wO = (x, l), 
where x is a negative k-cycle whose S,-image is (1, 2, . . . . k). Since w0 has 
(k l ‘) inversions and &8(x) = ( - 1 )k, it follows that EB(w,,w,) = ( - 1 )‘:I in 
this case. In the second case, iv0 has (:) inversions and we have . 
uwo 1~~0 = (1, x), so E?~(w~w,) is again (- 1 )(;). It follows that both choices 
contribute i”( - 1)(:$‘(x) = ?*x’-(x) to (6.7). 

In the general case, each cycle of w has an S,-image of the form 
(2s + 1, 2s + 2, . . . . 2s + 2~) for suitable Y and s. The above analysis shows 
that if uw; ‘WW~ E WtniZ n,2j, then there are two choices for arranging the 
letters 2s + 1, .,., 2s + 2r ‘in the one-line form of w,; either the even letters 
2s + 2, 2s + 4, . . . must appear in the left half and the odd letters 
2s + 1, 2s + 3, . . . in the right half, or vice versa. The first case will contribute 
a negative r-cycle to w 1 ; the second will contribute a negative r-cycle to w2. 
It follows that the choices for w0 may be indexed by subsets I of 
{ 1, . . . . d(p)), so that iE I iff the first alternative is used for the ith cycle of 
W. In these terms, we have E@w,) = (-l)‘““, and it is not hard to show 
that the number of inversions in w0 is (‘;) + I/?,I. Since the S,,Z-image of 
W, w2 will be of cycle-type j3 in all cases, it follows that each of the 2’(p) 
choices for w,, contributes ik( - l)(i) xi.(p) = i”“x’(fl) to (6.7). 1 

Observe that X’,U is self-associate with respect to both E and 6 if and 
only if 1. = p E SC. In that case, we have 

where S= S1 = S, denotes the &-associator of V= V, = I/,. It follows that 
(Si32Ti)2 = E(U) = (- l)“j2; i.e., sAli and T” commute when n/2 is even and 
anticommute when n/2 is odd. Therefore, Theorem 3.2(c) implies that 
@OX”,” is the direct sum of two copies of one irreducible representation 
when n = 0 mod 4, and four distinct irreducible representations when 
n=2mod4. 
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We are now in a position to classify the irreducible representations of IV,, 
for the factor set [ + 1, - 1, + 11. First, observe that the action of L, on the 
representations x”,fl induces an action of Z: on the labels (%, p). It will be 
convenient to use the orbit of (2, p) to label each of the (isomorphism 
classes of) irreducible submodules in OOx”*p. A given irreducible module 
for the corresponding twisted group algebra will be labeled by only one 
orbit, and two modules will receive the same label if and only if they are 
both summands of one of the representations O@X”,/‘. 

The following result is a corollary of Theorems 3.2 and Theorems 
6.2-6.4; it summarizes the overall structure of the irreducible representa- 
tions for the factor set [ + 1, - 1, + 11. 

COROLLARY 6.5. The irreducible spin representations of W,,( [ + 1, - 1, 
+ 11) can be labelled by L,-orbits of pairs of partitions (A, p) with 111 + 
IpI = n, so that the orbit of (A, p) labels submodules of 00 X”,p. In the 

following table, n,.,, denotes the number of modules indexed by (A, p), ml.@ 
denotes their multiplicity in 0 @Xi,{‘, and oj.,/, denotes the size qf the orbit 
of (4 PI. 

nRp . o;.~’ 3 mj..,, 

1 1 2 if i=pESC,n=Omod4 

4 1 1 if Jti=pESC,n=2mod4 

2 2 1 if i, ,u E SC, or 3. = p, or A = ,u’, but not /z = p E SC 

1 4 1 otherwise. 

The irreducible spin characters for the factor set [ + 1, - 1, + 1 ] can be 
easily expressed in terms of the characters xi..U and 0, together with the for- 
mulas for the difference characters in Proposition 6.1 and Theorems 6.2-6.4 
(cf. the discussion following Theorem 3.2). However, we need to modify 
(3.6), since it was derived under the assumption that d”bBd”6x’,’ represents 
the trace of (S,S”%‘@ TH T”) w, rather than its negative. 

To determine whether this is true for the particular choices we made, 
note that 

assuming A= ,n E SC. By reasoning similar to the proof of Theorem 6.4, it 
follows that 

tr(S”,‘T”w) = 1 E(U),,) s6(w,) ~~.~(wi u’,), 
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summed over all w0 E W”” such that uw; ru’wO = (wI, w2) E Wc,,,2,n,2,. 
Assuming Ed = 1, we have E~(w,u~~) = U?(U) = (-l)@, and so by 
comparison with (6.7), 

tr(SA;.Tj~w) = ~~12~~~xj..~(u,)~ (6.8) 

Next, recall that the E, 6, and e&associators used for 0 in Proposition 6.1 
were of the form S,, T,, and SoTo. Therefore tr(S,T,w)= -idE68(w). 
Together with (6.8) this implies 

tr((S,S”,‘.f& ToTA) w) = (- 1)(‘tp2)/4 dc”@w) d”6xi-i(w), 

so the characters of the four constituents of 0 @ X’,” that occur in the case 
n = 2 mod 4 are the four expressions 

~(gXl,j.f~~~~~Xi.,i+~“~~“Xl,l+(-*)(~~2)!4~&6~~&“Xi.,L) 

in which an even number of the “&“-choices are “-” (cf. (3.6)). 
When ,I E SC and n = 0 mod 4, a similar modification of (3.4) is needed 

to describe the characters of the four irreducible constituents that occur 
when XL,’ is restricted to the index-four subgroup of W,. According to the 
information in (6.8), these characters are the four expressions of the form 

&l.j. + dexj..i + d BXL,i + (_ 1 )n/4 ddxi.i) 

in which an even number of the “ +“-choices are “- .” 

7. THE FACTOR SET [ - 1, + 1, + l] 

The spin representations of 3, are labeled by the partitions I. E DP of size 
n. We will use the notation @” for the representation indexed by J* and ‘pi. 
for the character. An explicit construction of the representations can be 
found in [N] and a recurrence for the characters can be found in [Mol, 
MY, 921. In case ;1 E DP- (i.e., n - k’(k) is odd), there is actually a pair of 
s-associate representations indexed by 2; we will write @“+ in situations 
where we need to emphasize that there are two associates. For 2 E DP+, 
there is only one representation @; it is self-associate with respect to E. 
The associators of these representations have been constructed by Nazarov 
[N, Sect. 51. 

Let us agree to use @‘, as an abbreviation for the double cover 
W,( [ - 1, + 1, + 11) and C Wk for the corresponding twisted group 
algebra. This is ‘to remind us of the fact (first noted in Section 1) that 3, 
is a subgroup of @, and CSL is a subalgebra of C WL. We will also use 
$k,,,-k, to denote the I?‘,,-preimage of Wtk+ kj, and C W;k,npkj for the 
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corresponding subalgebra of C WA. Given w, E l%‘k and w2 E @” _ k, we 
will use (w, , w2) to denote the element wi Gz E 6’,, n _ kJ obtained by 
substituting a, + k for cri and r, + k for ri (j= 1,2, . ..) in any expression for w2 
in terms of the generators oj and rj of @‘,,- k. 

Extend the projective representation p of Section 4 from SC,,,-,, to 
W (k,nm k) by insisting that the short reflections ti act trivially. In these 
terms, p 0 (V, @ V,) is a module for C W;,,, Pk) whenever Vi and V, are 
modules for C Wh and C W:,-,. We may thus extend the @-product of 
Section 4 by defining V, 6 V2 to be any of the (isomorphism classes of) 
irreducible constituents of p @ (V, @ V,). Note in particular that there is 
actually a pair of s-associate modules (Vi 6 V,), if and only if one (but 
not both) of V, or V, is self-associate with respect to E. 

We claim that the irreducible spin representations of @‘n can be con- 
structed in terms of this product. Given 2 E DP, we define @‘,0 to be the 
representation obtained by extending @’ from 3, to p,, by having the ri)s 
act trivially, and we define QO,” to be 6 @ @“,O. In the general case, given 
A,~EDP with 121 =k and /p( =n-k, we define 

@“,P = gjk0 ; qj0.r 3 

where V, 2 V, denotes the induction of V, 6 Vz from @ck,,2 -kJ to %‘,,. If 
~(2, ,u) = -1 then either 1 E DP- or 11 E DP-, so there is actually a pair of 
s-associates @$” for this case. Otherwise, if E(& 11) = +1 then @“%P is self- 
associate with respect to F. 

THEOREM 7.1. The irreducible spin representations of p,, are @‘,s~ (for 
E(&,B)= +l)and@$p(for~(lu,p)= -1),where/1,p~DPandjA1+lpl=n. 

A more general version of this result for G < S, is due to Hoffman and 
Humphreys [HHl]. Our proof will be structured along the lines of 
Section 5. 

