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Abstract-This paper provides an introduction to one-dimensional cutting stock problems and 
solution procedures. The first problem considered requires that both trim loss and pattern changes 
be controlled. Both linear programming and sequential heuristic procedures are discussed along with 
the ways they can be used jointly to generate the best possible solutions to this type of problem. Two 
other important classes of one-dimensional problems me discussed along with ways in which they can 
be solved. 

INTRODUCTION 

Common industrial problems, such as determining how to slit production rolls of paper, cut up 
steel bars, assign products to rail cars, containers or trailers, balance assembly lines and cycle 
products on a machine, appear on the surface to be quite different, but are, in fact, very closely 

related. They are all examples of a class of problems known as cutting and packing problems. A 
simple example of this type of problem is the trim loss minimization problem which occurs in the 
paper industry. In this problem, known quantities of various width rolls of the same diameter are 
to be slit from stock rolls of some standard width and diameter. The objective in this case is to 
find slitting patterns and their associated usage levels which produce the requirements for ordered 
rolls, at the least possible cost for scrap and other controllable factors. The basic restriction in 
this problem is that the sum of the roll widths slit from each stock roll must not exceed the 
usable width of the stock roll. The other problems listed above have exactly the same type of 
restrictions. The only difference is that the focus in these problems may be on the utilization of 
space or time, rather than material. 

A cutting or packing problem is a one dimensional problem if this basic restriction can be 
stated in the form: 

c Wi Ai 5 VW, (1) 
i 

where, in this roll example, 

- Wi is the size of requirement i (roll width i), 
- Ai is the integer number of times requirement i appears in the pattern, and 

- UW is the capacity (usable width of the stock roll). 

Examples of higher dimensional cutting and packing problems for which restriction (1) above 
is not sufficient to describe a feasible pattern are given below: 

- cutting rectangular pieces of glass from larger stock rectangles, 
- cutting irregular shapes from a steel plate or bolt of cloth, 
- cutting boards from a log, 
- packing a container based on the dimensions of the items to be packed rather than their 

weight. 

This paper will focus on one-dimensional cutting stock problems. The techniques described for 

cutting stock problems will work equally well for the packing problems described above, except 
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for the assembly line balancing problem. In that situation, the presence of complex precedence 
relationships may make it necessary to use other approaches to solve the problem. 

The next section contains a formulation of a common one-dimensional cutting stock problem 
along with a discussion of the major solution alternatives for solving this problem. The following 
section discusses some common variants of this problem along with solution approaches. The 
paper concludes with an identification of an important problem on which additional research is 
needed. 

INITIAL PROBLEM DEFINITION 

An initial statement of a one-dimensional cutting stock problem is given below in terms of 
slitting ordered rolls of some material such as paper from a single stock size. It is assumed that 
the order requirements are for Ri rolls of width Wi, i = 1,. . . , n, to be cut from stock rolls of 
usable width UW. All orders are for the same diameter. 

Min Cr c TjXj + CZ c 6(Xj), 

j j 

s.t. RLi 5 CAijXj 5 RUi, for all i, (3) 

Xj 2 0, integer, where (4) 

Aij is the number of rolls of width Wi to be slit from each stock roll that is processed using 
pattern j (s.t.: subject to). In order for the elements Ai;, i = 1,. . . ,n to constitute a feasible 
cutting pattern, the following restrictions must be satisfied: 

c Aij Wi 5 VW, (5) 

Aij >_ 0, integer. 

- Xj is the number of stock rolls to be processed according 
- Tj is the number of units of trim loss incurred by pattern 

Tj = UW-CAijWi; 

- Ci is the dollar value of trim loss per unit; 
- Cz is the cost of changing patterns in dollars; 
- S(Xj) is 1 for rij > 0 and 0 otherwise; and 
- RLi, RVi are the lower and upper bounds on the order 

to pattern j; 

3, 

(6) 

requirement, Ri, for customer 
order i reflecting the general industry practice of allowing overruns within specific limits. 
Depending on the situation Ri may be equal to either R L; or R Ui or both. 

