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Abstract-The problem of determining the change in a material's symmetries as it undergoes 
an elastic-plastic deformation is considered. This is interpreted as the problem of evaluating 
the anisotropies of the current elastic response. The discussion is presented in the context of a 
particular form of constitutive equation which relates the Cauchy stress to the current value of 
the deformation gradient and a second order tensor quantity which is a function of the defor- 
mation gradient history. A sufficient condition is established for a transformation to be a ma- 
terial symmetry transformation of the current elastic response. This condition relates the 
minimum symmetries of the current elastic response to the initial material symmetry, the given 
deformation history, and the structure of the constitutive equation. 

I. INTRODUCTION 

This paper is concerned with determining the changes seen in a material's symmetries 
after elastic-plastic deformations. Consider an initially isotropic material. There is a 
range of deformations from this initial state for which this material will act as an iso- 
tropic elastic solid. One can deform the material beyond this elastic limit to induce plas- 
tic flow. After inducing plastic flow, there will be a new range of deformations in which 
the material will only respond elastically. We call the response of the material in this 
range of elastic deformations its current elastic response. In general, the current elastic 
response of an initially isotropic material need not remain isotropic after the material 
undergoes an elastic-plastic deformation. 

In the work presented here, we discuss the problem of determining the anisotropies 
of the current elastic response. In particular, we show how to evaluate the symmetries 
of the current elastic response function as a consequence of the material's initial sym- 
metries, the structure of its constitutive equation, and its deformation history. 

The discussion is presented within the context of a general type of constitutive equa- 
tion, introduced in Section II. In this constitutive equation, the Cauchy stress depends 
on the current value of the deformation gradient and a second order tensor quantity, 
which is a functional of the deformation gradient history and which itself is considered 
a deformation gradient. The choice and nature of this deformation gradient will differ 
from model to model, but we will refer to it as theplastic deformation gradient. Thus, 
the Cauchy stress is assumed to be a function of the current value of the total defor- 
mation gradient and the value of the plastic deformation gradient. The constitutive equa- 
tions for the stress and plastic deformation gradient are given in a general form to avoid 
focussing on any particular model, and to provide the most general results possible. An 
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alternate structure for the constitutive equation is introduced in Section III, in which 
the plastic deformation gradient is replaced by the products in its polar decomposition. 

The notions of  a current elastic response and a yield function are defined in Section 
IV. In Section V, the current elastic response is expressed in terms of  the constitutive 
equation presented in Section II. Also, the problem of finding the symmetries of the cur- 
rent elastic response function is formulated and discussed. It is shown that a sufficient 
condition for a transformation to be a material symmetry transformation of the cur- 
rent elastic response is that it be a member of  the material's initial material symmetry 
group and also that it satisfy a condition given in Section V. In this manner,  the mini- 
mum symmetries of  the current elastic response are shown to be a consequence of  the 
initial material symmetry, the given deformation history, and the structure of  the con- 
stitutive equation for the plastic deformation gradient. 

Two special cases are considered for the plastic deformation gradient in Section VI. 
For each case, general conclusions are drawn about the nature of  the material symme- 
try properties of  the current elastic response. These are then illustrated in Section VII 
for an initially isotropic material. Up to this point, the material symmetry transforma- 
tions of  the current elastic response have been always referred to the initial reference 
configuration of  the material. In Sections VIII and IX, the consequence of a change to 
a new reference configuration is presented. In Section X it is shown that similar results 
can be obtained for a viscoelastic-plastic material. 