According to Theorem 2.1, the split classes of PM are indexed by the 
pairs (c(, /?) with ~1, p E OP along with those tl, b E DP with E(CI, /?) = -1. 
Although the character of any spin representation of @n is completely 
determined by its values on (the canonical representatives of) these classes, 
it will be convenient in what follows to know the values of characters at 
certain non-canonical elements w E mn; this amounts to determining 
whether w is conjugate to a canonical element walr or its negative. 

To resolve questions like these, we will use a Clifford algebra representa- 
tion of C WA. To describe this representation, let 5 i , . . . . 5, denote a set of 
anticommuting involutions that generate the Clifford algebra %Fn (cf. [Stl, 
Sect. 33) and define 

C”,l=i(tj-tj+ix 
Jz 

[t,] = 1 
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By Proposition 1.1, this extends to a unique algebra homomorphism [. 1: 
C Wk -+ %$. Although this representation ignores the short reflections, it 
contains sufficient information for our purposes. 

LEMMA 7.2. Let w, u E @‘,, and suppose that [w] = p( r I, . . . . 4,) is some 
polynomial expression for [IV]. If IT is the S,-image of u, then we have 

cuwu-‘I = 4WYP(L(,,. ‘.., irn[(,J, 

where 1 denotes the number qf inversions in TT. 

Proof. It suffices to prove this when u is one of the generators of W,. 
In case u = rj, the result is obvious. For the case u = CJ~, a simple calcula- 
tion will show that 

i 

-5i+ 1 if j=i 

~(ti-5i+l) tj(4,-4z+1)= -5i if j=i+l 

-5j otherwise. 

Therefore, the effect of conjugation by gi on g,, is to change the signs of the 
generators and permute ti and 5, + , . Since p must be homogeneous of 
degree E(W) (with respect to the usual Z,-grading of ‘G&n), it follows that the 
sign change introduces a factor of F(W), as in the claimed formula. 1 

Observe that the W,-image of the expression oj+ , oj + 2 . . cr, + ,-, E it, is 
a positive I-cycle that permutes an interval of consecutive coordinates. 
Similarly, the W,,-image of the expression 0, + , aj+ 2 . . . cj+, _ r ri+ , is a 
negative l-cycle that permutes the same interval. We will refer to these par- 
ticular expressions as canonical cycles. Note that the canonical elements wIB 
were defined in Section 2 as products of disjoint canonical cycles. 

LEMMA 7.3. Any product of disjoint, odd-length canonical cycles is 
IVn-conjugate to a canonical representative. 

Proof. Let w be a canonical cycle of odd length. Since E(W) = 1, 
Lemma 7.2 implies that the WU-conjugates of [w] may be determined by 
letting S, act on the subscripts of <,, . . . . 5,. From this it follows that w is 
conjugate to any other canonical cycle of the same length and parity. 

Now consider any product w = w, . w, of disjoint, odd-length canonical 
cycles. Certainly there exists an element u E Wn such that UWU~ ’ = -JW~~ for 
some a, /? E OP. For such u, the above reasoning shows that the expressions 
uwp must be the canonical cycles that appear in the defining factoriza- 
tion of w’Ma, except possibly for the fact that they might appear in a 
permuted order. However, since the wI)s are odd-length cycles, they must 
commute, so the order of the factors is immaterial. fl 
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Let cp”,/’ (resp., cplP) denote the character of @‘,fr (resp., @$“). Note that 
a corollary of Lemma 7.3 is the fact that the S,-image of wSp is conjugate 
to W,‘LlI for a, p E OP. In particular, it follows that for a, b E OP, we have 

cpL.O(a, p) = ‘pi(” u a,. (7.1) 

We now define an analogue of the spin characteristic for @,, that maps 
a given spin character x to ch’(X) E Qc@ 52, via 

ch’(X) = c ( _ I)‘“- /(a) ‘Y8))/2z,‘zs ‘2(4G+ /(BH/2x(cI, /j) p,(x) pp(x’). 
Z.fiE#P 

This map fails to be injective, since it ignores the behavior of x on the 
classes with E = -1. In order to create an inner product [ ., .] on Q, 00, 
that makes ch’ nearly isometric, we insist that the power sums p,(x) p,Jx’) 
(a, /s E OP) be orthogonal, and we define 

CP,(X)P&‘), Y,(X)P#)l = Z,Z,]/22f(x3+2~(p3. 

The inner product of two spin characters for @‘,, can be expressed in the 
form 

with the sum is restricted to (OP, OP) and the E = -1 portion of (DP, DP) 
(cf. (5.1)). It follows that if x or cp vanishes on the E = - 1 portion of @,,, 
then 

(x> cp > cv, = Cch’(x), ch’(cp)l. (7.2) 

We also remark that a consequence of (4.5) is the identity 

rr( 2 1+x&,1 +x,y; 
;,i l-xjy, 1 -x,y/ > = c 

22/(z) + 2f(B) 

P,(X) P/h’) P,(Y) P/?(Y’), 
cc.~EOP z,zp 

(7.3) 

which may be identified as the generating function of the inner product 
c., .I. 

The following is an analogue of (4.6) for @‘,,. 

LEMMA 7.4. If x and cp are irreducible spin characters of i?/,, then 

ch’(X ^o cp) = 
2ch’(X) ch’(q) ifx and cp are not E self-associate 

ch’h) ch’(rp) otherwise. 
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ProojI Let V, and V2 be modules for C W; and C Wk _ k with characters 
x and cp, and let o denote the @‘,k,n mk, -character of p @ (V, @ V2). Since 
the s-associates of a given spin character have the same image under ch’, 
it suffices to prove that ch’(wf @,,) = 2ch’(X) ch’(cp). For this we define 
an Q;2, @Q2,-valued class function x,, on W, by setting K,,(W) = 0 for 
E(W) = - 1, n,,( -IV) = -x,(M’), and 

4% /3) = (- 1) (n- f(n)- /(B))i2 2(/w)+/w))/2 
P,(X) P/b’) 

for CI, a E OP. In these terms, we have 

by Frobenius reciprocity. Also, by Lemma 7.3 it follows that 
~,JM’,, w2) = zk(ul,) z,,~~(Iv~) for M’, E mk and u’~ E @,,-k. Similarly, we 
have w(w,, I@~) = ~x(MJ~)~(Iv~) provided that E(w,) = E(w~) = fl. 

Therefore, 

<w TAv,~,,~~)=~(x, x,)tvk <cp, n,,- k)~~~r=2ch’(~)ch’(cp). I 

We remarked in Section 4 that the spin characteristic of cp’ is a scalar 
multiple of the corresponding Schur Q-function. The precise relationship is 

ch’(cp’) = q; ‘2 ~“i’“2Qi.(x), (7.4) 

where vi = & for jb E DP- and qj, = 1 for J E DPf [Stl, Sect. 73. 

LEMMA 1.5. We have 

ch’(@“) = y1,~;2 ~(‘(“‘+‘(/“)‘2Q;,(x, x’) QJx, -xl), 

where q j.,p - - Jif*r .2(&p)= -1 and qj,,{,= 1 for ~(3.,p)= +l. 

Proof Recall that in Section 5, we defined the algebra automorphism 
* of /i g/i by setting p,*(x) = p,(x) and p,*(x’) = -p,(x’). Since Sz, is 
generated by the odd power sums, it follows that for f E Q, 0 Q,, we have 
f *(x, x’) = f(x, -x’). In particular, it follows that ch’(dX)(x, x’) = 
ch’(X)(x, -x’) for any spin character x of mn (cf. (5.4)). In view of (7.4) 
and Lemma 7.4, it therefore suffices to prove that ch’(cp”,“) = 
ch’(q’)(x, x’). For this, note that by (7.1), we have 

x P,(X) P&X’) 

=?Ep (-1) ~ 
(n ~(~t)/~z.~12~(y)~2~i.(y) 2 5 P,(X) Pp(X’). 

i’=zup * B 
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As in the proof of Proposition 5.1, the inner sum simplifies to py(x, x’), and 
so we have 

ch’(q+)= C (-l)‘“- ‘(y))‘2zy *2’(y)‘2’pn(y) p,,(x, x’) = ch’(cp”)(x, x’). fi 
yEof 

Proof of Theorem 7.1. Recall that we have an c-associate pair of 
representations indexed by (A, p) in case E(& p) = -1. In that case, since 
q:/‘+ q”” vanishes on the E = -1 portion of m,,, (7.2) implies that a”;” 
and @“” are irreducible if and only if the norm of ch’(qi.fi) is l/+6. Hence, 
to prove that the representations @“%fi are irreducible and form a complete 
list thereof, it suffices to show that the characteristics ch’(cp”.p) are of length 
I,+I~,,~ and form an orthogonal basis of Q&O,. In other words, we want 
to show that 

C &,ch’(@“)(x, x’) . ch’(q+)(y, Y’) (7.5) 
i,p.sDP 

agrees with the generating function (7.3) of the inner product [ ., .]. 
To prove this, note that by (4.5), we have 

1 2-‘(i.)Ql(x, x’) Qi(y, y’) = Zi’(x; y) IZ(x’; y) ZZ(x; y’) L!(x’; y’), 
;.EDP 

where n(x; y)=n,, (1 +x,y,)(l -xjyj))‘, and similarly 

@tDP 2- 
c ‘(fL)QJx, -x’) QJy, -y’) = ZZ(x; y) 17(x’; y’)/n(x’; y) n(x; y’). 