Note that the objective in this example is not simply to minimize trim loss. In virtually all 
industrial applications, it is necessary to consider other factors in addition to trim loss. In this 

example, a cost is associated with a pattern changes and, therefore, controlling the number of 
patterns used to satisfy the order requirements is an important consideration. In other applica- 
tions, some other factor might be important. For example, when assigning discrete products to 
containers by weight, to minimize the number of containers used, it might be desirable to have 
like products shipped in the same container to facilitate material handling at both the origin and 
destination of the shipment. 

Because optimal solutions to this problem can be found only for values of n smaller than those 
typically found in practice, heuristic procedures represent the only feasible approach to solving 
this type of problem. Two types of heuristic procedures have been widely used to solve one- 
dimensional cutting stock problems. One approach uses the solution to a linear programming (LP) 
problem as its starting point. The LP solution is then massaged in some way to provide a solution 

to the problem. The second approach is to generate cutting patterns sequentially to satisfy some 
portion of the remaining requirements. The sequential heuristic (SH) procedure terminates when 
all ordered requirements (3) are satisfied. 
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LP SOLUTIONS 

Almost all LP based procedures for solving cutting stock problems can be traced back to 

the seminal work of Gilmore and Gomory [1,2]. They described how the next pattern to enter 
the basis could be found by solving an associated knapsack problem. Problems of minimizing 
trim losses could then be solved by linear programming techniques without first generating every 
feasible slitting pattern. 

A large number of slitter patterns may exist when narrow widths are to be slit from a wide 
stock roll. Pierce [3] showed that, in such situations, the number of slitting patterns can easily 
run into the millions. However, only a small fraction of all possible slitting patterns need to be 
considered in finding the minimum trim loss solution. The delayed pattern generation technique 
developed by Gilmore and Gomory made it possible to solve trim loss minimization problems in 
much less time than would be required to generate the slitting patterns to prepare the input for 
a general-purpose linear programming algorithm. 

Referring to (2)-(4), if the cost of changing patterns is dropped from the objective function, 
and the integer requirement on pattern usage is relaxed, the linear programming problem to be 
solved can be stated as 

Min c Xi, (7) 
j 

c AijXj > RLi, for all i, (8) 

j 

Xj 20. (9) 

Note that minimizing the number of production rolls rather than trim loss forces the upper bound 
on each order width to be automatically satisfied because (8) can be restated as an equality. 

If Vi is the dual price associated with constraint i in (8), the reduced cost for any nonbasic 
pattern A = (Ai,. . . , A,,) is 1 - Ci UiAi. Therefore, the LP problem (7)-(g), can be solved 
without first generating all possible cutting patterns. The next pattern to enter the basis, if one 

exists, can be found by solving a knapsack problem: 

2 = maxx UiAi, (10) 
i 

c WjAi < VW, (11) 

Ai 2 0, integer. (12) 

If Z 5 1, the current solution is optimal. If Z > 1, then A = (Al,. . . , An) can be used to improve 
the solution. 

This LP solution can then be massaged in a number of ways to obtain integer values for Xj 
and completion of each order. The primary disadvantage of using LP to solve the problem in 
(2)-(4) is that the number of nonzero cutting patterns in the LP solution will be close to n, the 
number of sizes ordered. This may be acceptable only if controlling trim loss is very difficult and 
LP is the only way to find a low trim loss solution. 

SEQUENTIAL HEURISTIC SOLUTIONS 

With this approach, a solution is constructed one pattern at a time, until all the order require- 
ments (3) are satisfied. The first documented SH procedure capable of finding better solutions 
than those found manually by human schedulers was described by Haessler [4]. The key to SUC- 

cess with this type of procedure is to make intelligent choices as to which pattern will be selected 
next. The pattern selected should have low trim loss, high usage and leave a set of requirements 
for future patterns that does not guarantee trouble because the remaining sizes do not combine 
well. 
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The following procedure is capable of making effective pattern choices in a variety of situations: 

1. 

