
JOURNAL OF FUNCTIONAL ANALYSIS 110, 146 (1992) 

Semiclassical Spectra of Gauge Fields 

MICHAEL E. TAYLOR 

Mathematics Department, University of North Carolina, 
Chapel Hill, North Carolina 27514 

AND 

ALEJANDRO URIBE* 

Mathematics Department, University of Michigan, 
Ann Arbor, Michigan 48109, and 

Institute .for Advanced Study, Princeton, New Jersey 08540 

Communicated by the Editors 

Received March 4, 1991 

We study the asymptotic behavior of the eigenvalues of the Schrodinger operator 
with a vector potential on a compact manifold, as Planck’s constant tends to zero. 
We obtain estimates in terms of periodic trajectories of Won&s flow which are 
uniform in the “charge” parameter. f? 1992 Academic Press, Inc. 

Contents. 

1. Introduction. 
2. Functions of operators of real principal type. 2.1. f(Q) as a Fourier integral 

operator. 2.2. Symbolic calculus. 2.3. A condition for H, to be non-radial. 
3. The G-trace. 3.1. Generalities. 3.2. Microlocal construction of Tr, B. 

3.3. Restricting the G-trace to a cone. 
4. Fourier analysis of the G-trace. 4.1. Generalities. 4.2. Fourier analysis of central 

conormal distributions. 
5. The G trace of f(Q). 5.1. Clean-intersection criteria. 5.2. Some geometry of the 

Wong flow. 5.3. The singularities of Tr, f(Q). 
6. Applications to particles in gauge fields. 6.1. Asymptotic expansions. 6.2. Higgs 

fields. 6.3. Examples. 
Appendix. Notation index. 

1. INTRODUCTION 

Let P--f M be a compact principal G bundle, over a Riemannian 
manifold M. A gauge field on M is defined by a connection on P. Choose 
a bi-invariant metric on G; then, since the base M has a fixed Riemannian 
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metric, there is a bijective correspondence between connections on P + M 
and G-invariant metrics on P which make P+ A4 into a Riemannian 
submersion, and that induce on every fiber the same metric as the one 
induced by G. This correspondence goes as follows: a metric and a 
connection correspond to each other iff for every p E P the horizontal space 
is orthogonal to the fiber, and at each point the differential of the 
projection is an isometry when restricted to the horizontal subspace. Given 
a connection on P, one obtains, for every irreducible representation n, of 
G, a connection V,: C”(M, EiJ -+ C”(M, T*M@Ej,) on sections of the 
associated vector bundle E, -+ M. Here k E t* is the highest weight of the 
representation z;,, having chosen a maximal torus T c G and an ordering 
of the roots. The bundle T*M x E, has a product connection which we also 
denote V,. If we compose these two operators and follow the result with 
the map y: T*M@ T*M-+ [w defined by the Riemannian metric on M, we 
obtain a LaplaceeBeltrami operator, 

Hi= -y”V,oV,: C”(M, E,) ~ C3C(M) EL). (1) 

This is the quantum Hamiltonian for a particle with configuration space 
M, charge ,?, and subject to the gauge field defined by the connection on 
P. The semiclassical analysis we pursue, following previous work including 
[ 12, 16, 18, 26, 271, is of the following nature. (For the scalar potential 
case see for example [2, 17, 24,253.) Given VE C”(M), set 

H, = +i2Hy + V, fz= IA.+Sl ‘. (2) 

Here 6 is half the sum of the positive roots. We are interested in the spectral 
behavior of H, as 121 + co in a Weyl chamber. Motivation to take fiP’ + cc 
and IA1 + cc at the same rate is discussed in [27, 281. The particular choice 
h= IA+Sl-’ is related to the identity -7ci(dG.)= li+612- 1612, where d, 
is the Laplace operator on G, 

n,(-A.+ 1612)=12-2z. (3) 

As in [ 16,271 the spectral behavior of H, as lill + cc can be analyzed 
in terms of the joint spectrum of commuting operators on P, as follows. Let 
AZ denote the action on Cm(P) derived from A, via the G-action on P. Let 
9* denote the subspace of Cm(P) on which G acts like copies of 7ci. Then 
A;(,, = -/A+ 612 + 1612Z. Now the representation theory of G implies that 

gA z sum of d, copies of C”(M, E,), (4) 

where d, is the dimension of V,, the representation space of “1. Further- 
more, if we set 

L=A+ V,(x) A;- IhI2 V(x), (5) 

A = -A:+ l6l2 (6) 
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where A is the Laplace operator on P and V, = V- 1, then the operators 
A and L commute, both leave gj, invariant, and we have 

A=l1+6l*=v* on %., (7) 

and, under the identification (4) 

-LI,,%ssum of d, copies of F*H,. (8) 

If V> 1, then L is elliptic on P. Adding a constant to a general I’ can 
accomplish this, so we will assume this has been arranged. Equations (7) 
and (8) show that our semiclassical problem can be formulated as a joint 
eigenvalue problem for the operators A and L. 

In [27], (5)-(8) was used to write the trace off(H,), with fey(R), in 
the form 

Trf(H,)=d,~‘Tr[f(-A-‘L)I,l, (9) 

and the right-hand side of (9) was analyzed as follows. For a suitable class 
of operators K on Cm(P), with Schwartz kernel k( p, q), the G-trace of K 
is defined as the following distribution on G: 

Trek=/ k(p.g, P)~V,. (10) P 

One can show (cf. Section 3.1) that if K commutes with the G-action on 
Cm(P), Tr, K is a central distribution on G, and if x2 E C”(G) is the 
character of x2, then 

(Tr, K, xj =d;‘Tr(KI,). (11) 

Thus if we define /I(,? + 6) by 

d,p(~~+s)=(Tr,f(-A~‘L),~,), (12) 

then (9) becomes 

d,~‘Trf(H,)=8(~+6). (13) 

One of the main results of [27] is that, for f a Schwartz function on the 
line, the G-trace of f( -A -IL) is a distribution conormal to {e}, where 
e E G is the identity element. More precisely, 

Tr,f(-A-‘L)EIm+d’4(G; T,*G), m=dimM, d = dim G. (14) 

Thus (13) holds with 

BEmt*), (15) 
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and this leads to a complete asymptotic expansion of d,;’ Tr, f(H) as 
I -+ co in a Weyl chamber. 

The asymptotic analysis of (13) involves looking at a part of the 
spectrum of H, of fixed width as IA1 + co. A liner analysis involves 
shrinking the spectral width as I,?1 + co; Hormander’s classic paper [ 193 
does such an analysis (in the setting G = {e}) with spectral width of the 
order of h. It is our aim here to obtain a result of similar sharpness, incor- 
porating also ideas developed by Duistermaat and Guillemin [S]. Results 
on this spectral width were obtained in [13-161 as 111 + cc along a ray 
within a Weyl chamber. The results here amalgamate those of [16,27], in 
simultaneously looking at this narrow spectral band and doing so as 
A-+ co uniformly in a cone contained in a Weyl chamber. 

Specifically, we will analyze the asymptotic behavior of 

Trf(K’H,;“*(H,-c)), I?= 1%+61-‘, (16) 

as ljll + co, for a given c E [w. This is a measure of the distribution of the 
spectrum of H, about c. In view of the discussion above, (16) is equal to 

dhl ‘Wf(QhJ = WGf(Qh xE.), (17) 

where 

Q=(-L)-I'*(-L-cA)EOPS'(P) (18) 

is self-adjoint. We will analyze this for f such that PE Cp( [w). We will also 
make geometric assumptions implying that Q has simple characteristics, 
and that the Hamilton vector field of its symbol on the characteristic 
manifold is nowhere radial; thus Q is an operator of real principal type. 

The analysis of (17) will be carried out in three steps. First we show that, 
under suitable assumptions, f(Q) is a Fourier integral operator; we 
compute its canonical relation and its symbol. Next we show that in good 
cases the G-trace of an FIO is a Lagrangian distribution on G, and apply 
this to Tr, f(Q). Next we must explore the asymptotic behavior of the 
Fourier coefficients of the G-trace, i.e., of 

~(2) = (Tr, f(Q), xi.>, (19) 

In the analysis of (19), one can use the Weyl integration formula and 
character formula to write 

(v, xA> = I WI -’ 1 (det ww’) @(w(i + 6) - w’(6)), (20) 
w, d E w 
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where W is the Weyl group, of cardinality 1 WI, provided v is central and 
p is the restriction of v to the maximal torus T, with Fourier transform fl. 
Now, the distribution v = Tr, f(Q) is too singular for its restriction to T 
to exist in the simple sense of restricting a continuous function. Worse, the 
device of composing Fourier integral distributions, under clean intersection 
hypotheses on their Lagrangians, which serves us so well up through the 
construction of Tr, f(Q), definitely tends to break down at the step of 
restricting to T. In particular, (20) does not generally work, with 
v = Tr, f(Q). However, we can write instead 

(v,x2)= I~+sl” (V,>X?.) 

=)1+61” IWIp’ c (det ww’)fi,(w(A+6)-w’(6)), (21) 
11’. w’ c w 

where v,~ = (~5~ - A,) -s/z v, s is chosen so large that v, is continuous on G, 
and ps = v,I T. Thus pL, is well defined, but it might be a more complicated 
object than a Lagrangian distribution on T. 

We obtain information on Tr, f(Q), and hence on (19) in terms of the 
flow induced by the principal symbol of L112 on the Poisson manifold 

W = T*P/G (22) 

(the Wong bundle, see [9,29, 33, 34]), on the energy level gL = c2. Thus 
our major result is a kind of Poisson formula, where the phase space is the 
Poisson manifold %‘“. Results on the geometry of the Wong flow, and its 
influence on Tr, f(Q), are given in Section 5. The nature of the 
singularities is governed by the periodic orbits on the energy surface 
dL = c2, with periods contained in the support off, the singular support of 
Tr, f(Q) consists of elements g E G which move the initial point to the final 
point of an orbit in T*P projecting over a periodic trajectory in w. We 
note here the (initially) surprising result that, when G has rank 22, 
isolated periodic orbits are not the rule; rather periodic orbits tend to come 
in families. This is treated in Proposition 5.7. Depending on the geometry 
of the Wong flow, p, in (21) might have a simple asymptotic expansion 
derivable by the stationary phase method, or it might have a “nonclassical” 
asymptotic behavior as lE,I -+ cc. 

Our main conclusions on the asymptotic behavior of z(A), defined by 
(19) are given in Section 6. In Theorem 6.1 we describe the behavior of 
r(A) when f is supported on an interval ( - T, T) containing no nontrivial 
periods of the Wong flow. In that case we show that r(A) =d,a(A) with 
a(2) E Y-‘(t*), h aving leading term a,(2) equal tof(O) times the Liouville 
volume of a natural geometrical object; here m = dim A4 = dim P - dim G. 
Theorem 6.3 deals with situations where other periods of the Wong flow 



6 TAYLORANDURIBE 

lead to Lagrangian singularities in the restriction of Tr, f(Q) to T, 
possibly with a microlocal cutoff applied. In Section 6.3 we present a family 
of examples, involving particularly G = U(2), illustrating some types of 
classical and non-classical asymptotics alluded to in the preceding 
paragraph. 