The product of the two previous expressions is (7.3), the generating func- 
tion of the inner product. Using Lemma 7.5, we see that this agrees with 
(7.5), so the proof is complete. 1 

The following result provides a description of the irreducible characters. 
Note that part (a) is an analogue of (5.5). We remark that it is possible to 
deduce from this a combinatorial rule for evaluating qpl+, although we will 
not pursue the details here. 

THEOREM 7.6. Define c,,~ = 2 for 2, p E DP-, and c).,~ = 1 otherwise. 

(a) If a, /? E OP, then 

Cpi.‘“(“, B) = Cj.,~ C ( - l)lJ” rp’.(a, U BJ) cp”(a~ U D;), 

I, J 

summed over subsets I and J such that (CI,U DJI = 12). 
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(b) rf ~1, ~EDP and E(cI,~)= -1, then cp$“(a,fl)=O unless 
2 v p = (x u fl. In that case, we have 

where E$$ denotes the parameter defined in Section 6. 

Proof. Let V, and V2 be modules for C Wh and C Wk k with characters 
qi’ 0 and ~“3~‘. Let o denote the @Ti(k,n _,,-character of p 0 (V, 0 V,). Note 
that oT PI,, is either ‘pi+, cpy + (pjl’l‘, or 2q~‘,~, according to whether 
neither, one, or both of A. and p belong to DP+. This implies that 
c,2Jw T ~,,) = 2#+ on the E = +l portion of I%‘,,. 

Let w be the canonical representative of some class (a, /I). 
Recall that in Section 6, we defined a collection Wk of coset repre- 

sentatives for WCk,,l ~ k, in W,,. By choosing one of the two Rn-preimages 
for each M’~ E Wk, we may thus form a collection qk of coset repre- 
sentatives for IV (k,n ~ kL Now consider the possible choices for w0 E pk with 
w; h’o = (bb’, , 4 E w(k,,, ek). These choices correspond to each of the 
possible ways to assign a subset of the cycles of w to wi, with the 
remaining cycles being assigned to )v~. (Of course, we must also insist that 
k be the sum of the lengths of the cycles assigned to wi.) The class of w, 
will thus be of the form (tl,, pJ) for some suitable subpartitions of c( and 8; 
similarly, the class of iv2 will be of the form (XT, fi>). Note that by our 
choice of coset representatives, both w, and w2 must be products of disjoint 
canonical cycles, modulo + 1. 

In case cx, BE OP, Lemma 7.3 implies that w, and w2 must be conjugate 
to the canonical representatives of (a,, pJ) and (a;, fi>), In particular, it 
follows that 

dw, > w*) = Ww2) ‘pTa,u PJ) @(a;” B;). 

By the usual formulas for induced characters, we therefore have 

and thus (a) follows. 
Now consider the case in which E(W) = -1. For this, we may assume ~1, 

/J E DP, since this is necessary for the class of (~1, p) to be split. We may 
further assume that ‘p”P indexes a pair of s-associates (i.e., &(A, p) = -l), 
since cp”,“(w) would otherwise be zero. In that case, either V, or V2 must 
be self-associate with respect to E (not both), and o has two irreducible 
constituents, say o + and w _ . For simplicity, we will assume that V, is self- 
associate (and hence, A. E DP+, p E DP- ) and let the reader supply the 
details when V, is self-associate. 
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The action of (w,, W~)E rick,,,- k, on p@ (V, 0 V2) can be represented 
via 

(WI 9 ~v*)(u”ou10u2)=x~‘y’~uo~w,u,~w2u2, (7.6) 

where E(w~) = (-1)/l, E(w~) = ( - 1)‘2, and x and y denote the anticom- 
muting involutions on C’ used to represent p, as in Section 3. 

Let S denote the s-associator of V,. Since y is the s-associator of p on 
pk, it follows that ~0 S@ 1 is a nontrivial involution that commutes with 
@(k,,,-k)> and hence, 

(0, -~-)(w,,w~)=~~((YOSO~)W,W~). 

If we compose the action of y@ SO 1 with (7.6), it is easy to see that there 
will be a nonzero trace only if I = +l and E(w~) = -1; in that case, we 
get 

2~+(W,, wd=(w+ - w-)(W,) w*) = 2d”q+qw,) cpiz’qw*). 

Therefore, since ok t I%,, = ~p”;~, we may conclude that for E(W) = - 1 we - 
have 

qrp(w) = + c cyw,) Lcpqw,) q+qwz), (7.7) 
11’0 E it* 

where wg’ww,,=(w,, W~)E @ck,n-k) as usual. It should be emphasized that 
the sign depends only on the choice of associate, not on w. 

To evaluate the terms in this sum, we will need to know the E = -1 
portion of the character table of s,,, as well as the difference characters 
dq”. If v E DP- is a partition of n, then we have cp; (w) = 0 for all w E s,, 
with E(W) = -1, except for those w of cycle-type v. In that case, we have 

@Jv)=i’“-/““- 1),‘2&, 
(7.8) 

and this defines a particular labeling of the two associates @; and @“. 
(For a proof, see, for example, [Stl, Sect. 71, but remember to adjust for 
the fact that a different covering group of S, is being used.) In case 
VEDP+, so that @” is self-associate, we have dq’(w) =0 for all WES,, 
unless w is of cycle-type v. In that case, we have 

dq’(v) = i(“-/(“)J/2 6, (7.9) 

and this defines a particular choice of associator for @” [Stl, Sect. 71. 
Note that (7.8) and (7.9) imply that a given summand of (7.7) will 

vanish unless wi has cycle-type A and w2 has cycle-type I*. Hence, for the 
remainder of the proof we may assume I u p = a u fi, since q$“(o!, /3) would 
otherwise be zero. 
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Let (a,, . . . . a,) and (b,, . . . . b,) denote the sequence of parts in (A, p) and 
(CX, /I), as in (6.3). Following the proof of Theorem 6.2, we know that for 
each permutation 71 such that bXci, = a,, there is a corresponding coset 
representative u’~(T() such that the elements w,(z) and We appearing in 
(7.7) have Sk-image +_ wi, and 3, _ ,-image f w,,, respectively. Each pair of 
odd-length cycles in u’ that are inverted by 7~ will contribute an odd 
number of inversions to W,,(X); the odd-even and even-even pairs 
contribute an even number of inversions. Also, in order to sort the cycles 
of wO(n) ~’ wwO(7c) so that they appear in the same order as they do in the 
definitions of U’j. and u’@, it is necessary to introduce a factor of - 1 for 
each pair of even-length cycles that are inverted by 7c, since these cycles 
anticommute. An application of Lemma 7.2 therefore implies that the 
g,-image of W,,(X) ’ ww,(n) agrees with the s,-image of ( - 1 )“ltn) (u’,, M’),), 
where n,(n), as in Section 6, denotes the number of inversions in n 
involving parts of the same parity. Hence, by (7.8) (7.9), and the fact that 
$;;; = ( - 1 p(n) 6(w,), (7.7) can be rewritten in the form 

Since each summand is independent of n, and there are 2’(anfi) = 2’(‘“fi) 
such summands, the result claimed in part (b) follows. m 

8. THE FACTOR SET C-1, -1, +l] 

Following Section 3, we know that the irreducible projective representa- 
tions of W, with factor set [ - 1, - 1, + l] can be obtained as the 
irreducible constituents of 0 0 @‘5P for I”, p c DP. By Theorem 3.2, these 
constituents and their characters can be constructed from the associators 
and difference characters of the representations @‘,P that are self-associate. 
Note that for the character E, the self-associate cases occur for 1”, p E DP+ 
and A, p E DP-. For the character 6, we have 6 Q @‘xU g W”, so @‘,J’ will 
be self-associate with respect to 6 if and only if 2 = p. In that case @“+ is 
also self-associate with respect to E and ~6. Similarly @J’+ will be self- 
associate with respect to ~6 only if it is also self-associate with respect to 
E and 6, i.e., only if i = p. 