2. 

3. 
4. 

5. 

Compute descriptors of the order requirements yet to be scheduled. Typical descriptors 

would be the number of stock rolls still to be slit and the average number of ordered rolls 
to be cut from each stock roll. 
Set goals for the next pattern to be entered into the solution. Goals should be established 
for trim loss, pattern usage and number of rolls in the pattern. 
Search exhaustively for a pattern that meets those goals. 
If a pattern is found, add this pattern to the solution at the maximum possible level 
without exceeding Ri, for all i, reduce the order requirements and return to 1. 
If no pattern is found, reduce the goals for the next pattern and return to 3. 

The pattern usage goal is a lower bound on the level at which the pattern w.ill enter the solution 
if it is chosen; for example, if some width has an unmet requirement of 10 rolls and the pattern 

usage goal is 4, that width may not appear more than twice in a pattern that satisfies the goal. 
If no pattern is satisfactory, then some goal-most commonly pattern usage-must be relaxed, 
allowing more patterns to be considered. If the pattern usage goal is changed to 3 in the above 

example, then the width for which 10 rolls are required can appear in the pattern three times. 
Termination can be guaranteed by eventually reducing the goals to permit a pattern of lowest 
trim loss at a usage level of one. 

The primary advantage of the sequential approach is its ability to limit pattern changes by 
searching for high usage patterns, and to eliminate rounding problems by working only with 
integer values. It may, however, result in greatly increased trim loss because of what might 
be called ending conditions. For example, if care is not taken as each pattern is accepted and 
the requirements reduced, the widths remaining at some point in the process may not have an 
acceptable trim loss solution. Such would be the case if only 36-inch rolls are left to be slit from 
loo-inch stock rolls. 

JOINT SOLUTION PROCEDURES 

In order to find the best possible solution to a class of one-dimensional cutting problem such 
as the one defined in (2)-(4), th e t wo basic solution approaches can be combined in a number of 

ways as described below. 

The SH procedure can be used with the LP solution to obtain an integer solution which 
satisfies all order requirements in the following way. The LP solution could first be rounded 
down, and then nonzero usage patterns could be increased in unit increments so long as 
production of any size does not exceed RUi. Any orders for which production falls below 
R Li can be completed by using the SH procedure to generate new patterns. 
The SH procedure is used to generate a solution which is saved, and also used as an initial 

basis in the LP procedure. Additional LP iterations are made only to the extent the trim 
loss is reduced. The better of the SH and LP solutions is selected according to the criterion 
specified in (2). 
The problem is first solved as an LP problem in order to obtain optimal dual prices. 

These dual prices are used as an additional test before accepting a pattern in a SH 
procedure to ensure that the pattern does not contain a disproportionate share of the 
low relative dual price sizes. For patterns in the optimal or alternate optimal trim loss 
solutions, 

Z = C AiUi = 1. 
i 

If the value of Z is less than .97 or .98, for a pattern accepted in a SH procedure, the total 
trim loss of the SH solution may be increased significantly. Although this test makes it 
possible to avoid making some mistakes when selecting a pattern using a SH approach, it 
is not foolproof because the SH may use the pattern at too high a level. 

As the SH nears the completion of the requirements and the pattern selection decision 
becomes more difficult, patterns for residual requirements are generated using LP. If the 
residual LP solution does not meet some target value which is based on the original LP 
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solution to the entire problem, the sequentially generated patterns are dropped in reverse 
order of generation and the expanded residual problem is resolved using LP. This dropping 
of sequentially generated patterns continues until either a satisfactory solution is obtained 
or all the patterns are dropped, at which point the LP solution with the best possible trim 
loss is generated. 

The advantage of this last approach is that it truly integrates the strengths of the SH procedure 
to consider factors such as slitter changes and the LP procedure to minimize trim loss into a single 
procedure. This procedure is capable of giving either a pure SH or LP solution if that is what is 
best. Most importantly, however, is its ability to generate solutions which are part SH and part 
LP and, therefore, likely to be better than either the pure LP or SH solutions. Haessler [5] has 
used it effectively to solve difficult, from a trim loss standpoint, problems of the type defined in 

C+(4). 