11. KINEMATICS, STATEMENT OF CONSTITUTIVE EQUATION 

Let K denote a reference configuration and let XK(X) denote the position vector of  
particle X in r. Let x ( t )  denote the position vector of  particle X at the current time, and 
let the motion of  a particle be described by 

x ( t )  = xK(XK(X), t) .  (1) 

The deformation gradient evaluated at time t is defined as 

0x, (X,  t) 
F , ( t )  - (2) 

0X 

Let T ( t )  denote the Cauchy stress at time t. A constitutive equation of  the form 

T ( t )  = q-~lF~(t);FP(t)] (3) 

is assumed, where q-K is a function for the current value of  the Cauchy stress tensor 
T ( t )  in terms of  the current value of  the deformation gradient FK(t) and the current 
value of  the "plastic deformation gradient" F~(t ) .  One will note that the common as- 
sumption made by LEE [1969] and others that the stress is a function of  the "elastic de- 
formation gradient" is a special case of  this assumption since the elastic deformation 
gradient is normally derivable from the total deformation gradient and the plastic de- 
formation gradient. 
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It is assumed that the plastic deformation gradient can be determined by a constitu- 
tive functional ! given by 

F~(t) = FK(s , 
S = t  s 

(4) 

where cVP is a functional of the total history of the deformation gradient from a start- 
ing time t~ to the current time t. Since in this development q:P is a general functional, 
eqn (4) can be considered equivalent to the integral of the flow rule used in most theo- 
ries of plasticity, but for the plastic deformation gradient. 

This form of constitutive equation is selected because it generalizes many of the mod- 
els of plasticity. We also observe that this model is a fully strain-based formulation. 

We will interpret FP(t) to be the deformation gradient comparing some materially 
significant configuration Kp to the reference configuration r. As is commonly known, 
in many theories of plasticity the configuration rp is not a true configuration. 2 For each 
point and its neighborhood in the actual material body, rp will contain information 
about the configuration of a materially significant neighborhood ~Kp of that point. Fig- 
ure 1 gives a visual representation of this interpretation. 

Eqn (4) implies that for each deformation gradient history there is only one FP(t). 
For example, in the case where rp is taken to be the current stress-free configuration, 
by writing eqn (4) we imply that only one of the many possible stress-free configura- 
tions 3 is used to represent all such configurations. 4 

The functional q~P for the plastic deformation gradient is a functional in its most 
general sense and can be considered as the combination of a flow rule, hardening pa- 
rameter, and yield function, for example. The recognition of this fact is the key to the 
relevance of the following development. 

As a convention, in the notation we will refer to the reference configuration only the 
first time we introduce a new quantity and will otherwise refer to the reference config- 
uration only when it is necessary for the development. The word configuration in this 

~Some authors might disagree with the assumption that all of the plastic deformation gradient can be given 
by a constitutive functional (CASEY [1991], private communication). 

2In many theories of plasticity the intermediate configuration rp represents a stress-free configuration. Since 
a continuous configuration cannot always be found which will make the stress go to zero for all points in the 
material body, it is normally allowed for rp to represent a set of disjoint configurations. 

3Any rigid body rotation of a stress-free configuration is another stress-free configuration. 
4As can be seen from this example, there can be many intermediate configurations rp, all representing the 

same physical interpretation. This results in the existence of many different FP(t) which can represent the 
same physical interpretation. There might be no physical justification for selecting among the many possible 
d r. One can consider this as a further restriction on the form of the constitutive equations. That is, if F~(t) 
and FP(t) represent the deformation gradients to two physically equivalent configurations, one can require 
that 

q-~iF~(t);FP(t)l = q-~iF~(t); FP(t)I. 

If one assumes that any rigid body rotation of ~p is another physically acceptable intermediate configuration, 
and one requires that the stress be form invariant to such changes of ~p, this does result in a restriction on the 
way in which T~ depends on FP(t). Under such a restriction one can always write 

T(t) = T, iF,(t) ;Ufft t)] ,  

where U~(t) is a symmetric tensor given by a functional of the deformation gradient history. 
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F~(t) 

Af~p = Intermediate Configuration 

t )  A/'~(t) = Current Configuration 

A/'~ = Reference Configuration 

Fig. 1. A visual representation of F~(t). FP(t) is the deformation gradient comparing Kp to K. 

presentation will always be used to mean the configuration of the smallest neighborhood 
around a material point. 