We will also consider a generalization of (2) 

H, = fi2HY + ihn(X) + v, (23) 

where X is a section of the bundle gad = P x,~ g over A4. The extra term 
%rc~(X) arises from what is called a Higgs field. Modifications necessary to 
treat this case will be discussed in Section 6. 

2. FUNCTIONS OF OPERATORS OF REAL PRINCIPAL TYPE 

We begin by establishing some notation. For every smooth manifold X, 
we will consider on the cotangent bundle of X, T*X, the symplectic form 

w= -de, (24) 

where 8 is the tautological one-form on T*X. (In the notation of classical 
mechanics, 9 = C pi dqj while w = C dqj A dp,.) If /i c T*X\O is a closed 
conic Lagrangian submanifold, we will use Hbrmander’s notation I”(X, A) 
for the spaces of Lagrangian distributions associated with /1, see 
[20, Chap. XXV]. We will also use the following standard notation and 
terminology: A canonical relation 5?? from the cotangent bundle of a 
manifold Y to the cotangent bundle of a manifold X is a submanifold, 
% c T*X\O x T* Y\O, such that 

W%’ {(x, t; y, Y])E T*Xx T*Y; (x, 5; y, -rj)~W} (25) 

is a Lagrangian submanifold. We will also use the following notation: if 
X = (x, t) E T*X, we let X’= (x, -0. If 9? is a closed conic canonical 
relation from T*Y\O to T*X\O, a Fourier integral operator associated 
with w is an operator F: CF( Y) + Cm(X) whose Schwartz kernel belongs 
to one of the spaces Z”(Xx Y; 59’). 

2.1. f(Q) as a Fourier integral operator 

Throughout this section, X will be a compact manifold. Let Q E OPS’(X) 
be a self-adjoint operator whose (real) principal symbol has non-radial 
simple characteristics. Specifically, this means that if q E Cm( T*X\{ 0) ) is 
the principal symbol of Q, then zero is a regular value of q, and its 
Hamilton vector field H, is nowhere radial on C = q-l(O). If f: R + R is 
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bounded and continuous, f(Q) is a bounded operator on L*(X) given by 
the spectral theorem. In this section we will show that in good casesf(Q) 
is an FIO. The result of principal use for this paper is the following, 
already advertised in [2]: 

PROPOSITION 2.1. Zff~ C;(R), then 

f(Q) E Z-"*(A', x; A;.), (26) 

where 

o q(x, [) = 0 and 3t E supp(f) such that 4,(x, 5) = ( y, q), (27) 

where { 4,) denotes the Hamilton flow of q. 

The set A,., as defined by (27), is a closed, immersed canonical relation 
with boundary. However, the Schwartz kernel off(Q) will be microlocally 
supported in the interior of A. With some care in defining symbols, the 
standard theory extends to such operators, see below. 

While we will not make direct use of it in this paper, we also note the 
following result. 

PROPOSITION 2.2. If f E Sy,( R), and f has compact support, then 

f(Q)E I;;‘2,m+“2(X, F, A’, A’). (28) 

Here A’ is the graph of the identity canonical transformation on 
r*X\{O}, A’ is defined by (27), and the class in (28) is the class of 
Fourier integral operators associated with a pair of cleanly intersecting 
Lagrangians, as studied in [22, 111. The proof we give here parallels 
arguments for the case when Q is elliptic given by Taylor [30, 311, and 
Colin de Verdi&e [4]. We begin with the identity 

f(Q) = (27~~“~ [ f(t) ei’Q dt. 

Considering the group of Fourier integral operators eirQ, we see that if the 
support off is in ( -E, E), E small, then for a given u E 9’(X), f (Q)u moves 
the wave front set of u by a small amount. This enables us to localize the 
analysis and reduce the problem to the model case Q = D, = -id/ax, on 
R”, n = dim(X). 

LEMMA 2.3. Propositions (2.1) and (2.2) hold for the operator Q = D, = 
id/ax, acting on distributions on R”. 
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Proof: Since on the Fourier transform side D, is the operator of multi- 
plication by 5,) the Schwartz kernel K,. of f(D, ) is 

(30) 

where we are splitting the variables x = (x,, x’) and 5 = (ti, 4’). This 
expression does not exhibit Kf as an oscillatory integral of the standard 
type, because f( 5 1 ) is not a symbol (as a function of (5 r, l’)). If we do the 
dt, integral, we obtain 

f$(x, y)=s e’(X’-“‘).5’f((y, -x1) dt’. (31) 

Equation (26) follows immediately from this. Now (30) is of the form (2.1) 
in [6], namely of the form 

44 .v)=Je’ r[(x,~.~‘,~s)S,+(.~‘--L.‘)~‘+sa] 4x, Y, s, 5, a) do ds X, (32) 

with 

4% Y, s, 4,o) =f(a). (33) 

Generally, (32) defines k E Zp*‘( R”, KY; A’, A’,) provided a E Sp’,” with 
p’=p+$ and I’=/-’ 2, which means that a satisfies estimates of the form 

ID;DpDy d .~,.&4 ~G,,,(o’-‘x’ (@)“-‘B’. (34) 

These estimates are certainly satisfied by (33) if f satisfies the assumptions 
in Proposition 2.2 (with 1’ = m, p’ = 0), which finishes the proof. 1 

We recall a few additional facts on the distribution k defined by (32), 
with (34). It turns out that 

kEZP+‘(Rn, R”; A’\Z-‘), (35) 

microlocally near A’\T’, where f = A A A r, and 

k~Z”(iW’, R”; A;\T’) (36) 

microlocally near A’\Z’. Moreover, according to [ 1, 6, 71, 

ZP.‘” ZP’.” c 1 p+p’+1/2,l+/‘-I/2 (3.7) 

while each A E Zp,’ defines a bounded operator 

A: H&,I, -+ H;;‘“O (38) 
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provided max(p + 4, p + 1) < -so. Our definition of order of f(Q) is 
consistent with that of [6], except for an apparent misprint: in [6] the 
authors write p’ = p - n/2 - i, which seems inconsistent with (35) and (36). 

Let us now prove the propositions. The operator Q of real principal type 
is known to be microlocally conjugate to Dr. More precisely, for BY(u) in 
a sufficiently small conic subset r of T*X\{O}, there exists a Fourier 
integral operator, V, elliptic on a neighborhood of r, such that 

~~“8, = @DI vu mod C” (39) 

for t E (-E, E). Therefore, for such u, we have 

Vlf(Qb =fP,) vu mod C”. (40) 

Writing a general u E 9’(X) as a finite sum of distributions with small wave 
front sets and using lemma (2.3) we see that there is E small enough so that 
(26) and (28) hold for all functions f with supp f~ ( -E, E). Using a 
partition of unity on [w to write a general compactly supported? as a finite 
sum of terms each supported in a small interval, we can write 

f(Q)=; eiGQfi(Q), SUPP & = ( - 6 Eh (41) 
j=l 

which leads to the proof of the propositions. We end by noting that the 
special case of Proposition 2.2 where f (Q) = Q’, Re A = m, is given in [ 11. 

We now turn to a description of the half-density part of the symbol of 
the operator f(Q), when PE C;. 

2.2. Symbolic Calculus 

When describing the symbol of f(Q), it is necessary to be more precise 
about the immersed canonical relation A,r associated with f(Q). We pause 
to describe this in more general terms, for future reference. 

Let X be an n-dimensional manifold, and w= T*X\{O}. First of all, if 
0 c f is a conic Lagrangian submanifold which is not necessarily closed, 
denote by Zm(X, 0) the space of distributions which are microlocally 
supported in the interior of 0 and satisfy the standard estimates defining 
the Hormander spaces Z”(X; 0) in case 0 is closed. Now let A be an 
n-dimensional manifold together with a free action of the multiplicative 
group [w +. We will say that A is conic, and, more generally, a subset of A 
will be called conic iff it is invariant under the [w+ action. We also give 
ourselves a smooth map, 

CP: fl+jk, (42) 
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and assume that (a) it is a Lagrangian immersion, (b) it intertwines the 
given R+ action on /1 with fiber multiplication on f, and (c)it has clean 
self-intersections. 

DEFINITION 2.4. A distribution u Ed’ will be said to be in 
Z”(X; A, @) iff there is a finite collection of open conic subsets of ,4, {U,}, 
such that (i) for each j the restriction of @ to U, is an embedding, and 
(ii) there are distributions u, E Z”(X; @(U,)) such that 

u=c uj. (43) 

The condition on the self-intersection of @J to be clean enables us to 
define the symbol of UEZ~(X; A, @) as a half-density on n with values on 
a version of the Maslov line bundle. This is based on the following lemma. 

LEMMA 2.5. Let U1, Uz c A be open conic subsets such that the restric- 
tion of CD to each of them is an embedding. Assume that uj, uj E I’(X; @(U,)) 
are such that u,+u~=u;+u;. Then uj= uJ modulo smooth functions, 
j = 1, 2, provided @(U,) n @(U,) has positive codimension in @(U,). 

Proof Letting vI = uj - u,!‘, we suppose v1 + v2 = 0. Then the principal 
symbol of vr vanishes on @( U,)\@( U,), hence on all of @(U,) by con- 
tinuity, since by assumption v, have classical symbols. Similarly, the prin- 
cipal symbol of v2 vanishes on all of @(U,). By induction, the complete 
symbols of vi also vanish. 1 

Having set up these general definitions, let us go back to the operators 
j(Q) of the beginning of this section. Let C = q-‘(O) c f, 

and 

A=CxR, (44) 

@:BxR+8xW (45) 

be defined by @(x, 5; t) = (x, 5; q5r(~, 5)‘). Then, by Proposition 2.1, for 
each f with ~ECF(R), f(Q)EZ~‘/*(XxX,A,@). We now describe the 
symbol of this operator. 

LEMMA. 2.6. The half-density part of the symbol off(Q) is 

f(t)Jr~l~‘~@ IdtJ”*, (46) 

where o denotes the Liouville measure on JC. 
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ProoJ Appealing once again to the microlocal normal form for 
operators of real principal type, it is enough to prove the lemma for the 
model operator Q = D, on KY. Again, the result is trivial in the model 
case. 1 

2.3. A Condition for H, to be Non-radial 

We now study when the operator we are primarily interested in, namely 
Q = ( -L) ~ 1/2 ( -L - CA) of Section 1, has non-radial simple characteristics. 
It is immediate that this is the case iff the principal symbol p(x, r) of the 
operator -L - CA has a nowhere-radial Hamilton vector field, H,,. We will 
give a useful criterion for this condition to hold. 