OTHER ONE-DIMENSIONAL PROBLEMS 

To this point, the only problem discussed has involved controlling the number of patterns used 
along with the trim loss. Although this is an important class of one-dimensional problems, it is 
by no means the only important class. Two other important classes will be considered here. The 
first deals with multiple stock sizes and the second deals with pattern restrictions imposed by 
the product or process. 

Multiple Stock Sizes 

A general statement of this problem, for the same order requirements used earlier, is as follows. 
In this case, we permit the possibility that different stock sizes may be available at different 
locations, and therefore freight cost also influences the choice of which stock size will be used. 

s.t. RLi < CxAijkXjk 5 RUit for all 6 

k j 

c xjk 5 Mk, for all k, 

xjk 2 0, integer, 

where 

- Aijk is the number of rolls for order i to be cut from stock width k using pattern j. In 
order for Aijk to be a feasible cutting pattern, for i = 1,. . . , n, the following condition 
must be satisfied 

c AijkWi 5 UWk 

Ajk 1 0, integer. 

- xjk is the number of stock of width k to be processed according to pattern j. 
- Tjk is the trim loss incurred by using pattern j with stock width k. 

Tjk = UWk - C AijkWi. 
i 

- Clk is the dollar value of trim loss per unit for stock width k. 

- Caki is the cost of shipping one roll for order i which is produced from stock width k. 

It is assumed that the stock width defines the production location. If all the production 
options are at the same location, this value can be set to 0. 

- Mk is the maximum number of rolls of stock width k which can be used. 
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Real world problems of this sort usually require the power of LP to deal with the complex 
tradeoffs which can arise. 

The LP relaxation of this problem, developed by Beged Dov [6] is 

min c Cjkxjk 9 
jk 

s.t. C AijkXjk 2 R Li, for all i, 

jk 

dYj, 10. 

For the most general case with varying costs for trim loss and freight, C’j, can be represented as 
follows 

cjk = ck + Cpk (C Ajk Wi) + c C3kiAijk. 

i i 

ck is the cost excluding material of making one stock roll of width Iz. 
Cpk is the material cost per inch of that portion of production roll Ic actually used. 
Cski is the cost of shipping one roll for order i from the location where stock width R is 
made. 

In this situation, the shadow prices must be adjusted before generating the cutting pattern 
that enters the solution next, if one exists. The following associated problem must be solved for 
each stock width. 

Zk =maxC(Ui - CpkWi - C3ki) Aijk - ck, 

s.t. c WiAijk < uwk, 

i 

Aijk 2 0, integer. 

The pattern for which zk has the largest value greater than zero enters the solution. 

Pattern Restrictions 

For this discussion refer back to the problem defined in (2)-(4). The definition of an acceptable 
pattern will be extended to consider restrictions beyond 

c AijWi 2 UW. 

1. Limited slitter capacity 
If C is the maximum number of rolls which can be slit from each stock width on the 

primary slitter, then each pattern must satisfy the additional restriction 

If the rolls are too narrow, then 
at a secondary operation. In this 

it may be necessary to generate master rolls to be slit 

case, the objective would be to minimize the number 
of such rolls. In a SH procedure, this can be accomplished by initially combining the 
narrowest rolls into patterns that contain master rolls for secondary slitting, until the 
remaining rolls are wide enough to be slit at the primary operation. In a LP procedure 
this can be handled using two stock sizes where the second stock size has a higher cost to 
reflect the secondary slitting, and a lower usable width to reflect the edge trim required 
at a secondary slitter. 
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2. Two-stage processing 
In some applications, such as the production of film or coated grade of paper, the 

stock rolls must be slit, processed through a finishing operation which is not capable 
of processing the full stock width roll, and then slit to the width required by the final 
customer. Haessler [7] d iscussed a procedure for solving this problem in the film industry. 