It will be convenient to explicitly describe the module structure of @‘,J’ 
in terms of the module structures of @’ and QP’. For this, assume (A( = k, 
1~1 = n - k, and let V, and V, denote modules for C W; and C WL _ k with 
characters cp”xO and @‘.O. (In case i, ALE DP-, assume that V, and V, 
have characters (p”IO and ~p”;~ in the labeling imposed by (7.8).) Recall 
from Section 7 that we defined a set Rk of coset representatives for 
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lTEnpkl in ct,. We may thus impose a Cwn-module structure on 
CGL 0 C2 0 V, @ V, by defining 

w(woouo~u,ou2)=s(w*)~v~ox~‘y’*uoow1uIow2u2, (8.1) 

for all WE lTn, where wO, wb E m”, WwO=W~(W,,w2),E(W,)=(-1)‘1, 
.s(w2) = ( - l)“, and x and y denote the anticommuting involutions in GL, 
used to represent p, as in Section 7. In case 1, p E DP -, this defines the 
module structure of @A’P; if 1, PE DP+, then this is isomorphic to the sum 
of two copies of @‘xP. 

In case A, PE DP+, then both V, and V2 are self-associate with respect 
to E; we will denote their &-associators by S, and S2. For this case, we will 
also need to define a pair of involutions E!$’ on C mk @ C2 0 V, @ V, via 

It is easy to see that both involutions commute with the action of tt,. In 
fact, the algebra of endomorphisms that commute with @‘H is generated by 
l@y@S,@l and l@xOl@S,. It follows in particular that the 
eigenspaces of Pi” and E!,@ all carry the module structure of @‘,P for the 
case 2,~ E DP+. 

The E-Associators 

Define an involution S’,@ on Cmk@C2@ V, 0 V2 via 

s”qw,@u,@u,@u,) 

{ 
i~(wo)woOyxuoO~,0u2 if I~,~EDP- 

= 
4%) wo 0 uo 0 s, 01 0 s2 02 if I,~LDP+. 

THEOREM 8.1. (a) For 2, p E DP-, the &-associator of @“xp is S”.@. For 
J,peDP+, the &-associator is the restriction of Si.xp to either of the 
eigenspaces of E$fl (or E?v). 

(b) The difference character A&q”,“(w) vanishes unless w belongs to a 
class (a, 8) such that c(, /I E DP and 1 v p = CI v p. In that case, we have 

A’q+(c~, /I) = 2 I(i.np)E2,fl fn- f(i)- f(p))/2 z,Bz 6. 

Proof. First consider the case A, p E DP-. Using the notation of (8.1), 
we have 

s”~~W(W, @ u. 0 u, @ u2) 

= iE(w&)B(wZ) w~@(yx)x"ylzuO@w1u1@w2u2 

ws"qwo~uo@u,@u2) 

= iE(Wo)6(W2) Wb@X”y’2(yX)Uo@WlUl@W2U2. 
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Since the (group) commutator of yx and x”Y’~ is ( - 1 )‘I +I* = E(W, w,), it 
follows that the actions of S’,“w and E(W) wS”,~ agree, so S”,P is indeed the 
associator. 

For part (b), note that the only subspaces Cw,@C’@ I/, @ V, that 
contribute to the trace of S”,“w are those for which wO= wb; i.e., 
)+’ ;- lwwo=(w,, %)E &.&). As a further condition for nonzero trace, we 
must have s(wl) = E(w~) = -1, so that I, = 1, = 1 mod 2 and (yx) x’ly’* has 
trace 2. Under these conditions. we obtain 

(8.2) 

with the sum restricted to those representatives w0 for which W;‘WW,,E 
I?ck,n-k, and E(w~)=E(w~)= -1. 

By (7.8), we know that the terms of (8.2) will vanish unless w, and w2 
have cycle types 1, and p. Therefore, assuming that w belongs to the 
IV,-class (CI, fl), we will have d”q’.“(w) = 0 unless I up = cz u b. In case 
CI or b has a pair of repeated parts of some length r, then parts (d) 
and (e) of Lemma 2.2 show that there will exist an element u E pH with 
E(u)=(-l)r such that UWK’=(-l)‘- ‘w. In that case, (3.2) would imply 
d”~p”,~(w) = 0. Thus, we may assume for the remainder of the proof that w 
is the canonical representative of some class (a, j) such that J. u p = tl u /1 
and c(, /3 E DP. 

As in the proof of Theorem 7.6(b), we know that for each permutation 
z that maps the sequence (~1, /I) to (1, I*), there is a corresponding coset of 
@‘(,,,+ kj for which the elements w, and w2 have cycle types 1% and p. In this 
case, each pair of odd-length cycles in w that are inverted by n will 
contribute an odd number of inversions to w0 = wO(z), and each pair of 
inverted, even-length cycles will also introduce a factor of - 1, since these 
cycles anticommute. For each choice of rc we therefore have 

the latter equality being a consequence of (7.8). Since these terms are 
independent of rc, and there are 2’(1”pJ = 2r(anfl) such terms, we thus 
obtain the claimed formula. 

Now consider the case ;1, p E DP+. Using the notation of (8.1), we have 
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Since wwO = wb(w, , w2) and Y,S~ = E(w,) Sjwj on Vi, it follows that the 
actions of S”vPw and E(W) wSn,lr agree. Since S’,” clearly commutes with 
E$j’, it follows that Sfl also acts as the associator of @“,p on each 
eigenspace of E;“. 

The trace of SL3% on C qk 0 C2 @ V, 0 V, will either be 2d”@~(w) or 
else identically zero, depending on whether SP acts as the same associator 
on both eigenspaces or as a pair of opposite sign. As we shall see below, 
the trace of S%J is not identically zero, so it must be that the former alter- 
native occurs. 

To compute this trace, we may restrict our attention to those coset 
representatives w0 for which !+; ’ w!@~ = (w , , w2) E @(k,n ~ k,, as usual. From 
the above expression for S’3%r, we see that as a further condition for 
nonzero trace, we must have F(w*) = E(M~*) = + 1 (so that 1, = 1, = 0 mod 2). 
We therefore have 

with the usual restrictions on wO. Note that we need not explicitly require 
a(~,) = s(w2) = 1, since the difference characters of ‘p’ and ‘pP vanish when 
E = -1. The remainder of the proof is now the same as the previous case, 
except that (7.9) should now be used in place of (7.8). 1 

The remaining associators and difference characters arise only in the case 
1” = p. Thus, we will assume that 3. E DP is a fixed partition of k = n/2, and 
that V= V, = V, carries the CR’;,,-module with character qo’.” (or (ptO, 
if AEDP-). In the case AEDP+, we will also write S= S, = S, for the 
associator of V. 

To define the associators in these cases, we will need to make use of an 
element u E s,, whose S,,-image is the involution (1, k + 1)(2, k + 2). . . 
(k, 2k) of Section 6. Note that u is conjugate to either crl o3 . oZk _, or its 
negative, so we have 

Of course, there are two possibilities for U, so to make our formulas for the 
difference characters precise, we need to specify a particular choice for U. 
For this, note that if 0 E 3, is one of the two preimages of the transposition 
(i, j), then we have [u] = +(4, - t,)/&!, where [ .]: CR’: + %$ denotes the 
Clifford algebra representation of Section 7. In these terms, we may define 
u by insisting that 

To evaluate the difference characters at a given element w, we will need 
to analyze the coset representatives w0 E @“I2 such that UW;‘WM~~E 
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PV~~,~,~,~). These representatives can be obtained as the @‘,,-preimages of the 
corresponding coset representatives that were determined during the proof 
of Theorem 6.4(b). It follows that there are no such representatives unless 
the cycles of w are all of even length; in that case, the representatives may 
be indexed by subsets Z of (1, . . . . l}, where 1 denotes the number of cycles 
of U’. 

To describe the coset representative u’~ indexed by I more precisely, 
let u’ E @,, be the canonical representative of the class (2y, @) for some 
partition y of k= n/2. The ith cycle of w has an S,,-image of the 
form (2s + 1, . . . . 2s + 2r) for suitable r and s (namely, r = yi and 
s= y, + ... + yip ,). The membership of i in I (or lack thereof) forces the 
S,-image of wO to assign the elements s + j and k + s + j (1 <j f r) to one 
of two possible permutations of 2s + 1, . . . . 2s + 2r, as described in the 
following table: 

sfl s+2 . ..s+r k+s+l k+s+2...k+s+r 

itzl 2s+2 2s+4...2s+2r 2s+ 1 2s+3 . ..2s+2r- 1 

i$Z 2s+l 2s+3...2sf2r-l 2s+2 2s + 4 .2s + 2r. 

These constraints completely determine the W,-image of wO = w,(Z); we 
may thus use either of the @‘,,-preimages since the expression uw; ‘WW~ is 
independent of this choice. 

LEMMA 8.2. Let w be the canonical representative of some class (2y, @), 
and define n(y) = 1 (i- 1) yi. [f wO = w,(l), then uw;‘wwO = (w,, w,), 
where 

1 
( - 1 y(Y) + IYJI ,$I,, 

M’lU’2= (-1)n(n-2)‘8+~(p)w_ 
zy E(W)= +1 
if I = -1. 