Note that L + CA = L, + [V(x) - c] A; + (lower order), where L, = 
A -AZ is doubly characteristic on the conormal space to the horizontal 
lifts of TM to TP, while AC is doubly characteristic on X*P, the conormal 
bundle to the fibers of P + M. Thus the principal symbol p(x, <) of 
-L-CA has the following form, which we will study. Consider now a 
symbol p(x, 4) which is a homogeneous polynomial of degree 2 in 5, and 
of the form 

P(X, 5) = 4x, 5) + b(x) 4x, 5). (47) 

We assume 

0 is a regular value of b, (48) 

which of course implies that C= b-‘(O) is a smooth manifold. For 
-L-CA, (48) amounts to the assumption that c is a regular value of V. 
We also suppose 

at-5 ObO, 4x, 020. (49) 

We will make the following further hypothesis, satisfied by -L-CA, on 
the nature of a(x, 5) and c(x, 5). Namely, we suppose that at each x E P, 
T,*P splits as VI,@ V,,; write < = (<‘, 5”) in this splitting. We suppose 
a(x, 4) is a positive definite quadratic form in c’, and c(x, <“) a positive 
definite quadratic form in 5”. We call this “hypothesis S.” 

Under hypotheses (47)-(49) and S, we have that p is elliptic where 
b(x) > 0. For b(x) < 0, p(x, r) is a non-degenerate quadratic form in 5. 
Thus d,p can vanish (with 5 # 0) only over Z. We will establish the 
following. 

PROPOSITION 2.7. Under hypothesis (47)-(49) and S, p(x, 5) has simple 
characteristics, on which H, is nowhere radial, provided 

Char(a(x, 5)) n N*Z\{O} = 0. (50) 
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ProoJ: We only have to check whether d,p(x, 5) can be proportional to 
the canonical one form CI = c, tj dxj, for some (x, 5) in the characteristic 
set of p with x E 2, i.e., in case 

(x, 5) E Z= {(x, 4) E Char a: x E C}. 

Note that Z is the zero set of d,p. Now 

(51) 

4 Ax, 4) = 4x, 0 db(x) (52) 

on Z. Hence if dp and ~1 are parallel at (x, 0 E Z, it must be that 
(x, <) E N*C. Under hypothesis (50), there are not any such. (x, l), and 
conversely. 1 

Note that this proposition applies to p(x, 4) = <T +x,5:, but not to 
t:+x*t:. 

COROLLARY 2.8. The operator Q given by (18), with L and A given by 
(5), (6), is of real principal type as long as c is a regular value of V E C”(M). 

3. THE G-TRACE 

In [26,27], the G-trace was defined for the action of a compact Lie 
group G on a principal bundle P + A4 for a class of pseudodifferential 
operators on P, and the G-trace was analyzed as a pseudodifferential 
operator on G. The operators in question were the A E OPY(P) with 
complete symbol vanishing to infinite order on the conormal bundle X*P 
to the fibers of P + M. Here we extend this analysis to a class of Fourier 
integral operators. 

3.1. Generalities 

We begin with the definition of the G-trace, which we present here in a 
more general context than that indicated above. Namely, let ( U(g): g E G} 
be a unitary representation of a Lie group G on a Hilbert space 2, and 
B a bounded operator on A?. Roughly, the G-trace of B is that function on 
G defined by the formula 

Tr, B(g)=Tr[U(g)oB]. (53) 

This is clearly well defined if B is of trace class, but we want to consider 
other cases, in which (53) leads to a distribution on G. Thus (53) is a 
formal description for an object whose precise definition is the following: 
for u E C,“(G), 

(u, Tr, B) =Tr[U(o)oB]. (54) 
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The condition required on B for this to make sense is that the map 
C,“(G) + .9(H) given by UH U(u)B be a continuous map from C,“(G) 
into the Banach space of trace class operators on 2. Note that, if 
w E C,“(G), we have 

((Tr,B) * v, w) =Tr U(w * V’)B, (55) 

where u’(g)-v(gP1). 
We are primarily interested in the case where B commutes with all the 

U(g). In that case we have: 

PROPOSITION 3.1. Assume that, Vg E G, B and U(g) commute. Then 
Tr, B is central, that is 

vg, g, E G, TrG BW1gl g) = TrG Bk,). (56) 

Furthermore, if G is compact, B is trace class, (~j.} denotes the (equivalence 
classes of f) irreducible unitary representations of G and {xi,} their 
characters, then 

TrG B(g) = 1 d;‘(Tr BI 9j,) xi.(g), 
712 

(57) 

where .~2~ denotes the maximal subspace of X on which G acts by copies of 
IC j,, and di is the dimension of xi.. 

ProojI The first statement follows from the following calculation. In all 
generality, 

Tr,Bkg,)=Tr U(g) U(g,)B=Tr ukl) BUk). (58) 

Now if U and B commute, this is equal to Tr U(gl) U(g)B, which is to say, 
to Tr, B(g, g), and (56) follows. For the proof of the second part, recall 
that the orthogonal projector, P,: 2 + 9;,, is equal to 

P, = d, r xi(g) u(g) & 
JG 

Thus 

TrCBI.1 = dA j Tr, B(g) x&J & 
G 

(59) 

(60) 

Since Tr, B is central, (57) follows from (60). 1 

Having given a general description of the G-trace, we consider some 
examples. Our first example is not of direct relevance to the main theme of 

580/l 10/l-2 



14 TAYLOR AND URIBE 

this paper, but it indicates one of several other contexts in which one could 
study the G-trace. Namely, U could be an irreducible unitary representa- 
tion of a (noncompact) semi-simple Lie group G. Then, as is known [32], 
U(v) itself is trace class for any u E C,“(G), so Tr, B is defined for any 
bounded operator B on Y?. In this case, the distributional trace of U is 
known to be in L,‘,,(G), so U(u) is trace class for any u E L,“,,,(G). From 
(55) it follows that, for any bounded B on 2, convolution with Tr, B (on 
the left) maps L:,,,(G) + L&(G). 

Cases of greatest interest to us at present involve those in which U arises 
from a (right) action of G as a group of isometries of a Riemannian 
manifold X; U acts on L2(X) as 

U(g) f(x) =f(x . gh x E x, gEG. (61) 

If R,: X-+ X is the map R,(x) = x . g, then we are assuming that R, is the 
identity and that R.,, 0 R,, = R,,,, for all g, , g, E G, so that g H U(g) is a 
group homomorphism. We suppose that B has a (distributional) kernel 
h(x, y), so that 

W(x) = j NX> Y) .ff Y) dVY). (62) 
X 

Then, formally, Tr, B is given by 

Tr, B(g) = j b(x. g, x) dW), (63) 
x 

or, more precisely 

Or, 4 0) = jx jG u(g) 0. g, xl & Wx). (64) 

The condition that B commute with U is 

vx, YE x gEG, w, Y I= b(x. $7, Y . 8). (65) 

For such representations U, U(u) is of trace class for every o E C,“(G) 
provided X is compact and U(u) has a smooth distributional kernel, which 
happens if G acts transitively on X. In such a case, Tr, B is well defined 
for all B bounded on L2(X), indeed for any B: L2(X) + 9’(X). This case 
is not disjoint from the case of irreducible representations U of semi- 
simple G, since principal series representations arise in the form considered 
in the last paragraph. In such a case as the principal series, we would want 
to consider a generalization, to G-actions on X not preserving a volume 
element, in which case square roots of Jacobians appear in (61) and (63). 
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In case X= P is a principal bundle, the transitivity condition mentioned 
above does not hold. Restrictions on B are required to assure that U(u)B 
is of trace class for every u E P(G). We consider this in the next section. 

3.2. Microlocal Construction of Tr, B 

Let us now investigate the construction of the G- trace of an operator 
from the microlocal point of view. We place ourselves in the following 
setting, somewhat more general than the one have just considered. Let X 
be a compact manifold, endowed with a smooth positive density, dV, and 
assume that G acts on X on the right, 

XxG-+X 
(66) 

cc g) + x. g, 

with x .e=x and (x. g,).g, =x.(g, g2), and preserving the density dV. 
Then G is unitarily represented in 2 = L2(X, dV), by (61). We will think 
of the representation as a single operator % from Cm(X) to C”(Xx G), by 
setting 

VfE CXW), Wf)(X> 8) =fb . ‘!?I. (67) 

The Schwarz kernel of 92 is a distribution on (Xx G) x X, it is clearly a 
delta function along the graph of the action. More precisely, let 

9= {(x, g, y)ly=x.g}cXxGxX. (68) 

Then the Schwartz kernel of 42 is a delta distribution along 9, and in 
particular is conormal with respect to 9. We can write the Schwartz kernel 
of 42 symbolically as follows: 

et.% g, Y)=&Y-x.g). (69) 

For future reference, we now describe the conormal bundle of 9. In order 
to do this, we need to (i) lift the action of G to the punctured cotangent 
bundle of A’, jk= T*X\O, and (ii) introduce the moment map of the lifted 
action. We refer to [lo] for details of what follows. To avoid introducing 
cumbersome notation, given gE G we will denote by the same letter the 
diffeomorphism of X defined by g and the action. This diffeomorphism has 
a natural lift to 8 defined by the recepie 

VXEX, 5 E T,*X (x, 4).g=b.g, 4g)Z-’ (4)). (70) 

The lifted diffeomorphism is symplectic, and if we restrict the lifted action to 
a one-parameter subgroup of G, the resulting flow is in fact Hamiltonian. 
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The moment map is a way to describe the corresponding Hamiltonians, all 
at once. More precisely, let g be the Lie algebra of G, and, for each A E g*, 
let A” denote the vector field on X defined by A and the action of G: 

A:=-$x.(exp tA)I,=,. (71) 

Then the moment map referred to above is the map @: w+ g* defined by 
the identity 

QAEg, (4 04 (@b, 0, A > = (A:, 0; (72) 

we cite a couple of its properties. 

LEMMA 3.2. (a) VA E g the one-parameter subgroup of sympiecto- 
morphisms of f which is the lifting of x H x. exp( tA) has the function 

for Hamiltonian, and (b) for all (x, <) and g, 

@(CT t). g) = Ad,* @(x, 5). (73) 

Here Ad,* is the transpose of the adjoint representation Ad,: g -+ g given 
by A H d/dt[g(exp tA) g-l]l,=o. We do not get that @ is equivariant with 
respect to the standard co-adjoint representation g H Ad:-, because we are 
working with a right action. The proof of (73) is an easy exercise; for the 
proof of (a) see [lo, Eq. (29.2), p. 2211. 