The constitutive eqn (3) must be subjected to the restrictions of material frame indif- 
ference. The imposition of these restrictions is discussed elsewhere (NEcAI-mAN [1988]). 
These restrictions imply that the constitutive eqn (3) has the form 

T(t) = F(t)8{C(t);  FP(t)]Fr( t ) ,  (5) 

and that 

(6) 

where 

C(s) = Fr(s)F(s) ,  s E (ts, t].  (7) 

It is assumed, for convenience, that FP( t ) is also interpreted as a deformation gradient. 
The two functionals in (4) and (6) are related by 
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c~p - s , 
S i n s  k S=t s  ) 

(8) 

where U(s) is the right symmetric part of F(s) in its polar decomposition. 
Let gK (ts) denote the group of material symmetry transformations associated with 

the material at the starting time ts and represented with respect to the reference config- 
uration r (NEoAnBAN & Wn,~MAN [1989a],[1989b]) and let H be an element of g(ts). 
The constraint imposed by the material's initial symmetries at the starting time ts on the 
response functional of (3) is given by 5 

q-IF(t); FP(t)) = q-lF(t)H; FP*(t)], 

for every H E g(ts), where 

I 1 FP'(t)  = qrP F(s) H . 
s = t  s 

(9) 

(10) 

The restriction given in (9) must hold irrespective of the deformation gradient history 
F(s), for s E (ts, t], and will henceforth be assumed without mention. The correspond- 
ing constraint on the response functional 8 given in (5) is 

SiC(t); F P ( t ) }  = HSIHrC(t)H; FP*(t )}H T 

I t } F P ' ( t )  = c~p HrC(s)  H . 
~. s = t  s 

(11) 

(12) 

for every H E g(ts), where 

111. AN ALTERNATE S T R U C T U R E  

Let the polar decomposition of FP(t) in (5) be written as 

FP( t )  = R P ( t ) U P ( t ) ,  (13) 

where R p (t) is orthogonal and liP(t) is symmetric. The uniqueness of this decompo- 
sition allows us to independently define the following functionals for g P ( t )  and UP(t): 

and 

I '>/ R P ( t )  = (R p C ( s  , 
k s = t  s ) 

(14) 

I ')/ ~JP(t) = ¢lJ. p C ( S  . 
k s = t s  J 

(15) 

5See NEnA.,-m~ [1988] for more details. 
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This allows us to redefine the constitutive eqn (5) such that 

T ( t )  = F ( t ) ~ [ C ( t ) ;  RP(t) ;  C P ( t ) I F T ( t ) ,  (16) 

where C P ( t )  = F p T ( t ) F P ( t )  = Up2(t) ,  and is given by 

l /  l /  C P ( t )  = e p ) _ c ~ p r  C ( s )  ~-P C ( s )  . (17) 
\ .s'=/s. J k s = t ~  

The constraint of material symmetry on (16) is stated in a manner similar to that in 
(11) and can be written as 

H S { H T C ( t ) H ;  RP*(t);  CP*(t)IH T = SIC( t ) ;  RP(t) ;  CP(/)I (18) 

for every H E g~(ts), and where RP(t) and ~-~P(I) a r e  given by (14) and (17), and 

/ ' l  RP*( t )  = ~R p HTC(s )  H , (19) 
k. S :¢~  

and 

l ) CP*(t )  = C p H T C ( s )  H . 
S=/'~ 

(20) 

IV. C U R R E N T  ELASTIC RESPONSE A N D  TH E YIELD F U N C T I O N  

The idea of  elastic deformations associated with the current state and that of  yield 
surfaces are inherently interdependent. Consider a space in which every point represents 
a group of  deformation gradients which only differ in transformations associated with 
rigid body motions (e.g., it can be the right Cauchy strain space). 6 This will be referred 
to as the reduced deformation gradient space. In this space a line represents a deforma- 
tion history. At each instant, a surface, called a yield surface, separates the space into 
points which are obtainable by "elastic deformations" and those unobtainable by such 
deformations. In this case "elastic" refers to deformations which will not alter the plas- 
tic deformation gradient. The point representing the current deformation gradient will 
always fall on or within the current yield surface. A path is drawn in this space as the 
neighborhood of a material particle is deformed. If this path falls on or within the yield 
surface, there will be no change in the yield surface. In such a case, the yield surfaces 
at the beginning and end points of the path will coincide. On the other hand, if this path 
attempts to penetrate the yield surface, the yield surface will move out to contain these 
deformations within its boundaries. 