In either case, w, (resp., wz) has cycle-type yI (resp., y;), and 
E( wo) = ( _ 1 )W - 7-m + /i’ll~ 

Proof: The number of inversions in the permutation 2,4, . . . . 2r, 1, 
3, . . . . 2r - 1 is (;) + r; in the permutation 1, 3, . . . . 2r - 1, 2, 4, . . . . 2r there are 
(;) inversions. It follows that the total number of inversions in wO is 

which agrees with the result claimed for E(w~). 
Now let w = x1 ... x, and wY = y, ... y,~ s,,, denote the defining 

factorizations of the canonical representatives for (2y, a) and (y, a) as 

481 145!2-I2 
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products of cycles. Assuming that the S,-image of xi is the 2r-cycle 
(2s + 1, . . . . 2s + 2r), we have 

The involution (s + 1, k + s + 1) .. (s + r, k + s + r) E S, has two 
S,,-preimages; we define ui to be the particular preimage for which 

C&l = 2 -~“*K+ 1 -5k+.~+I)...(5.~+.-5k+.,+r), (8.3) 

so that u = ui ... u,. Under these circumstances, we claim that 

&(Wo) UiW~‘XiWO = 
i 

(-l)‘(Yi, 1) if iEZ 

(1, Yi) if i$ I. 
(8.4) 

To prove this, let us first suppose that ie I. By Lemma 7.2, we have 

x n (5,+j-,-~k+.~+,)(5k+J+,-r.,+J). 
,=2 

After a rearrangement of factors, we obtain 

[ujw,lxiw,] = -&(Wg)2-(3’P’)‘2 (<k+F+, -5,+,y 

x n (tk+s+j- ts+j)(ts+j- I -tk+s+j)(tk+s+ j-t.Y+j). 
j=* 

The presence of the extra “-” sign is accounted for by the fact that 
we have reversed the internal order of each of the terms in (8.3) (thus 
introducing a factor of (- l)‘), and every term in (8.3) except the first was 
moved past an odd number of the terms in [w;‘xiw,] to reach its position 
in the above expression (thus introducing a factor of (- l)‘- ‘). Since the 
jth term simplifies to - 2(5,+jP I - t,+i), we therefore have 

which may be identified as the %Yn-image of (- I)’ (y,, 1). The proof for the 
case i$ I is similar; we omit the details. 

Since the commutator of u, and w; ‘xjwO is E(u~) = ( - l)?l for i # j, it 
follows that 

uw, lww() = ( - 1 y(y) iF, #iwC lxiwO. 
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By repeated application of (8.4), we thus obtain uw; ‘wwO = (w,, NJ,), 
where w, has cycle-type y,, wz has cycle-type y;, and w1 w2= 
4wd’( - 1) n(u) + l~/l~~j,. The claimed results now follow from the formula for 
E( wO) and the fact that E(U)) = ( - 1)‘. 1 

The &Associators 

Define a pair of endomorphisms T: on Cv/* @ C*V@ V via 

We claim that if LE DP-, then either T: or T? is a b-associator (modulo 
scalar factors), according to the parity of n/2. If A E DP+, then the restric- 
tion of either T$ or T? to the respective eigenspaces of either E$U or E?” 
will be a Sassociator. In this latter case, it will develop that the restrictions 
yield two associators of opposite sign, so it will be more natural to treat 
E”;b’Ti as the associator, since it will act as the same endomorphism on 
both eigenspaces. To account for these various possibilities, we therefore 
define 

if n=Omod4andAEDP- 
if n=Omod4andAEDP+ 
if n=2mod4andAEDP- 
if n=2mod4andiEDP+ 

THEOREM 8.3. (a) If %E DP-, then T’ is the &associator of @‘; if 
ieDP+, then the &associator of @* is the restriction of T’. to the 
eigenspaces of E:’ vor n = 0 mod 4) or Ei-’ (for n = 2 mod 4). 

(b) The only nonzero values of the difference characters are 

d”cpj..J.(2ju, gj)= (-i)(f(;.)+ 1li2( _ l)fl(A)2((1) fi 

if n=Omod4andLEDP 

ASqL;.(gj, 24 = i(“- f(j.)V*( _ 1 )n(i.)2((i) A 

if n=Omod4andAEDP+ 

As(p”.i(O, 214 = i(n-f(1)+*)/2( _ 1)NJ.l 2’(j.) fi 

if n=2mod4and,lEDP 

d”@j.(2je, 0) = ( -i)CfCi,)k 1V2( _ 1 )d42/(j.) Jzi. 

zf n=2mod4andl,EDPf. 
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Proof: Since (T: )’ = u2 = (- 1 )ncn ~ 2)/8, it is easy to see that i”/4T: is 
an involution for n = 0 mod 4, and that I ‘(” m2”4T: is an involution for 
n=2mod4. 

For w E @,,, we have 

using the notation of (8.1). By Lemma 7.2, we know that ~‘(a,, 1) U= 
E(u)(~, ~7~) and u-'(T~, 1) U= (1, rj), so for w,, W*E p,,,*, we have 

u-‘(w,, w2) u = E(U) ‘I+/2 (1, w,)(w,, 1). 

Since wwOu = w&u. U-‘(WI,, w2) U, it follows that 

Observe that 6(w) = 6(w, w2) and E(U) = (- 1)n!2. Since y’~x’~(x + y) = 
(x + y ) x’p, a comparison of T: w and wTi shows that wTi, = 
6(w) Tt w in case n = 0 mod 4. Similarly, when n = 2 mod 4, we have 
E(U) = -1 and y”x’*(x - y) = (- l)‘l+‘* (x- v) x’l~‘~, so w*Ti- = S(w) T’: w. 
It follows that T2 is indeed the associator for A E DP-. In the case 3. E DP+, 
one also needs to verify that I!$” commutes with T:, and that Ei-’ 
commutes with Tj- ; we leave this easy exercise to the reader. Once verified, 
it follows that T’ acts as the associator on the eigenspaces of Et’ (for 
n = 0 mod 4) or E?’ (for n = 2 mod 4). 

To evaluate the difference characters, first consider the case in which 
n = 0 mod 4 and % E DP-. Note that (x + y) x’~L,‘* has nonzero trace (equal 
to 2) only if E(W, u12) = -1 (i.e., 1, + I, = 1 mod 2). Since the trace of 
u, 0 v2 w Bu, 0 Au, is tr(AB), (8.5) implies 

d”q+“(w) = in’4 J2 1 6(w,) 4y(w, w,), G3.6) 
,vg E I@" 2 

with the sum restricted so that UW;~WW~ = (w,, w2)e @‘n,2,n,2 and 
a(wr w2) = -1. Since E(U) = 1, we may ignore the restriction on a(wI w2) by 
insisting that E(W) = - 1. 

Given that E(W) = - 1, Lemma 2.2(b) implies that if w has any negative 
cycles, then there will exist an element z with 6(z) = -1 that centralizes w. 
Such z will also exist if w has any positive cycles of odd length, by 
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Lemma 2.2(c). Therefore, we may assume that w is the canonical represen- 
tative of some class (2y, a), since (3.2) would otherwise imply d6#x”(w) = 0. 

According to Lemma 8.2, the choices for w0 are indexed by 
ZC { 1, . . . . e(y)}, and for each such choice we have 

using the fact that n(n - 2)/8 = n/4 mod 2 when n/2 is even. However, by 
(7.8) we know q”,(y)= 0 unless j”=y. Under these circumstances, (8.6) 
becomes 

d”cpJ..;.(24 0) =I (-i)(f(i)+ 1)/2( _ 1 y(j.1 J& 

Since each summand is independent of I and there are 2”” such sum- 
mands, the claimed formula follows. 

Now consider the case in which n = 2 mod 4 and AE DP-. Note that 
(x- y) x has trace 2, and (x- y) y has trace -2; otherwise, (x- y) ~“y’~ 
has trace zero. The analogue of (8.6) can thus be written in the form 

A”cp(w) = i(r1-2)‘4 fi 1 E&W*) cpyqw, w,), (8.7) 
M’” E Gzmz 

with the usual restrictions on w,,, w,, and w,; i.e., uw;‘wwO = (IV,, w2) E 
@(,1,2,n,2, and E(VV~ w2) = -1. Since E(U) = -1 in this case, we may ignore 
the restriction on E(MJ~ w2) by insisting that E(W) = +l. 

Given that E(W) = +l, Lemma 2.2(b) implies that if w has any negative 
cycles of odd length, then there will exist an element z with 6(z) = - 1 that 
centralizes IV. Similarly, by use of Lemmas 2.2(a) and 2.2(c), one can show 
that if w has any positive cycles, there will exist either a similar z or else 
a z’ with 6(z’) = +l that anticommutes with w. In any of these cases, (3.2) 
would imply d”cp”,j(w) = 0. We may therefore assume that w is the canoni- 
cal representative of some class (0, 2~). 