As mentioned above, the moment map enters into the description of the 
conormal bundle to the graph 9 of the action: 

LEMMA 3.3. Identzfy the contangent bundle of the group, T*G, with 
G x g* using left translations. Then the conormal bundle of Y is equal to 

N*g = {(x, 5; g, Ad,* @(x, 5); ( x, -0.g); gEG, (x, 0~~). (74) 

Let us now look at the construction of the G-trace of an operator on X, 
not necessarily commuting with the action of G. We begin with smoothing 
operators. Let b E C”(Xx X), and denote by B the corresponding 
smoothing operator which of course is of trace class since X is compact. 

LEMMA 3.4. 

Tr, B(g) = 1 b(x g, x) dV(x). (75) x 
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Proof The Schwartz kernel of the composition U(g)B is the smooth 
function 

U(g) WY Y) = 0. g, Yh (76) 

as one can easily check. As it is well known that the trace of a smoothing 
operator on a compact manifold is obtained by integrating its Schwartz 
kernel along the diagonal, (75) follows. 1 

Let us denote by K: C”(Xx X) + Cm(G) the operator defined by (75), 
that is, K(b) = Tr, B. 

LEMMA 3.5. As a distribution on G x Xx X, the Schwartz kernel of K is 
obtained from that of 42 by the following permutation of the variables: 

K(g, x, Y) = WY, g, xl. (77) 

Hence the Schwartz kernel of K is a Lagrangian distribution in the space 
Iedi4(G x Xx X; W) where d is the dimension of G and %? the canonical 
relation 

V= {&Ad,* @(x, C);(x, t).g;x, -5); gEG, (x, 0~2). (78) 

Proof: One has 

Tr, B(g) =I 
x 

d%) {xb(y, x) Wg, x2 Y) My) 

= s Wg, y, x) b(x, Y) dV(x) My). (79) 
xxx 

Interchanging the variables and “priming” in T*(Xx X) transforms N*9 
into (78). 1 

We are now ready to discuss the problem of constructing the G-trace 
of more general operators on X. Notice that V is not contained in 
(r*G- (0)) x (T*(Xx X)- {0}), which reflects the fact that K does not 
extend to all of 9’(X x X). The problem arises from the points in @-l(O); 
microlocally away from this set K is a regular Fourier integral operator. 
More precisely, we have: 

COROLLARY 3.6. Let A c xx R be a closed Lagrangian with the property 
that its projection into the second factor has empty intersection with G-‘(O). 
Then K has a continuous extension to 

K: Z”(Xx X; A) -+ g’(G), (80) 
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that is, Vb E Z”‘(X x X; A), the G-trace of the corresponding operator B is a 
well-defined distribution Tr, BE 9’(G). 

Of course much more is true; by the general composition theorem for 
Fourier integral operators, if suitable clean intersection hypotheses are 
satisfied, given b E Z(Xx X, A) with A as above, Tr, B is in some space 
Z”‘(G; Z) with Z c T*G an immersed Lagrangian. Before discussing the 
clean intersection condition, let us see what f should be. 

LEMMA 3.7. Let bEZ’(Xx X, A), where A satisfies the assumptions of 
Corollary 3.6. Then WF Tr, B c Z, where 

Z={(g,y)(3~~~suchthat(.?~g,,?)~Aandy=Ad,*@(.?)}. (81) 

( We have denoted points in R with an overbar to distinguish them from points 
in X.) Hence gc G is in the projection of r iff 

N*{(x.g,x);xEX}nA#~. (82) 

Proof That the wave-front set of Tr, B is contained in (81) follows 
from (78) and the calculus of wave-front sets. The second statement follows 
from the fact that 

N*{(x.g>x);xEX} = {W, 5).g, (x, -5)); (x, [)ER}. 1 (83) 

The set Z in general will not be connected, and in general K(b) will be 
a Lagrangian distribution whose order may vary from one connected 
component of Z to another. 

Let us now discuss the clean intersection condition that ensures that 
Tr, B, b E I’(X x X, /i), is a Lagrangian distribution. Let 

9= ((g,.f)EGx8; (X.g,X’)eA}. (84) 

Two bits of notation: for every v E T,$ let u’ E T.f,% be the image of u 
under the differential of the diffeomorphism j H j’, and we continue to 
identify TG E G x g using left translations. 

THEOREM 3.8. Let A satisfy the hypothesis of Corollary 3.6, and assume 
furthermore that 

(a) 9 is a submantfold of G x 2, and 

(b) At every (g, X) E 9, the tangent space to 9 is equal to the set of 
all (A,v)EgxT,Wsuch that 
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Then Vb E I”‘(X x X; A) one has Tr,B E I”(G, r), where s = m - 
3(dim G)/4 + (dim F))/2. 

ProoJ: The clean intersection condition ensuring that Tr, B is a 
Lagrangian distribution [20], is that the following should be a clean 
intersection diagram: 

I I (86) 

T*GxA C T*GxTxp. 

Here F$ c T*G x 8x % is the set of all (g, Ad,* Q(X); X. g; X’) such that 
(X.g, X’)E~. Now the map 

GxX+T*GxRxf 

(8, X)++ (g, Ad,* Q(x); 2. g; x’) 
(87) 

is an embedding whose image is V, and it induces a diffeomorphism of sets, 
P E 9. Thus F-” is a submanifold iff 9 is, and (85) is simply the trans- 
lation under (87) of the condition that (86) be clean. For the calculation 
of the order, note that the excess of the diagram (86) is equal to 
dim 9 - dim G. 1 

The’case we are immediately concerned with is when the action of G on 
2 is free; we will assume this is the case in the remainder of this section. 
This of course includes the case where X= P is a principal G bundle, but 
it is somewhat more general (think of the action of S’ on the punctured 
cotangent bundle of the two sphere by rotations around the z axis). We 
will keep the notation y= T*X- (0). Let n satisfy the assumption of 
Corollary 3.6, and let 

4= ((X.g,x’);Xd?, gEG}. (88) 

Notice that, because the action of G on f is free, .a is a smooth 
submanifold of TX 2, in fact diffeomorphic to G x x via the map 
(g, X) H (2 . g, 2’). 

Recall that, if (M, w) is a symplectic manifold, a submanifold Z c M is 
called co-isotropic iff Vx E C the tangent space T,J contains its symplectic 
orthogonal. Then there is a smooth foliation (called the null foliation) of 
Z with the property that VXEC the tangent space to the leaf through x is 
TJ’. With this terminology, we can re-state the clean intersection 
condition of the previous theorem as follows: 
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PROPOSITION 3.9. 9 is a co-isotropic submanifold of the symplectic 
manifold xx p, and the map 

F:9+Gxg*gLTT*G 

(2. g, x’) w (g, Ad,* @(x)), 
(89) 

where G x g* rL T*G is the trivialization using left translations, is a 
submersion whose fibers are finite unions of leaves qf the null foliation of 3. 
Moreover, the clean intersection condition [(a) and (b)] of Theorem 3.8 
holds iff 9 and A intersect cleanly, in which case the restriction of F to 
X n A is a map locally of constant rank whose image is the immersed 
Lagrangian r of (81). 

Prooj The tangent space to 9 at a point (X. g, 2’) is the set of all 
vectors of the form 

&&4+&,, v’), v E T,$ A E g. (90) 

It follows easily that the symplectic orthogonal of this space consists of 
those vectors of the form (dg*(w), w’), where w E T,w satisfies 

QAEg, o,( A;, w) = 0. (91) 

Such vectors are of the form (90), so 9 is co-isotropic. Moreover, the 
general theory of the moment map implies that (91) is equivalent to 
d@,(w) = 0. For every a E g*, define the Kostant-Kirillov skew-symmetric 
bilinear form 52, on g by 

VA BEg, Q,(A, B) = (a, CA, Bl>. 

Then a calculation shows that the differential of F is given by 

(92) 

dF,,.,,,,,(dg,(v)+AZ.,, v’)(.) 

= (4 QM;W (A, .I + Ad,*W,WW (93) 

Hence the kernel of dF is at every point the symplectic orthogonal of TX. 
Formula (93) shows that F is a submersion iff @ is, and this follows from 
the assumption that the action of G on w is free (it is known that the kernel 
of the transpose of d@, is the Lie algebra of the isotropy subgroup of X). 
This proves the first part of the proposition. 

To prove the second part, note that the embedding (g, X) H (2. g, X) 
from G x % to wx z, which parametrizes X, induces a diffeomorphism of 
sets TC: 9 + f n A. Thus X n A is a manifold iff P is. The condition on the 
tangent spaces is easily verified using the differential of rc. To prove the last 
statement, we need a formula for the symplectic form on G x g* 2’ T*G. 
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Pick (g, M) E G x g*, and identify T,G E g using left translations. Then the 
symplectic form can be shown to be 

bT*l&*) ((Al, Plh (A23 82)) 

=(B*~~‘~-(B’~~*~+~,(~‘~~*). (94) 

If we were working with left actions, we would have that the pull-back by 
F of this form is the restriction to 9 of the symplectic form on T*X x T*X. 
However, since we are working with a right action, F*Q = (o)~**~ T*XI.I, 
where D is the two form on G x g* obtained from (94) by changing the 
sign of the last term in the right-hand side. Thus the last statement follows 
from general facts of reduction of Lagrangian submanifolds with respect to 
co-isotropic submanifolds. 1 

3.3. Restricting the G-trace to a Cone 

Assume the action of G on X= P is free, so that P + M is a principal 
G-bundle. In the applications to particles in gauge fields, we will make 
dynamic assumptions on the Wong flow implying that the clean inter- 
section condition of Theorem 3.8 holds if we replace T*P by an open set 
of the form Q-‘(U), with U c g* an Ad-invariant conic open set. As we 
will now see, this is enough to get a hold of Tr, BI aj,, for d in an invariant - 
conic open set U, with U0 c U. Recall that an element p E g* is called 
regular iff its isotropy subgroup is a maximal torus. 

THEOREM 3.10. Let U c g* be an invariant, conic open set containing 
only regular elements, and let U0 a smaller invariant conic open set whose 
closure is contained in U. Then there is a O-order, self-adjoint, G-equivariant 
operator, 9, on W(P), with the following three properties: (i) 9 is a 
pseudodtfferential operator microlocally away from the conormal bundle to 
the fibers of P + M, (ii) 9 is microlocally supported in W’(U), and (iii) for 
every integral element us U,, Y)IgO is the identity. 