Motivated by the above discussion, an elastic deformation is defined as a deforma- 
tion which does not alter the yield surface and the plastic deformation gradient, as op- 
posed to an elastic-plastic deformation which will alter the yield surface and plastic 
deformation gradient. 

6It cannot be a left Cauchy strain space. 
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In order to provide a mathematical statement of  these geometric ideas, consider a 
yield function which is a scalar valued functional of  the deformation gradient history, 
F ( s ) , s  E (ts, t ] .  The particular form that we use is 

f ( t )  = f [ F ( t ) ; F P ( t ) ;  k(t)},  (21) 

where FP(t)  is the tensor valued functional defined in (4), and where k ( t )  is a scalar 
valued functional of the deformation history given by 

k ( t )  = k F(s , (22) 
. s = t s  / 

and which represents the "hardening" of the material. 
We can now state the idea of elastic deformations and elastic-plastic deformations 

as follows: 
Given an initial deformation gradient history F°(s) for s E (ts, h ] ,  then FP(tl)  = / ' /  ~-P F°(s) . Note that f IF; FP(tl);  k(t l) l  ----- 0 represents the yield surface at time h .  

I. S=ts ) 

A subsequent deformation gradient history from time tl to t is considered to be a set 
of  elastic deformations if 

f [ F ( ~ ) ; F P ( t l ) ; k ( t l ) }  <- 0 (23) 

for every value of  ~ E (h ,  t ] .  Such a history of deformations will draw a path within 
the yield surface associated with time t~, and, as such, will not change the yield surface 
and plastic deformation gradient as time increases from t~ to t. Therefore, a deforma- 
tion gradient history which satisfies the conditions given in (23) will result in 

FP(o0 = FP(tl) for all a E (t 1, t ] .  (24) 

In the event that condition (23) is violated at any c~ E (h ,  t] ,  then the material will 
undergo an elastic-plastic deformation, and such a deformation history can result in 
changes in the plastic deformation gradient, hardening parameter, and, as a result, 
in the yield surface. 

The yield function in (21) must be subjected to the constraints of frame indifference 
and material symmetry. However, our discussion of the evolution of anisotropies in the 
remainder of  this paper can be carried out without determining the form imposed on 
(21) and (22). For the purposes of brevity in presentation, this material is presented in 
the appendix. 

V. CURRENT ELASTIC RESPONSE 

Consider a deformation gradient history F (s), s E (t,, t],  whose points in the reduced 
deformation gradient space lie inside a yield surface for some time interval t E (h ,  t2]. 
In this case, condition (23) is satisfied and the values of  FP(t)  and k ( t )  remain con- 
stant over this interval. Let F p denote the value of  the plastic deformation gradient for 
this time interval. The discussion concerning (23) implies that FP(t ), RP(t),  and (2 p (t) 
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are also constant for t E (tl ,  t2]. Their constant values will be denoted by F p, R p, and 
(2 p, respectively. 