In this case, each pattern (Al, A-_?, . . . , An) must be capable of being partitioned to meet 

the requirements of the finishing operation. Each component Ai of the pattern can be 
thought of as being the requirements R; of a trim problem with a limited number of stock 
sizes of usable width, FW, where FW is the maximum width roll which the finishing 
equipment can process, 

3. Quality variations across the width of the stock size 
Sweeney and Haessler [8] d eveloped a procedure for solving the one-dimensional trim 

problem in the case where the order requirements may be satisfied by lower quality grades 
which may occur during the production process. If there are no quality variations across 
the width of the stock roll, this first quality material can be used to satisfy any order for 
that grade. A two phase procedure is used. In the first phase all non perfect stock rolls 
are considered. Each roll is assigned a value based on the nature of the quality variations. 
Patterns are generated for each stock roll, beginning with those with the severest quality 
variations. Each pattern is given a value based on the shadow prices obtained from solving 
an LP problem for the order requirements and stock rolls without any quality defects. If 
the value of the pattern exceeds the value of the stock roll, the pattern is accepted for that 
one stock roll. Any order requirements not met from stock rolls with quality variations are 
slit from first quality stock rolls based on an LP solution to this residual problem found 
in phase two. 

4. Order contiguity 
In cutting stock problems where the time required to satisfy all the requirements is 

larger, it may be necessary to try to produce all of each order within some limited time 
period. This may be due to a need to ship some order by a certain time, or it may be due 
to a general need to be shipping something all the time because of limited dock or work in- 
process storage space. This problem is extremely important in mills which produce large 
volumes of commodity grades of paper, such as kraft liner and medium for corrugated 
boxes. The issue may be defined as limiting the number of orders that have been partially 
produced at any point in time. The problem is further complicated if some orders require 
multiple railcars or truck trailers to ship, and the issue is defined as limiting the number 
of partially filled vehicles at any point in time. 

There are a number of ways to approach this problem. Although using one might work 

reasonably well in a given situation, none really provides a satisfactory general purpose 
method of dealing with this problem. The most powerful of these approaches involve 
pattern restrictions based on predetermined or dynamic sequencing of orders. 

A predetermined sequencing would involve partitioning either orders, or full railcar or 
trailer portions of orders into subgroups. In an LP approach, the only patterns generated 
initially would be those containing ordered sizes assigned to the same subgroup. Once an 
optimal LP solution for each subgroup is obtained, the procedure stops if a judgment is 
made that the trim loss is low enough. If the trim loss is judged to be too high, additional 
patterns can be generated using ordered sizes from adjacent subgroups. This expansion of 
ordered widths which can be combined in the same pattern continues until a satisfactory 
trim loss solution is obtained. Clearly, the effectiveness of this type of procedure depends 
on how well the subgroups have been formed and the production sequence in which they 
have been arranged. 

A more dynamic approach would involve selecting subgroups during the solution process 
based on trim and shipment considerations. An LP solution for all orders regardless of 
contiguity would indicate overall attainable trim loss and optimal dual prices. Once a 

starting order is established, an integrated LP and SH procedure could simultaneously 

generate patterns and start new orders as needed to provide low trim loss patterns which 
complete orders in a systematic fashion. 
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CONCLUSION 

This paper has considered a variety of one-dimensional cutting stock problems and the ways 
in which they can be solved. Of the problems identified, the most difficult one is the order 
continuity problem. If the number of orders is more than a few, the number of sequences in 
which the orders can be arranged for completion becomes very large. Research is needed to find 
ways to sequence orders for production or to partition groups of orders for joint production, 
so that the requirements of the material handling and shipping departments can be considered 
when generating solutions to large cutting stock problems. An even more complex variation of 
this problem exists when the same grade is being run simultaneously on two or more machines. 
In this case, product flow off each machine must be coordinated to ensure efficient handling and 
timely shipment of each order. 
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