Proof By standard results, established in Chapter XII, Section 6 of 
[30], there exists a bi-invariant .5!$ E OPS’(G) microlocally supported in U 
and equal to the identity on the linear span in Cm(G) of all matrix 
elements of representations 7~~’ p E Uo. If we denote by rep the natural 
action of G on L’(P), then 9 = 7tp(Y0) is the desired operator. 1 

If we now apply Theorem 3.6 to an operator of the form BOY’, we obtain 
the following result: 

COROLLARY 3.11. Let A cgx 2 (w= T*P\{O}) be a closed homo- 
geneous canonical relation satisfying the hypotheses of Corollary 3.6. Let U 
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and U, be as in Theorem 3.10. Assume furthermore that the clean intersection 
condition of Theorem 3.8 is met, with 2 replaced by @- l(U). Then, 
Vb E Im(P x P, A’) such that the associated operator B commutes with G, 
there exists a central distribution v E I”(G, r,) having the same Fourier 
coefficients as Tr, B on every integral p E UO, namely, Tr BI pg. Here 
s = m - 3(dim G)/4 + (dim 9))/2, and 

f”=((g,y);3x~~~‘(U)suchthat(x.g,x’)~Aandy=Ad,*~(x)). (95) 

Of course, $1 = Tr,( B 0 9). 

4. FOURIER ANALYSIS OF THE G-TRACE 

4.1. Generalities 

Let v E g’(G) be a central Lagrangian distribution. Keeping the notation 
of Section 3, let {x).} be the set of irreducible unitary representations of G 
and {x;,} the corresponding set of characters. Here we assume that we have 
chosen a maximal torus, T c G, and an ordering of the roots, and I belongs 
to the highest weight lattice (intersected with a Weyl chamber) in t*. As 
any central distribution, v can be written in the form 

(96) 

In this section we discuss how the asymptotic behavior of (v, xn) as 
(A( + co is governed by the microlocal picture of v. Our primary interest is 
when v is the G-trace of an operator commuting with G. We can often 
analyze the behavior of its Fourier coefficients in the interior of the positive 
Weyl chamber. 

We begin by making the following general remarks. Assume v is any 
central distribution in H”(G) with s > d/2, d = dim(G). Then v E C(G); let vz 
denote the restriction of v to T. By the Weyl integration formula, 

(v, Xi> = I WI -‘!vP, lD12Xi)T. (97) 

Here D is the Weyl denominator, 

D(g) = 1 (det w) e,dg), (98) 
WE w 

where e,: T+ S’ is the character of T with differential 27r& W is the Weyl 
group, and 6 is half the sum of the positive roots. If we introduce now in 
(97) the Weyl character formula, 

VgE T, As) = D&F’ c (det WI e,bs(,+aJg), (99) 
WE w 
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we get 

Introducing the definition of D, this easily becomes 

I WI -’ C (det ww’) fi(w(1. + 6) - w’(6)), (101) 
M.,W’E w 

where fi denotes the Fourier transform of p= vz. In many cases, the 
asymptotic behavior of fi(w(n + 6) - w’(6)) as IAl + cc can be studied via 
the method of stationary phase. One expects that if v is a Lagrangian 
distribution, this behavior is governed by the symbol of v. 

Notice that the restriction that v be represented by a continuous function 
can be lifted as follows. Let A denote the Laplace operator on G associated 
to a bi-invariant metric with total volume one. Then any Ad-invariant 
distribution v has the property that 

nA((\6(2-A)-“2v)= Ilw+61”7cI,(v), (102) 

for all SER. If vEW(G), set v,=(IS12-A))““v choosing s-co-d/2. Then 
vi E C(G), and we can apply to it the analysis of the previous paragraph. 
Since, by (102) 

asymptotic information on the Fourier coefficients of v, translates into 
information on the Fourier coefficients of v. 

4.2. Fourier Analysis of Central Conormal Distributions 

To obtain uniform information on the Fourier coefficients of v, it is 
natural to try to restrict v to the maximal torus, T. Now the restriction 
operator, 

p: C,“(G) + C,“(T) (104) 

is not a regular Fourier integral operator because its Schwartz kernel is a 
Lagrangian distribution with respect to 

and V c T*Tx T*G contains covectors of the form (x, 0; x, 5) with p #O. 
Thus it is the conormal bundle of T that contains the “bad” directions that 
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prevent p from having an extension to 9’(G). On the other hand, if 
TC T*G\ (0) is a closed conic Lagrangian satisfying 

Z-n N*T= @, (106) 

then p has a continuous extension to Z”(G; f), and, in fact, provided the 
standard clean intersection condition is met, it maps this class into some 
I”‘( T; %? 0 r). 

There are simple cases where condition (106) is violated; for example 
take r the conormal space to the identity element! This is a very important 
case for us, as Tr, j(Q) has a big singularity at e wheneverf(0) # 0. In this 
section we show how to get around this problem. Our main tools will be 
the formulas (lOO)-( lOl), supplemented by (102)-( 103). More generally, in 
this section we take v to be a central conormal distribution on G, with 
wave front set in the conormal bundle to a smooth Ad-invariant 
submanifold XC G. We will assume that X intersects T cleanly. Recall that 
this means that (a) the intersection Z = Tn X is a manifold, and that 
(b) Vx E Z, T,Z = TX T n T,X. The excess of the intersection is defined to 
be the non-negative integer 

e = dim G + dim Z - [dim T + dim X], (107) 

so that a clean intersection is transverse iff its excess is zero. 

PROPOSITION 4.1. Assume X intersects T cleanly, with excess e, and let 
r = dim T, d = dim G. Let k denote the codimension of Z in T. Then, 
provided 

m< -d/4+ (k-e)/2, (108) 

the restriction operator p has a continuous extension to 

p: Zm(G; N*X) + F'( T; N*Z), (109) 

where 

m’ = m + (d - r)/4 + e/2. (110) 

Proof: This follows from the characterizations of conormal distribu- 
tions with classical symbols in terms of their asymptotic behavior as the 
singular set is approached. The condition (108) implies the restriction to T 
is integrable. 1 

We now show how Proposition 4.1 together with (lOO)-( 103) lead to an 
explicit analysis of the case X= {e}, in effect giving an alternative 
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derivation of the result from [30] which led to the deduction of (15) in the 
Introduction from (13)-( 14). 

PROPOSITION 4.2. Zf v EZ I’ + d/4( G; T * \O) is central, then (v, xn ) has the e 
form 

Cv, Xi> = di.4(n + s), (111) 

with a Weyl-invariant q E Y(t*). 

Proof. Using (102t(103), we can assume without loss of generality 
that p + d- r < 0, so Proposition 4.1 implies the restriction vf of v to T 
exists and 

?EZ”+~‘~+~-~(T, T,*T\O). (112) 

Now (100) implies 

(v, x2> = I WI -’ 1 (det WI 442 + 6)) 
WE w 

= r(I. + 6) (113) 
where 

a=~.v”Ez~++‘/4+(d~r)/2 (114) 

The extra smoothness of (T over v4 is due to the fact that D vanishes to 
order (d- r)/2 at e, by the formula 

D(g) = es(g) n (1 -e-,(s)), gE T, (115) 

where R+ denotes the set of positive roots of g. It follows that 

~E~~++rV2(f*). (116) 

Furthermore, we have 

r(w(A + 6)) = (det w) r(A + 6), (117) 

a property in common with the dimension formula 

(118) 

In particular, r(L + 6) = 0 for A. + 6 in the walls of a Weyl chamber, so the 
quotient r(A. + 6)/d, = q(A + 6) is smooth, hence a symbol, of order p. This 
proves (111). 1 
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The case X= {e} is a special case of the situation where X is a single 
conjugacy class; we say a little more about this here. Thus pick g, E T, and 
let X= { gg,g-‘; gE G} be the conjugacy class of g,. We are interested in 
restricting distributions on G conormal to X to the maximal torus T, and 
so we must examine the intersection Xn T. We will need several facts 
about roots of compact Lie groups, that we now recall. Let R denote the 
set of real roots, and R+ the set of positive roots, and for each u E R, let 
e, be the character of T satisfying 

VHEt, e,(exp(H)) = e2niz’H). (119) 

Furthermore, for each a E R+, let M, d g denote the real cr-isotypical 
summand of the adjoint action of T on g. Then the Lie algebra of the 
centralizer Z(g,) of g, is known to equal 

where 

R,,= {cYER+; gOEkere,), (121) 

see [3, Proposition V.2.31. We summarize what we need in the following: 

PROPOSITION 4.3. Zf XC G is a conjugacy class, containing g, E T, 

Xn T= u ho), (122) 
WE w 

where W is the Weyl group. Moreover, the intersection is always clean, with 
excess equal to 

Ggo) = 2. #R,,,. (123) 

Proof. The first statement is well known; see [3, Lemma IV.2.51. We 
now verify the clean intersection condition. After left translation to the 
identity by g, I, what we must show is that 

tn {Ad,+4-A;AEg}=O. (124) 

Let v=Ad,;I(A)-A, assume IJEt, and let HEt. Then 

O=[H, f’]=[H,Ad,IA]-[H,A] 

= Ad,l[Ad,,H, A] - [H, A] 

=Ad,l[H, A] - [H, A]. (125) 
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Now BE g is such that Ad,l(B) = B iff B is in the Lie algebra of Z(g,), the 
centralizer of g,. It follows that 

but since the M, are the isotypical summands of the Ad, action on g, this 
implies that A itself is in the right-hand side of (126). By the previous 
remark, this means that Ad,;lA = A, which implies V= 0, and cleanness 
follows. Finally, (123) follows from (120) and the fact that for each M the 
dimension of M, is two. 1 

In terms of the Weyl denominator, one has: 

COROLLARY 4.4. The excess of the intersection (122) equals .s( g,) = 2j, 
where j is the order of vanishing of D at g, (normalized so that j= 0 if 
Dko) #Oh 

ProoJ: This follows from the denominator formula (115), together with 
(123). I 

If X is a conjugacy class, and v E Z”(G; N*X), the formula (113) for 
(v, Xi,) continues to hold, where c = D . vR is a sum of conormal distribu- 
tions associated to an orbit of the Weyl group. Thus b is a sum of terms, 
each ,of which is a product of a symbol and an oscillatory factor. This is 
illustrated by the following simple example; take v = vX homogeneous 
measure on X: 

(vx,f>=~~/(g-‘g,g)dg. (127) 

In this case, 

(vm xi.> = x?,(go) (128) 

is a sum of oscillatory terms by Weyl’s formula (99). 
The case of N*X where X is a conjugacy class other than {e} actually 

does not arise so frequently as the conic Lagrangian of Tr, f(Q), as we will 
see in Section 5.2, Proposition 5.7. In fact, for g, E G to belong to the 
singular support of Tr, f(Q), we need g, to take the initial point X to the 
final point in an integral curve of H, in T*P\O = 2 projecting over a closed 
orbit of the Wong flow, as explained in Section 5. The corresponding point 
in r= WF Tr, f(Q) is (gr, Q(X)). W e will see that inverse images under @ 
of coadjoint orbits in g* lie over symplectic leaves of the Wong bundle. 
Under the hypotheses of Proposition 5.7, it will follow that the conic 
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Lagrangian manifold r in T*G\O contains, as an open subset, the 
conormal bundle to a hypersurface Y in G, swept out by an (r - l)- 
parameter family of conjugacy classes, of maximal dimension. 