As in the previous case, the choices for w0 are indexed by subsets I of 
{ 1, . . . . e(y)). Since u’= w0,2Y is no longer in s,, we need to modify the 
conclusion of Lemma 8.2 slightly. Assuming w0 = w,(Z), we still have 
uw; ‘WI+*,, = (~1,) VV~) where the s,,,-image of w1 w2 is (- l)n(y)+ lY/lwY, but 
u’, and w2 are now products of negative cycles. In particular, the I+‘,,,,-class 
of w2 is (0, y y), and so we have 

&B(W2) (p”c” (WI w2) = ( _ 1 )W) + IYII + 14 ‘p$“(w, w2) = -( - l)“‘Y’q?i+(y). 

Again, (7.8) implies that d6q,‘,“(w)=0 unless A=y; in that case, (8.7) 
becomes 

A”cp”,“((zI, 21,) = 1 i (n~/(j.)+2)/2(_l)n(i.)~. 
I 
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Since each summand is independent of Z and there are 2p(i) such sum- 
mands, the claimed formula follows. 

Now consider the cases with 2~ DP+. Although (8.6) and (8.7) still 
represent the traces of T’-, w and T’: w, these expressions are identically 
zero in this case, since q’ = 0 on the E = - 1 portion of sn,*. Hence, the two 
associators obtained by restricting Ti to the eigenspaces of E$” are of 
opposite sign. Since we defined T’ as (a scalar multiple of) E$‘Ti, we 
thus obtain 2d6q’,“(w) as the trace of T%v on Cw” OC’@ Vo V. 

To determine the trace of T’w under these circumstances, note that 

using “ + ” throughout for n = 0 mod 4 and “-” throughout for 
n = 2 mod 4. From this it is clear that we must have s(wr w2) = +1 (so that 
I, = 1, mod 2) to obtain a nonzero trace. This forces E(W) = +l for 
n = 0 mod 4 and E(W) = - 1 for n = 2 mod 4. By the same reasoning used 
in the previous cases, we may therefore assume that w is the canonical 
representative of some class (0,2y) or (2y, 0), according to whether 
12 = 0 mod 4 or n = 2 mod 4. We leave the reader to evaluate the traces of 
x(x + v) x”Y’~ and y(x + y) x”y’*, and thereby obtain 

(1 P&S(W,) d”q+“(w, w2) if n=Omod4 

1 i(n-2”4b;(w2) ~I’cp~‘~(w, w2) if n =2 mod 4, 

with the usual restrictions on wO. Here one also needs to make use of the 
fact that the trace of ur H w,v2@Sw, v1 is d”cp”*“(w, w,), and the trace of 
v, @ v2 H Sw,v, @ w,u, is s(wZ) d”q+“(w, w2). 

The remainder of the proof is similar to the previous cases. Use (7.9) to 
deduce that @q”,“(w) will vanish unless A= y, and then apply Lemma 8.2 
to evaluate each of the terms appearing in the above sums. 1 

The dAssociators 

Of course, the ES-associator U” of @‘,’ can be obtained (modulo scalar 
multiples) by composing S”*’ and T”. From their definitions, it is easy to 
see that the commutator of S”,” and T” is --E(U) for A B DP-, and E(U) for 
~EDP+. Hence, ,!?3” and T” will anticommute when n = 2 mod 4 and 
IIEDP+, or when n =0 mod 4 and IIE DP-. By Theorem 3.2, it follows 
that 0 @ @‘*’ will split into four irreducible constituents precisely in these 
latter two cases; i.e., when e(A) is odd. 
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In case S”,” and T” commute (i.e., k’(A) is even), our choices for U’ are 
+S”,“T>.. Hence, to maintain the validity of (3.4), we will define U” to be 
S’v”T’. In case S’,’ and p anticommute, our choices for U’ are +_ iS”,‘T”. 
Since the difference characters of 0 described in Proposition 6.1 were 
obtained by choosing associators for E, 6, and EC? of the form S,, To, and 
iS,T,, it follows that we may preserve the validity of (3.6) by choosing U” 
to be -iS’,“TL. In summary, we define the s&associators via 

I 

&n ~ 4)/4S*,j.T\ if n=Omod4andAEDP- 

u* = 
j”f4EI~,“S”~“T” 

+ 
&dS”.“T” 

if n=Omod4andIEDP+ 
if n=2mod4andAEDP- 

j(n 6)/4Ei.,i.si,AT~ if n=2mod4anddEDP+. - 

THEOREM 8.4. The only nonzero values of A”cp’.* are 

A”bq#+J, 2A) = i OI- /(*)+3)/2(- l)M*Q/(j.l 6 

if n=Omod4andLEDP- 

A”‘q3’~“(2,4 0) = ( -i) L(A)l2( _ 1 In(*) 2/C”) fi 

if n=Omod4andiE:DP+ 

j)(m) - ZJ/Z (- 1 )n(*) 2’(A) & 

if n=2mod4and,?EDP- 

f(A)+ 1)/2( _ l)“‘*’ 20”’ & 

if n=2mod4andIEDP’. 

11, we Proof. First consider the case il E DP-. Using the notation of (8. 
have 

= Lqw2) ( ’ ) 
fi 

& wou w~u@yx(x+y)x”y’*v,0W2v2@W1V, 

We note that the respective traces of yx(x + y)x, yx(x + y)y, yx(x - y)x, 
and yx(x - y)y are - 2, 2, 2, and 2; in all other cases, yx(x + y)x”~‘~ has 
trace zero. It follows that 

fi C i”~4~(w~w~)~(wz)(p~0(w~w~) if n=Omod4 
A”“cp”,*(w) = 

i 

wl 
4 C i(“+22”4~(w,) 6(w,) (P$~(w~w~) if n = 2 mod 4, 

M‘O 
(8.8) 
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with the usual restrictions on wO, wr, and w,; i.e., UW;‘WW~ = (HI,, w2) and 
E(W, wZ)= -1. We may drop the latter condition by insisting that 
E(W)= -1 for n=O mod4 and E(W)= +1 for n=2mod4. In case 
E(W) = - 1, one may apply Lemma 2.2 to show that if w has any positive 
cycles, or any odd-length ‘negative cycles, then there will exist elements z 
with ES(Z)= -1 that centralize w, and hence force dC6rp”vA(w) to vanish. 
One can similarly use Lemma 2.2 to show that if E(M)) = +l, then 
d”“cp”~“(w) will vanish unless all cycles of w are positive and of even length. 
We may therefore assume that w is the canonical representative of either 
(@,2y) or (2y, a), according to whether n = 0 mod 4 or n = 2 mod 4. 

As in the proof of Theorem 8.3, the only coset representatives that 
contribute to the trace of U’w are those of the form w,(l). For these cosets, 
Lemma 8.2 implies 

E(%WI) &w,) cp:O(wl w2) 

=(-1) n(~~-2)/8+IS,I~(~~)lY/I+I .(_l)n(n-2)/8+n(.y)(P:(Y) 

= - ( - lpcp:(y) 

for the case e(w) = - 1, and similarly, 

E(WO) Jo+) (py(w,u’2) = (- 1)+-2)/s+iyf (- l)n(y)+lyfl(p:(y) 

=(-I)‘“- W+NY+,;(~) 

for the case E(W)= +l. In either case, d”“cp”,‘(w) will vanish unless I = y. 
Under these circumstances, (7.8) implies that the Zth summand in (8.8) is 

j(n - ((1) + 3W( _ 1 )n(i) & if n=Omod4 

t-4 (/(i.)-2)/2( _ 1 )n(i.) & if n=2mod4. 

Since each summand is independent of Z, the claimed formulas follow. 
Now consider A E DP+. In these cases, we have 

= ;6(w,) &(WbU) wbu@ [x(x& y)x”y’*o,osw2u20 W]Ul 

fy(x+y)X”y’2U,OW2v2OSW,011, 

using “ + ” throughout for n =0 mod 4 and “-” throughout for 
n = 2 mod 4. From this it is clear that we must have E(W, w2) = +l (and 
hence I, = I2 mod 2) to obtain a nonzero trace. This forces E(W) = +1 for 
n = 0 mod 4 and E(W) = - 1 for n = 2 mod 4. By the same reasoning used 
above, we may therefore assume that w is the canonical representative of 
some class (2y, 0) or (@,2y), according to whether n = 0 mod 4 or 
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n = 2 mod 4. We leave the reader to evaluate the traces of x(x _+ y) x’ly’? 
and y(x +_ y) x”y12, and thereby obtain the following analogue of (8.8): 

[C i”‘46(w,) &(WJ d”cp”-“(w w2) I if n=Omod4 

d”“cp”L(w’) = ; $“-6’/4Eqw,) E(,,,O) d”cpkO(w, wz) if n=2mod4. 