There remains the question of what the entire connected component(s) 
of r containing N* Y look like. One possibility is that it continues to be the 
conormal bundle of a smooth, Ad invariant, hypersurface in G, which 
happens if the closure P is smooth. That P may or may not be smooth is 
illustrated by cases of products P = G x M, with G = SU(3), for example. 
See Section 6.3 for some examples illustrating what Tr, f(Q) and its 
restriction to T might look like, and how their Fourier coefficients might 
behave. 

5. THE G-TRACE OF f( Q) 

5.1. Clean-Intersection Criteria 

From now on we take X= P a principal fiber bundle, and look more 
carefully at the sort of canonical relations /i that arise when taking func- 
tions of operators of real principal type. Let Q be a first-order, self-adjoint 
pseudodifferential operator on X of real principal type commuting with G, 
and let q denote its principal symbol. Thus q: R+ R is a smooth function 
which (i) is G-invariant, (ii) is positive-homogeneous of degree 1, (iii) zero 
is a regular value of q, and (iv) the Hamilton vector field of q, H,, is not 
radial at any point of .Z = q-‘(O). We will also find it necessary to assume 
the following: 

(Hl) Nowhere on C is the Hamilton vector field of q colinear with 
a vector of the form A%, A E g*, and 

(H2) The intersection Cn P’(O) is empty. 

We note that hypotheses (Hl) and (H2) are satisfied when Q is of the 
form (18), with L and A given by (5)-(6). The situation for (H2) is simple; 
@-l(O) is the nonormal bundle #*P to the fibers of P-+ M, and the 
requirement that this be disjoint from Char Q clearly holds in the case (18). 

To establish (Hl), we can replace q by p(x, 0, having properties 
(47)-(49) and S, as set out in Section 2.3. Note that A! = H,, where, for 
X=(x, 4)~ T*P\O, Y(x, t)= (@(x, <), A) = (A$ t), as in (72). We want 
to show that dp and dY are not colinear at any (x, 5) in Char p. Now, with 
respect to the splitting [ = (<‘, 5”) arising from the connection on P, 
Y’(x, 5) is a linear form in 5” alone. Thus, at a point of colinearity, we must 
have 5’ = 0, or equivalently, (x, 5) E Char a. If also (x, <) E Char p, then 
b(x) =O, so d,p =O at such a point. But d, Y is nowhere zero, so 
colinearity is impossible, granted that p has simple characteristics. 
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For an open Jc R, consider 

/i,= ((2, jY)~CxC;3t~Jsuchthat 7=4,(X) 

where {4,} is the Hamilton flow of q. Although in general 

>, (129) 

this in only an 
immersed Lagrangian, it is embedded if J is small enough, and the 
arguments of Section 2.2 show that it is enough to consider that case. Note 
that, by (H2), Corollary 3.6 applies to this canonical relation, and 

.Yn/1,={(X,y’)ECxZ;3tEJ,gEG,suchthaty=.%.g=~,(.?)}. (130) 

This shows that the right setting to understand this problem is in terms of 
the Wong bundle, 

W = T*P/G. (131) 

This is a smooth manifold, which serves as the phase space for the Wong 
equations of motion for a particle in a background gauge field, [23, 29, 33, 
341. Since $t commutes with the G-action, there is a smooth flow 11/, on @‘” 
such that the natural projection rc: T*P -+ YY intertwines 4, and $,. Then 

(2, y’)E,YnA, 0 3t E J such that rc( j) = $t(rr(X)). (132) 

In other words, it is the periodic trajectories of It/t with periods in J that 
produce the singularities of the G-trace of f(Q), where f is a smooth 
function with supp PC J. Our goal in this section is to interpret the clean 
intersection condition and study the singularities of Tr, f(Q) purely in 
terms of the geometry of {II/,}. 

We begin by recalling a few facts about the Wong bundle, %‘“. First of 
all, -Iy- is a Poisson manifold, since it is the quotient of a symplectic 
manifold by a free Hamiltonian action. The symplectic leaves of YV are 
known to be the submanifolds of the form 

@-‘(0)/G c W, (133) 

where 0 c g* is a co-adjoint orbit of G. Moreover, if 4 denotes the function 
on YV whose pull-back to 2 is equal to q, then {Ic/,} is the Hamiltonian 
flow of @. We are interested in the flow {${} restricted to the image of the 
characteristic set C in “w^, that is, in 

V=L’/G=q-‘(0). (134) 

Note that the multiplicative group lR+ acts everywhere, and commutes 
with the flows. It is convenient to break this homogeneity in the following 
way. Let a be the function on T*P which is the square of the norm of 

580,U IO/l-3 
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the vertical component of a covector. Thus a is the pull-back via @ of the 
square of the Ad-invariant norm on 9 *. It follows that {q, a> = 0, by the 
G-invariance of q. Let d be the function on W defined by a, and let 
gr = Y n d- ‘( 1). By (Hl), this is a submanifold of $4/, which is the union 
of symplectic leaves, and is invariant under the flow tj,. 

Our immediate goal is to prove the following proposition: 

PROPOSITION 5.1. The clean intersection condition is satisfied by A, iff 
the following is a clean-intersection diagram, 

P, - “Y, x J 

I I (135) 

Y, ~wxw, 

where the arrow on the right is ( y, t) H ( y, $t( y)‘), d is the diagonal 
embedding, and 

q={(y, T)E%xJ; Y=~C~AY)>. (136) 

Proof By Proposition 3.9, the condition on A, is that the diagram 

dco - C x J 

4 If (137) 
- w 

Y -xxx 

be a clean-intersection diagram, where f(.F, t) = (d,(X), 2) parametrizes /i,, 

& = ((X, t) E C x J; 3g E G such that d,(X) = 2. g}, (138) 

and cp(X, t) = (2, b,(X)‘). First we indicate how the cleanness of this 
diagram is equivalent to the cleanness of the homogeneous version of (135) 
that is, of 

I I (139) 

Y-“w-xx, 

where 9 is defined as in (136), with &, replaced by Y. Now diagram (137) 
fibers over diagram (139). More precisely, this is a particular instance of 
the following situation: one has a fibration II: X-+ Y and two sub- 
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manifolds, A, B c Y. The assertion is that A and B intersect cleanly iff 
UP ‘(A) and n- l(B) do. We leave the reader to convince herself that this 
is so. Thus the clean intersection condition is equivalent to the cleanness of 
(139). A similar argument shows that this is equivalent to the cleanness of 
(135). I 

5.2. Some Geometry of the Wong Flow 

Now we look in more detail at the geometry of the closed trajectories of 
{It/l}. We first look at the period T = 0. 

LEMMA 5.2. Zero is an isolated point in the period spectrum of the 
restriction of {11/1} to Y, and A, satisfies the clean intersection condition if 
J is a small enough neighborhood of zero. 

Proof: The condition of non-radiality of Z, together with (H2), imply 
that the flow on g, does not have any fixed points, and so by compactness 
its period spectrum is bounded away from zero. Cleanness is left to the 
reader to check; it follows from the assumption (Hl). 1 

We now turn to the geometry of the nontrivial periodic orbits of the 
Wong flow. As we will see, the main difference with the generic Hamilton 
flow on a symplectic manifold is that non-degenerate trajectories generically 
arise in families. We will use the following notation: for every 1 E t* c g* 
(where the last inclusion is defined by the bi-invariant metric on G), 
%$ c g is the symplectic leaf 

where Q is the co-adjoint orbit of G through 1. One can easily check that 
wi can be naturally identified with 

WA 2 @-‘(A)/Gl, (141) 

where G, is the isotropy subgroup of 2. 
To study the geometry of periodic trajectories of the Wong flow, we need 

to study how the symplectic leaves (of maximal dimension) of w are sewn 
together. Let U c t* c f* be the interior of the positive Weyl chamber, and 
let 

Y= D-'(u). (142) 

Note that the isotropy subgroup of every p E U is the maximal torus, T, 
and thus Y is invariant under T. 
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LEMMA 5.3. Y is a symplectic submantfold of T*P. Moreover, the 
maximal torus T acts on Y in a Hamiltonian fashion, with moment map cD~ 
making the following diagram commutative: 

T*PA g*. 

(143) 

Proof The first statement is an easy consequence of Theorem 26.7 of 
[lo]; the second follows trivially. 1 

It follows from the previous considerations that the symplectic leaves %$ 
with p E U are (as symplectic manifolds!) the reduced manifolds of Y under 
the action of T at points p E U: 

y, r @&L/T. (144) 

(Actually, one should check that the symplectic forms agree, but this is 
easy to see.) This fact will help us get a symplectic normal form for a 
neighborhood of “S&. We learned the following argument from Eugene 
Lerman [21], where he uses it to get a “one-line proof” of the 
Duistermaat-Heckman formula. Pick i E V, and let A be any connection 
on the principal T bundle 

@-](;I)- 7q. (145) 

For every p E U, let X, = G;‘(U), 

PROPOSITION 5.4. There exists an open conic neighborhood of 2, V c U, 
and a T-equivariant dtffeomorphism, cp, making the following diagram 
commutative: 

x,x v ‘p *O;‘(V) 

I IG7 (146) 

V - t*. 

Moreover, the pull-back under cp of the symplectic form is equal to 

PROW, + &x2> A >, (147) 

where p1 is the composition of the projections X, x V -+ X, -+ %$ wi, is the 
symplectic form on K,, A is the t-valued connection form, and n, the 
projection onto the second factor, Xi x V -+ V c t*. 
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Proof. One can show directly that (147) is a symplectic form on Xi, x I’, 
and that X,x {i} is a coisotropic submanifold. In fact, the restriction of 
(147) to X,x {n}z& is the same as the restriction of the symplectic form 
on Y to X,. Now invoke the equivariant version of the coisotropic 
embedding theorem [S] (the uniqueness part) to conclude the existence of 
cp with the desired properties. 1 

The following is an immediate consequence of this result. Let 

Y4$= u w,. (148) 
/IE v 

It is clear that ^w; is an open subset of w. 

COROLLARY 5.5. The trivialization (146) induces a dlffeomorphism 

-Iy,E~,X v, (149) 

mapping %$ onto W2 x (p}. Moreover, this is an isomorphism of Poisson 
manifolds if the Poisson structure on the right-hand side is defined by the 
family of two forms { We ; p E V} on Y& given by 

where FA is the curvature of the connection A. 

Our main application of these results is the following. Let y c ?V, be a 
periodic trajectory of our flow. It is entirely contained in some symplectic 
leaf; thus there is a unique 1 et* such that 111 = 1 and 

Note that %‘I n w1 = %$. n q-‘(O). We will assume that y is non-degenerate, 
in the following sense: 

DEFINITION 5.6. y will be said to be non-degenerate, iff the following 
two conditions are satisfied: 

(N.l) As a trajectory of q on the symplectic manifold e,, y is non- 
degenerate, and 

(N.2) ,? belongs to the interior of a Weyl chamber. 

As we will now show, these assumptions imply that y belongs to a family 
of closed trajectories. We will use the model for the symplectic leaves 
provided by Corollary 5.5. 
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PROPOSITION 5.7. Let y be a non-degenerate trajectory of q on the 
Poisson manifold %f, lying in the symplectic leaf %?$. and with energy q = 0. 
Then there exists a conic open neighborhood of 2 in the interior of a Weyl 
chamber, V, and smooth maps F: V + ^w; and T: V-t [w, such thar YALE V 

and F(,u) has the property 

Fb)~wpn {q=O). (153) 

Proof: Choose a connection A on the principal T bundle X, -+ -W;, and 
let V be as in Corollary 5.5. We can identify the flow of q on %$, p E V with 
the flow of a Hamiltonian qp on %‘J with the symplectic structure (150). 
The Hamiltonian qv is of course q pulled-back by the diffeomorphism 
identifying the symplectic leaves Y4$ and WA, and depends smoothly on ~1. 
With this notation, qi, = q. Let Z= WA n {q = O}. By the assumption (H2) 
and the compactness of P, Z itself is compact. Let % be a tubular neigh- 
borhood of Z in q., with projection 7~: % + Z. By shrinking V if necessary, 
we may assume without loss of generality that VP E V 

(154) 

Moreover, by the compectness of Z we may assume that the inclusion 
(154) is a section of rc: “2! -+ Z. By this we mean that the restriction of 71 to 
Z, is a diffeomorphism. For each p E V, let E,> be the vector field on Z 
obtained by the following procedure: take the Hamilton vector field of q,, 
(with respect to the symplectic form (150)) on the energy surface {qp = 0}, 
and project it via 7t: % + Z to a vector field Ep on Z. Obviously, the flow 
of S@ .is smoothly conjugate to the Hamilton flow of q on wfl n {q = 0}, 
and the vector fields Ep depend smoothly on p with 3). equal to the 
Hamilton vector field of q restricted to Z. 

The remainder of the proof is standard. Pick a base point w E y, and a 
cross-section Cc Z of the flow of q on Z containing y. Condition (N.l) on 
y is precisely that w is a non-degenerate fixed point of the return map R,: 
C + C of the flow of q. For p sufficiently close to A, C is still a cross-section 
for the flow of sV, and the associated return maps R, depend smoothly on 
,u. Thus by Lefschetz’ theorem there is a smooth map f: V + C such that 
f(A)= w and VIE V R,(f(,u))=f(p),. But this means precisely that the 
trajectory of 3p through f(p) is periodic. Since the entire system is 
homogeneous with respect to the action of R+, one can take V to be 
conic. 1 
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Remarks. We will make use later of the following remarks: 

(R.l) By (153), under the isomorphism (149) the mapping F is of the 
form 

F(P) = (F,(P)3 PL), (155) 

for some smooth map F, --f K,. 
(R.2) If we differentiate the relation (152), we obtain that for all 

tangent vectors 6,~ E T, Vr f* 

(I- 4&J) W’o)(~u) = dTJ6u) E”, (156) 

where I/I” is the flow of qr on (“#$, Ok), and ZV is its infinitesimal generator. 

5.3. The Singularities of Tr, f(Q) 

The previous considerations on the geometry of the Wong flow have the 
following implications on the singularities of Tr, f(Q). We keep the 
notation of Section 5.1, in particular the manifold A, is defined by (129), 
and the Fourier transform off is assumed to be included in the interval 
Jc [w. 

First we look at the singularity at the identity. The following is an easy 
consequence of Lemma 5.2: 

THEOREM 5.8. If the only period in J is zero, 

Tr, f(Q)Ef”-3d’4p’(G; T,*G- IO}), 

where n = dim X and d = dim G. 

ProoJ: We just will indicate the calculation of the order. The excess of 
the original diagram (86) is e = 2n - 1 -d, because the manifold 8” is in 
this case diffeomorphic to Z. Since the order of K is -d/4 and that off(Q) 
is - l/2, the order of the G-trace is -d/4- l/2 + n - (d+ 1)/2. 1 

Next we consider the singularity created by non-degenerate periodic tra- 
jectories. Consider a non-degenerate periodic trajectory y of the Wong 
flow, in the sense of Definition 5.6. Let V, F, T be as in Proposition 5.7. We 
will now show that the clean intersection condition is satisfied, assuming 
that all the periodic trajectories of the Wong flow on +Y with periods in J 
are among the ones produced by Proposition 5.7. Since we are working 
with the non-homogeneous version of $Y, etc., let V, = {ALE V; 1~1 = 1). 
Denote by U the open subset of g* consisting of all the vectors whose Ad; 
orbit intersects V. Define 

9’= {(X.g, ~‘);.CE@-‘(U), gEG} (157) 
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/fy= {(X, jqEAJ; j%@-‘(U)}. (158) 

THEOREM 5.9. Let y be a non-degenerate periodic trajectory of the Wong 
flow, and let V, F, T be given by Proposition 5.7. Assume furthermore that 

Pick V,C g* open, conic and invariant with closure contained in V. Then 
there is a central Lagrangian distribution, v E Ip’14- ‘I4 + ‘12(G, r,), having 
the same Fourier coefficients as Tr, f(Q) at every integral element p E V,,. 
Here 

r~=((g,p);3Z~@-‘(U), tEJsuchthat%=b,(%).g 

and p = Ad,* Q(Z)). (160) 

Proof: We first prove that the assumptions imply that 4” and Ay 
intersect cleanly. The condition that (135) be a clean-intersection diagram 
means that (a) Y1 should be a submanifold of +Y, x J, and (b) at every 
(,Y, T) ~9~ the tangent space at P should equal the set of all 
(0, z) E TySYl x IR such that 

where B . is the infinitesimal generator of $,. Regarding (a), note that F is 
an embedding, by remark (R.l). Thus (159) shows that Pi is diffeomorphic 
to the graph of a map, and hence it is a manifold. Let us now consider its 
tangent space at a point parametrized by p and t. It consists of all vectors 
of the form 

(162) 

with o E [w and ~,UE t*. What we must check is that every vector (v, r) 
satisfying (161) is of the form (162). First localize: let us work on 
CV n %$ c %. x V. Decompose v = (v i, v2), where vi is tangent to VA and 
v2 E T, V = t*. As we will show, we can take B,u = v2. What we must show 
now is that 

(163) 

is a multiple of E=““. There are two steps in the proof of this fact. 
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Claim 1. ur - d(F,)(o,) is tangent to q;l(O). To prove this just 
compute d(q,) applied to this vector, using the identity 

0 = d(q,(o,)) + d,(q)(4), (164) 

which follows by differentiating the identity qJF,(p)) = 0. 

Claim 2. The result, 5, of applying [I- d($“,)] to (163) is a multiple of 
F‘. Indeed, by (161), 

[ = ZE”” - (I- d(l)?)) dFo(uJ, (165) 

which, by remark (R.2), is a multiple of F’. 

To finish the proof, note that Claim 2 and the non-degeneracy of the 
trajectory corresponding to p imply that (163) is a multiple of P’. [ 

The considerations made in the previous proof have the following 
consequence, which is an answer to the question of how the period function 
T changes: 

COROLLARY 5.10. In the setting of the previous propositions, assume that 
for given p E V and 6~ E t*, d,(q)(bp) # 0. Then 

(166) 

6. APPLICATIONS TO PARTICLES IN GAUGE FIELDS 

6.1. Asymptotic Expansions 

Here we will state the main results on spectral asymptotics which follow 
from the machinery we have developed. As stated in the introduction, our 
goal is to analyze the behavior of 

where 

z(A)= Tr f(h-1H,j”2(H,-c))= (Tr, f(Q), xi), (167) 

Q=(-L)-“2(--L-cA) (168) 

and f is a Schwartz function on the line such that PE C;(R). Note that, by 
the results from Section 2.3, this is an operator of real principal type, as 
long as c is regular of VE C”(M). 
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THEOREM 6.1. Suppose f is supported on an interval ( - T, T) which does 
not contain any nontrivial periods of the Wong flow on Y. Then 

z(2)=d~a(2)witha(l)~S”~~-‘(t*). (169) 

Here n (resp. d) is the dimension of P (resp. G). Furthermore, the leading 
term in the classical expansion of a(1) is 

a,(1) =f(O) Vol[-llr, n q-l(O)], (170) 

where Y& is the symplectic leaf of the Wong bundle corresponding to 2, and 
Vol stands for Liouville measure. 

Next we analyze the contribution to the asymptotic expansion of z(A) 
arising from periodic trajectories. Let y be a non-degenerate periodic 
trajectory of the Wong flow lying in the symplectic leaf %‘&, and assume 
that the support of p is such that the singularities of Tr, f(Q) in an 
invariant open cone containing A, are those arising from the periodic 
trajectories branching off y. Precisely, assume that condition (159) holds. 
Then Theorem (5.9) ensures that Tr, f(Q) is a Lagrangian distribution 
on G microlocally in a smaller cone. To obtain from this asymptotic 
information on r(A), we will make a generic assumption ensuring that we 
can restrict the distribution of Theorem (5.9) to T: 

DEFINITION 6.2. Let T be the period of y. We will say that y has regular 
holonomy iff given X E T*P above y, every g E G such that dT(X). X = X is 
a regular element, meaning that g is not in more than one maximal torus. 

THEOREM 6.3. Assume the condition (159) of Theorem 5.9, and assume 
furthermore that y has regular holonomy. Then, after perhaps shrinking V to 
a smaller open cone containing A,, for every V0 c t* an open cone with 
closure contained in V there exists a Lagrangian distribution v on T having 
the same Fourier coefficients on V0 as Tr, f(Q). Indeed, 

v E I”- “‘4( T; O), (171) 

where r is the dimension of T and 

O={(g,p)~Txt*;3x~‘P’(V)andt~J 

such that X = d,(x) and p = @(x)/ **}. (172) 

Proof We will first check that 

l-,nN*T=@. (173) 
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Here r,, is as in (160). Assume (g, p) E TU, where ge T. Thus there is a 
~EJ and an XE P’( U) such that X=$,(X. g). If we recall that U is the 
saturation of I/ by Ad* orbits, we see that there exists h E G such that 

CI “2’ Ad,* G(X) = @(X .h) (174) 

is in V. Thus X. h E Y, where Y is the symplectic section of (142). Now 
X . h = 4,(X . gh), and, since Y is invariant under 4, it follows that X. gh E Y. 
Hence 

j3 2’ @(X . gh) = Ad,* 0 Ad,* Q(x) (175) 

is in the interior of the positive Weyl chamber. By (174), we have 

fi = Ad,* Ad,* Ad,*-,(a) 

= Ad,*_,,,(a). (176) 

By Lemma IV.2.5 of [3], this implies that tx and B are in the same orbit of 
the Weyl group, but, since they both lie in the interior of the positive Weyl 
chamber, necessarily tc = fi. By (176), h ~ ‘gh E T. Now since the set of 
regular points is open, by shrinking V if necessary we can assume that g 
is a regular element. Hence h must be in the normalizer of T (for otherwise 
g’ would lie in the two distinct maximal tori T and hTht’). Hence 
Ad,* Q(X) = Ad&,(/?) is in t*, and is non-zero. This proves (173). 