Here one needs to make use of the fact that the trace of U”w on 
Cp” @C* 0 V@ I/ is twice the value of d”“cp’,‘( w). The remainder of the 
proof proceeds as usual. Apply (7.9) to deduce that d”“cp”,‘(w) will vanish 
unless A = y, and then use Lemma 8.2 to evaluate each of the terms appear- 
ing in the above sums. 1 

The following result is a corollary of Theorems 3.2, 8.1, 8.3, and 8.4; it 
summarizes the overall structure of the irreducible representations for the 
factor set C-1, -1, +l]. 

COROLLARY 8.5. The irreducible spin representations of W,( [ - 1, - 1, 
+ 11) can be indexed so that the submodules of 0 Q Gi”+ are labelled by the 
unordered pair {A, u}, where A, u E DP. In the following table, n,,, denotes 
the number of modules indexed by {A, u}, m,,, denotes their multiplicity in 
0 0 @,I’, and o+, denotes the size of their L,-orbit. 

nk,l ok, mi,, 
1 1 2 if A=uandC(A)iseuen 

4 1 1 if A = and e(A) is odd u 

2 2 1 tf n-/(A)-C(p)iseuenandA#p 

1 4 1 if n - ((1.) -e(p) is odd. 

9. THE FACTOR SETS [ + 1, f 1, - 1 ] 

The orthogonal group 0, has a double cover Pin(n) that can be 
represented as a subgroup of the multiplicative group of the Clifford 
algebra ‘S,,. It follows that one may obtain a projective representation of 
any subgroup of 0, (e.g., a reflection group) by suitably restricting any 
linear representation of %?“. The representations of Weyl groups that arise 
in this fashion were first investigated in a series of papers by Morris (e.g., 
see [MOM]). 

To describe the representations of W, that this technique produces, 
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define an algebra homomorphism CWl; + G$ for the factor set 
y= C-1, -1, -11 by setting 

The fact that this does generate an algebra homomorphism is an immediate 
consequence of the defining relations (1.2). We may thus obtain a projec- 
tive representation of W, for the factor set [ - 1, - 1, - 1] by composing 
C W); -+ %7,, with any linear representation 9” --+ End( V). 

If II is even, the algebra %$ is simple and thus isomorphic to the matrix 
algebra M(Z’@). For odd n, we have %$ rM(2’“-r”*)@ M(2’“~~“‘*). (See 
[Stl] or CABS] for an explicit isomorphism.) It follows that ‘ik; has one 
irreducible representation for even n, and two such representations for odd 
n. Since C Wl; -+ Vn is surjective, the above construction yields one 
irreducible spin representation of W,( [ - 1, - 1, - 11) for even n and two 
for odd n. We will denote these representations generically by Y’; in situa- 
tions where we need to emphasize that there are two choices for odd n, we 
will write Y’_+ . 

Let IL denote the character of !I? 

THEOREM 9.1. For a E OP and /I E EP, we have 

d(r,P)=III;;::: 

l(a))/2 + myl(a) + F(/l)J/2 if n is even 
1(1))/22(/(x)+ t(p)- I)/2 ij’n is odd. 

The only other nonzero values of I/(c(, b) occur when n is odd, GI = 0, and fl 
is arbitrary. In these cases, we have $*(@, /3) = _+i(np1)/2( - l)“(O) 2(r(8)-1)‘2. 

ProoJ Take the elements 5, = li, . . .<, as a basis of @?,,,, where 
I= {i, < ... < ik} ranges over the subsets of { 1, . . . . n>. For WECW;, let 
t,(w) denote the coefficient of 5, in the VX-image of w. By Proposition 3.1 
of [Stl] (a description of the irreducible character(s) of g,,), we have 

Ii/(w) = 2”‘2r&) if n is even 

~.(W)=2(“-‘)/*~~(w)f(2i)‘“~‘)‘*~(W) if n is odd, 
(9.1) 

where [ = 5:, . +. e, denotes the basis element corresponding to I= { 1, . . . . n}. 
To evaluate lo(w), first consider the case in which w is a positive, 

canonical k-cycle. If the S,-image of w is (j+ 1, j+ 2, . . . . j+ k), then the 
?&-image of w is 
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so there is no constant term unless k is odd. In that case, only one of the 
2kP i terms that arise in the expansion of the above expression has a non- 
zero constant term. This single term is of the form ( - 5, + *)( 5, + 2)( - ci+ 4) 
(ti+4)..., so we conclude that <.(~)=(-1/2)(~~‘)‘~. 

To evaluate the constant term for a negative cycle, first note that the 
%‘,,,-image of T, is (- l)‘- ’ ri. This follows by induction on j and the fact 
that (tz - 5i) 5,(t2 - t,) = -2t,. Therefore, the %$,-image of a negative, 
canonical k-cycle MI will be of the form 

C-1) k+,-1 2- (k-1)/2(<,+, 
-<,+2).“(rj+k -I-tj+k) <,+kr (9.2) 

so there will be no constant term unless k is even. In that case, it is easy 
to see that tB(w)=(-l)j+ki2P’ (1/2)‘k-“‘2. 

For the general case, assume that u’ is the canonical representative of 
some class (tl, p), and let w = w1 . pi, be its defining factorization as a 
product of canonical cycles. Note that t,(w) = t&w,). . . (@a(~~). We may 
therefore assume CI E OP and /r E EP since the above analysis shows that 
t@(w) would otherwise be zero. Under these circumstances, the ith 
negative cycle of u’ (the one of length fii) includes the element T~+~, as part 
of its defining factorization, where j = ICI( f /?, + . .fl, I. However, since 
CI E OP and /I E EP, it follows that j = E(a) = n mod 2, and so we have 

/(%I /C/J) 
<@a(W) = n (- l/2)‘“‘- IV2 

,!, (-l) 
n+8,/2~1(1/2)(81~1)/2 

,=I 

= ( - 1)‘” IVlP)( _ l)‘“- f(W2( l/2)‘“- /(a)- fuJH/2~ 

To evaluate i(w), observe that the %$,-image of w is a product of n - e(cr) 
linear terms, whereas c is a product of n such terms. Hence, in order for 
i(w) to be nonzero, we must have CI = @ (and thus fl$ EP, assuming n is 
odd). It is easy to see that the coefficient of tj+ I ... <,+k in (9.2) is 
(-l)kf’P’ (1/2)(km1)/2, so we have 

f(8) 
i(w)= n (-1) 81+ ...+LJ- 1 (l/2)‘“,- lV2, (9.3) 

,=I 

For odd n, we have fli+ ... +~i-l=~i+,+fii+z+ ... mod2, so the 
above expression simplifies to c(w) = ( - 1)“‘“) (l/2)(“- ‘(8))/2. The claimed 
results now follow from (9.1) and our formulas for S@(w) and i(w). m 

The tensor products YJ’o X”,’ and Y 0 @‘,j’ permit us to easily create a 
large supply of projective representations for the factor sets [ - 1, - 1, - l] 
and [ + 1, - 1, - 11, respectively. The following results show that all 
irreducible representations for these factor sets are of this form. 
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THEOREM 9.2. The irreducible spin representations of W,,( [ - 1, - 1, 
-11) are Y@X”,O (for n even) and Y+ @ XL.” (for n odd), where A - 
ranges over the partitions of n. 

ProoJ By separating a partition into its odd and even parts, it is easy 
to see that for any cycle type ,u, there is a corresponding W,-class of the 
form (OP, EP) whose S,-image is of type p. Since Theorem 9.1 shows that 
$(cr, /?) is nonzero for all classes of the type (OP, EP), it follows that for 
even n, the characters $x2,0 are linearly independent. For odd n, 
Theorem 9.1 shows that (II/ + - $ _ )(@, /?) is also nonzero for all partitions 
p of n, so the characters $*x1.0 are likewise linearly independent. 

Conversely, Theorem 2.1 implies that the split classes for the factor set 
[ - 1, - 1, - l] are indexed by (OP, EP), along with (525, P) for odd n. 
Thus, the characters listed above form a basis for the space spanned by 
spin characters, and so we need only to prove that these characters are 
irreducible, For this, it suffices to show that II/x”0 is of norm 1 (for even 
n) and that ($ + + $ ) xi,0 is of norm & for odd n. If (tl, p) indexes a 
W,,-class such that tl n /I= 0, then the order z,,~ of the W,-centralizer 
common to this class is 2’(“)+ ‘(P)~3LVP. Therefore, for the case of even n, 
Theorem 9.1 implies 

= 1 z, I I&L)l’ = ((x~l/ in = 1. 

Ic 

The case for odd n follows similarly. 1 

THEOREM 9.3. For even n, the irreducible spin representations of 
W,([+l, -1, -11) are !P@@‘*O (~EDP+) and Y@@10 (lbeDP-). 
For odd n, the irreducible spin representations are Y’, Q @‘,O (A E DP+ ) and 
Y+Q@, i,0 (A. E DP-). 

Proof Following the previous argument, recall that the spin characters 
cp’ of 3, are supported on the classes indexed by OP and DP-. Note that 
there exist Wn-classes of the form (OP, EP) (and of the form ($3, P) for 
odd n) whose S,,-image is of each of these types. Since Theorem 9.1 shows 
that $ is nonzero on each of these classes, we may deduce that for even n 
(resp., odd n), the characters Il/~p”,~ and $cp$” (resp., $+~p’,~ and 
$ + ~2”) are linearly independent. 

Conversely, Theorem 2.1 shows that the split classes for the factor set 
[ + 1, - 1, - l] are indexed by (OP, 0) and the E = -1 portion of 
(DOP, DEP), along with (@, OP) and (0, DP-) for odd n. Since there is 
an obvious one-to-one correspondence between DP- and the E = -1 
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portion of (DOP, DEP), it follows that the number of characters we have 
constructed is correct; i.e., they span the entire space of spin characters for 
this factor set. To complete the proof, we only need to verify that these 
characters are irreducible. For example, assuming that IZ is even and 
1. E DP-, Theorem 9.1 implies 

so l&y and $cpbO must both be irreducible. The other cases can be 
treated similarly. 1 

Since ExLO = xi’30, it follows that Y 0 X ‘,0 is self-associate with respect 
to E if and only if 2 E SC. Similarly, YUg di. ‘,0 is self-associate with respect 
to E if and only if ,? E DP+. In either case, the s-associator is clearly of the 
form 10 S, where S denotes the s-associator for X” (as in Section 6) or Qi. 
(as in Section 8). We therefore have 

Since we already have explicit formulas for d”xi.‘0 and d&q’.0 (cf. 
Theorems 6.2 and S.l), we now have explicit formulas for these difference 
characters too. 

Next consider the &associates. Since the classes of the form (OP, EP) 
all lie in the ~6 = + 1 portion of W,, Theorem 9.1 implies that ES 0 Y g Y 
for even n. Also, since the classes of the form (@, P) lie in the ELI = -1 
portion of W,, (for odd n), we have ~6 @ Y+ z Y-. Hence, Y@x”,0 and 
Y@@‘21 are self-associate with respect to EB if and only if n is even. In 
that case, < anticommutes with each generator li, and hence, with the 
%&-images of both 6, and ti. Since [‘=(-l)“‘*, it follows that (the 
representing matrix for) P21 is the e&associator of Y. From this we 
may conclude that i”‘*[ 0 1 is the s&associator for both Y@ X”,O and 
Y 0 cP’0, and hence 

A”“(@p0) = x”.O&“$ and Ae6(+cpj..0) = vj..0d&6+, 

PROPOSITION 9.4. For even n, we have A”“+(w) = 0 unless w belongs to a 
W,-class of the form (a, fl). In that case, 

A&6$(0, fi) = (-i)“/2 (_ l)“(p)-l(8)2f‘(8)/2. 

Proof: For any 5 E G$, the coefficient of ta in i”‘*[{ is the same as the 
coefficient of [ in ( -i)“j2 5. Since l0 is the only basis element with nonzero 



450 JOHN R.STEMBRlDGE 

trace in any representation of 4k;, (cf. (9.1) and [Stl, Sect. 3]), it follows 
that 

A”“$(w) = ( - 2i)“‘Z i(w). 

In the proof of Theorem 9.1, we showed that i(w) = 0 unless w belongs to 
a IV,-class of the form (@, /I). Assuming w is the canonical representative 
of such a class, (9.3) implies 

[(w) = (_ l)“uw’P’( l/2)‘“- /m, 

using the fact that /I, + . . . + pi = Bj+, + pi+ 2 + . . . mod 2 for even n. The 
claimed formula for A”$ now follows. 1 

For the character 6, we have 60(YOX”,0))(&60~)O(~OX1,0), 
and similarly for Y@ GA,“. Therefore, the only representations that are 
self-associate with respect to 6 are those that are already self-associate with 
respect to both E and ES. For !P @ x”,O this requires 2 E SC and n even; for 
Y @ cP.0 this requires i E DP+ and n even. Since the associators 10 S and 
i”l2[ @ 1 obviously commute, we may use i”“[ @ S as the b-associator, and 
so we have 

&(,),/.x0) = Ac:6$ . &)..0 if 1 E SC and n is even 

if 2 E DP’ and n is even. 

Since we have now constructed all of the associators and difference 
characters for the factor sets [ - 1, - 1, -11 and [ + 1, - 1, - 1 J, we may 
now obtain the corresponding results for the factor sets [ - 1, + 1, - l] 
and [ + 1, + 1, - 1 ] as a corollary of Theorem 3.2. The following results 
summarize the overall structure of these representations. 

COROLLARY 9.5. The irreducible spin representations of W,,( [ - 1, + 1, 
- 11) can be labeled by Z,-orbits of the form {A, A’}, where 1 ranges over 
the partitions of n. The index {A, 2’) labels submodules of 0 @ Y @ X”,“. In 
the following table, n, denotes the number of modules indexed by {A, A’}, m, 
denotes their multiplicity in 0 @ Y @ Xi.% 0, and oj. denotes the size of the L,- 
orbit of Y @ x”,O. 

nj. 0;. mj. 
1 1 2 if A E SC and n is even 

2 2 1 if 2 E SC and n is odd, or II $ SC and n is even 

1 4 1 if ). $ SC and n is odd. 
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COROLLARY 9.6. The irreducible spin representations of W,,( [ + 1, + 1, 
- 11) can be labeled by partitions of n in DP, so that i indexes submodules 
ofOQY@@ . A,0 In the following table, nj. denotes the number of modules 
indexed by 1, m, denotes their multiplicity in 0 @ !P@ @“O, and o1 denotes 
the size of the L,,-orbit of Y @ @J-0. 

n i 0 i. m 2 

1 1 2 

2 2 1 

1 4 1 

if AEDP+ andniseven 

tf 2 E DP i and n is odd, or I E DP-- and n is even 

if 2 E DP- and n is odd. 

APPENDIX: THE WEYL GROUP W(D,) 

Assume n > 4 and define s0 = ts, t, so that the reflections sO, s,, . . . . s ,,-. , 
generate W(D,), the Weyl group of the root system D,. If we’ fix a 
particular factor set CI = [I&i, .sZ, s3] for W, and define ~~ = z~r r, then the 
subalgebra of C W; generated by oD, . . . . CT~-, will be a twisted group 
algebra for W(D,). To classify the algebras that arise in this fashion, recall 
that the Coxeter presentation for W(D,) consists of the usual relations for 
s,, . . . . s,_, (as Coxeter generators for S,), along with 

s:,= 1, (s,s,)* = 1 (i # 2), (s,s2)3 = 1. 

By comparison, as a consequence of (1.2), we have 

(oocJ,)2 = (za,)4= E3, (a,~~)~ = El (i> 2) (ooo2)3 = +1. 

By substituting o0 + +a, (if necessary), we may insist that (a,~,)~ = 1. 
Since these relations are independent of s2, we conclude that there are four 
distinct factor sets for W(D,) that arise as restrictions of W,,-factor sets. 

As representatives for these four factor sets, we may choose 
[+l, +l, +l], C-1, +l, +l], C-1, -1, -11, and [+l, -1, -l].The 
corresponding W,-representations were constructed in Sections 5, 7, and 9; 
namely, x”3P, @i.‘P, Y@~~Ol and rU@ @‘%O. Of course, the pairs of 
S-associate representations in this list will be isomorphic when restricted to 
W(D,) (or a suitable double cover), and the representations that are self- 
associate with respect to 6 will split into two irreducible representations; 
namely the eigenspaces of the &associators constructed in Sections 6, 8, 
and 9. The self-associate cases are summarized in Table II. 

The Schur multiplier of W(D,,) is Z: for n > 5, and Z: for n = 4 [IY, H]. 
It follows that in the case n > 5, all of the factor sets for W(D,) are restric- 
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TABLE II 

Factor set Representation Self-associate case Difference character 

[+1. +1, +t] 

r-1, +1, +I] 
I-1. -1, -11 
[+1, -1, -11 

1=/l A”P 
i=p AW,” 

i E SC, n even A”‘J/AFx”.@ 

i.EDP+,neven A’“,),A’@@ 

tions of W,,-factor sets, and so all projective representations of W(D,) are 
of the form described above. If n = 4, the group of diagram automorphisms 
for W(D,) permit arbitrary permutation of the generators sO, s,, and sj. By 
applying the same permutations to By, CT,, 03, we thus obtain the eight 
twisted groups algebras, corresponding to the eight choices 

(oo(T,J2= kl, (a,o,Y= Al, (oorT3)* = fl. 

Since the factor sets [ + 1, + 1, + l] and [ - 1, -1, - 11 are invariant 
under these permutations, it follows that the projective representations 
of W’(L),) corresponding to the four new factor sets can be obtained by 
applying the two 3-cycles of { crO, CJ, , CT-,} to the representations for the 
*factor sets C-1, +l, +l] and [+l, -1, -11. 
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