We would have to prove next that the intersection of TU with the 
canonical relation underlying the restriction operator from G to Y is clean. 
This would finish the proof of the theorem, thanks to Theorem 5.9. 
However, we can simply note that what we have proved is that we can 
replace G by T in Theorem 5.9. 1 

The leading order term in the asymptotic behavior of the Fourier 
coefficients of v along rays has been determined in [ 161; it is the usual term 
in the trace formula associated to a periodic trajectory, in this case a 
trajectory of the Wong flow. Theorem 6.2 shows that in non-degenerate 
cases this estimate is uniform in cones. 

6.2. Higgs Fields 

As a generalization of the family of operators given by (2), we also 
analyze contributions to a gauge field Hamiltonian due to a “Higgs field.” 
Thus we consider 

H, = fi2Hy + &r,(X) + V, (177) 
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where X is a section of gAd = P xAd g. In this case, X gives rise to a vector 
field on P, tangent to the fibers of P + M, such that 

YI 9’i E d> copies of ~j.(x). (178) 

Thus, in analogy with (8), we can say that 

-L + iA “‘Yl gi G d, copies of he2H,. (179) 

We could therefore produce an analogue of (168) with -L replaced by 
-L + ~II”~Y, but a technical problem arises in the analysis of this 
operator, because AlI2 is not a pseudodifferential operator on P; its 
“symbol” is singular on the subset of T*P\{O} conormal to the fibers of 
P -+ M. This technical problem can be overcome by the device of adding 
one more variable. 

Thus we work on P x S’, and we let 8, = a/at7 on Cm(S1). We will make 
a partial replacement of A ‘I2 by D, = (l/i) a,. With c( denoting a small 
parameter and K a positive constant, set 

04P=d+(8-i)d~-16128+cra,r+KCr2a~, (180) 

where 

V=V-1. (181) 

and, similarly as before, we assume without loss of generality that 
I/> K+ 1, so 8> 1. Now we set 

~~,,={u~C”={~~C~(PxS~);Gactslikerc~andD,=k}. (182) 

Then 

- 2’1 9;,,k E d, copies of fi ~ ‘H,, (183) 

provided 

fi=lA+SI-‘=(ak)-‘. (184) 

The differential operator 2 is strongly elliptic on P x S’, and - 2 is 
positive definite, provided K is taken to be sufficiently large. The operators 
2, A, and D, all commute. Now, in place of (179), we can use the fact that 

(-~))“2(-~-cA)I~j,,,rd,copiesof~~’H,”2(Hi,-~), (185) 

granted (184). Thus we are led to analyze 

(186) 
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where 

Q=(-cY-1'2(-~-c~) (187) 

is a first-order, self-adjoint pseudodifferentail operator on P x S’ of real 
principal type. The analysis of this is done in the same spirit as in the case 
when there is not a Higgs field. 

6.3. Examples 

We illustrate some of the phenomena dealt with in the analysis of this 
paper with a simple family of examples. This family contains cases when 
the clean-intersection condition for restriction of Tr, f(Q) to T is violated, 
and suggests further sorts of analytical problems to tackle in future work. 

Consider product bundles 

P=MxG, (188) 

with the trivial connection. The corresponding metric on P is a product 
metric, so 

A,=A,+A;. (189) 

We will take V= 1, so that we are in the set-up of the introduction with 

L=A,, A = -A; + 1612. (190) 

Hence 

L+ca=A,- (c- 1) A;+ 161* 

=A,-aA~+c~6~2, (191) 

where we have set a = c - 1. This operator is elliptic if a < 0, degenerate if 
a = 0, and of principal type for a > 0. Our object of study is the G-trace of 
f( Q h where 

Q=(-L)-“*(-L-d). (192) 

As before, this will shed some light on the asymptotic behavior of 

Trf(~-‘H,“*(HI,-c))=nh’Trf(Q)l, (193) 

for large IAl. The left-hand side of (193), a measure of the number of eigen- 
values of H, near c, is expressed in terms of a measure of the number of 
eigenvalues of -L close to those of CA. Recall that we take?E C,“(R). For 
c < 1, a < 0 and Q is elliptic; then f(Q) . 1s a smoothing operator and (193) 
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is rapidly decreasing as A + co. The interesting case is c > 1, so a > 0, and 
we concentrate on this. By scaling the metric on G, we may as well suppose 
that a= 1. 

Thus the geometry here is controlled by the null bicharacteristic flow 
associated to A, - AZ. Write (x,[)ET*M, (g,y)ET*GzGxg*. Then 

C=Char Q= {(x9 5; g, Y); 141..= Ivl}. (194) 

Note that for the WGS-bundle we have the identification T*P/G z 
T*M x g*, and 

Y=z/G= {(x, 4, Y)E T*Mxg*; Ill,= Ivl}. 

The Hamiltonian flow on T*(Mx G) is of the form 

(195) 

Geo?k, Y) = (o,(t) g, Y) (196) 

where o,(t) is the one parameter group a,(t) = exp tX, x E g corresponding 
to y E g* under the isomorphism provided by the bi-invariant metric on G. 
Then the criterion that the Wong flow has a periodic orbit, of period T, is 
that there exist (x, 5; g, y) E C and g, E G such that 

GeoY(x, 0 = (x, 41, GeoC;,k,y)~gl=k,~). (197) 

The first condition is that M has a periodic geodesic of length T, the last 
condition here is equivalent to 

g,=o,(-T)-‘. (198) 

The set of such g,‘s makes up the singular support of K = Tr, f(Q), 
provided T E supp j? 

Thus the singular support of K consists of a union of images C( T,) under 
exp: g + G of spheres S( Tj) of radius T, (centered at 0) in g, where { Tj} 
is the set of periods of geodesics on A4 (assuming this set is discrete). The 
wave front set of the singularity of K lying over Z(Tj) is the flow-out of 
T,*G\O under the time -T, geodesic flow. In case exp has nonsingular 
derivative on S(T,), this is the conormal bundle of the smooth manifold 
C( T,). The set where exp is singular is described as follows. Identifying TG 
with G x g by left translations, we have 

dexp(X) Y= Z(ad X) Y, Z(a) = (en- 1)/a. (199) 

Thus exp is singular at XE g provided ad X has eigenvalues of the form 
A = 2nim, m a non-zero integer. 

We consider some specific groups. First, if G = X42), then with an 
appropriate normalization of the metric on g, exp: g + G is singular on 
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spheres of radii Ri = rcj, j = 1,2, . . . with image +I. Thus, if one of these 
numbers is a period T for the geodesic flow on M, one gets a contribution 
to Tr,f(Q) belonging to Z*(G, T,*G\O), with g= Z or -I. Proposition 4.5 
applies if g = Z and an obvious variant applies if g = -I. 

Further phenomena arise if we consider G = U(2), or its double cover 
U(l)xSU(2), with Lie algebra g=R@su(2); take Y=(Y,X)Eg. If 
y2 + [Xl2 = 1 and lyl is small, so that we are considering a small 
neighborhood of the “equator” in the sphere S3 c R4 E g, its image in 
U( 1) x SU(2) under exp tY for t slightly smaller than rc looks like this: 

where a cross section diffeomorphic to S* is drawn as a circle. At t = rc, the 
image has a cusp singularity: 

For t slightly larger than rt, the image looks like this, with two conic 
singularities: 

Thus if the geodesic flow on M has a period T> rr, one gets a contribution 
p to Tr, j”(Q) consisting of a Lagrangian distribution associated to N*C\O 
defined in the obvious way over the conic points, so that fiber over a 
regular point is a union of two rays, while the fiber over a conic point is 
a union of two cones. 

The way the maximal torus T2 sits in U(t) x SU(2), its normal bundle 
does not intersect N*C\O, so the contribution p has a well defined 
restriction ,uL# E 9’( T2); we need not use the construction (102))( 103). The 
singular support of $, ,E n T2, is a union y of two arcs surrounding 
(1, -1)~ T2: 
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However, the wave-front set of p8 is generally not just N*y\O, the union 
of the normal bundles of the two smooth arcs. Rather, the union of two 
quadrants in TzT2, lying over the intersection points p,, p2 is also 
typically contained in I#‘@#). Thus locally near each pj, pLtr is a distribu- 
tion associated to two transversally intersecting Lagrangians, of the sort 
studied in [22, 111. 

These last statements can be proved by considering the following model 
situation. For z=(y,x)=(y,x,,x2,x3)~[W4, consider v=6(Ixl-Iyl)/y. 
Let v# be the restriction of v to the (y, x,)-plane, so 

interpreted in the principal value sense. Note that P(q, tl) is piecewise 
constant on R2, constant on each of the 4 quadrants in R2 separated by 
q = k<,, and vanishing on two of these quadrants due to cancellation. The 
distribution p* on T2 is a curvy version of this, up to a pseudodifferential 
operator factor. Note that in the Weyl integral formula (101) is a factor 
D(g) which vanishes at pj. Multiplying the model vff by a linear factor 
annihilates the extra wave front set of y = x, = 0; in the Fourier transform 
representation this amounts to applying a derivative to the piecewise 
constant f”. If a pseudodifferential operator is applied to v*, this 
“accidental” annihilation effect does not occur in general, though the order 
of the “extra” singularity is lowered. 

In the curvy situation on T2 c U( 1) x SU(2), the Fourier transform 8” 
may have a more complicated behavior than that of the model 1;#. We have 
no complete analysis of it to describe here, though effecting such 
an analysis is an example of an interesting class of problems arising in 
the study of Fourier integral distributions associated to transversally 
intersecting Lagrangians, on which one can hope to obtain progress. 
We merely note here that jP has a classical asymptotic behavior in all 
directions in [w2 except four, corresponding to the locus of intersection of 
these Lagrangians, where the behavior of the Fourier transform will be 
more subtle. 
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APPENDIX: NOTATION INDEX 

Symbol Equation where defined 

(1) 
(21, (23) 
(101, (54) 
(17) 
(191, (167) 
(221, (131) 
(27) 
(72) 
(81) 
(84) 
(88) 
(951, (160) 
(107) 
(129) 
(134) 
(134) 
(140) 
(148) 
(157) 
(158) 
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