Consider the restriction of  the response function q- in (3) to the set of  F which lie in- 
side the current yield surface. This form of  the constitutive equation is written as 

T ( t )  = gKlF~(t)], (25) 

where ~ is the current elastic response function, and which can be defined in terms of  
q- of  (3) as 

~lF( t )}  - q - l F ( t ) ; F  p] (26) 

for the particular constant value of  F p. If the constraint of frame indifference is intro- 
duced, we can write 

T ( t )  = F(t) f~lC( t ) lFr( t ) ,  (27) 

where ~ is an alternate current response function which can be written in terms of  8 de- 
fined in (5) as 

~ lC( t ) l  ---- 8 I C ( t ) ; F P J  (28) 

for the particular value of  FP. This can also be written in terms of  8 given in (16) as 

~ [C( t ) l  -- S[C(t ) ;RP;C p} (29) 

for the particular constant values of  RP and CP. 
This description of  the constitutive equation is equivalent to that of  nonlinear elas- 

ticity s ince -  for the particular F p, R p, and t~p in this interval - the response of  the ma- 
terial only depends on the current value o f  the deformation gradient. 

V. 1. Evaluation o f  the symmetry properties o f  the current elastic response function 

The problem of  evaluating the symmetries of  the current elastic response function of  
a material after it has undergone a plastic deformation can be stated as follows: 

Problem Statement: Given g(ts), find every unimodular linear transformation H 
such that 

T ( t )  = 8IF( t )}  = ~ [ F ( t ) H } ,  (30) 

irrespective of  the particular value of  F ( t ) .  That is, given the initial material symme- 
try, find the invariance properties of  ~ for the current elastic region. 

The problem can be restated in terms of  the current elastic response function ~ as 
follows. 
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Alternate Statement: Given g(ts), find every unimodular linear transformation H 
which satisfies the condition 

H f ~ { H r C ( t ) H l H r =  l~{C(t)}, (31) 

irrespective of the value of C(t) .  
It is convenient to restate (31) using the definition of ~ in terms of ~ in (29): Given 

g (ts), find every unimodular linear transformation H which satisfies the condition 

H~{HrC(t)H;  RP; CP }H r = ~{C(t); RP; CP}. (32) 

In order to arrive at a solution, recall that the material symmetry restriction on g due 
to the initial symmetries of the material at the starting time ts is stated in (18). It is re- 
peated here for convenience: 

Hg{HrC(t)H; RP'(t); I~P'(t)IH r = g{C(t); RP(t); CP(t)}, (33) 

for every H E g(ts), and where [~P*(t) and CP*(t) are given in (19) and (20). 
A comparison of (32) and (33) leads to the following solution: 

Solution: A sufficient condition for a unimodular transformation H to represent a 
symmetry of the current elastic response function is that H E g(ts) and also satisfies the 
conditions 

I t ; , /  I H ',HI 61 p s = 61 p r C ( s  , 
k s = t s  J ~. S=t s  J 

(34) 

and 

/ t l  
C p C ( $ )  --  e p HrC(s)  H . 

K S = t  s ) ~. S = t  s 

(35) 

Therefore, the problem of following the evolution of anisotropies in the elastic response 
of the material has become the new problem of solving for those H E g(ts) which sat- 
isfy (34) and (35). 

Comment 1: The solution presented here is for the most general function ~ and func- 
tionals (R p and C p. If ~, (R p, and e p are given more explicit or simpler structures, 
there might be other transformations H which also satisfy (32). That is, the results ob- 
tained here are common to all theories which are of the form given in (16). Therefore, 
the solution presented here will identify the smallest group of syrmnetry transformations 
of the function ~ which are common to all simple materials whose constitutive equa- 
tion can be written in the form given by (16). 

Comment 2: The transformations H for which (34) and (35) are satisfied depend on 
the deformation history C(s), s E (ts, t],  and also on the explicit forms of the func- 
tionals 6~9 and (~P. 

The group of transformations representing the symmetries of the current elastic re- 
sponse function of the material at time t will be denoted by ge(t) .  In this notation and 
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in the fol lowing presentat ion,  the parameter  t will refer to the current  yield surface and  
the elastic response within the current yield surface as opposed to the actual current  time. 

The  solut ion can be restated as follows. 

Solution: ge(t) will always satisfy 

ge(t) ~ gP(t) ('1 g(ts), (36) 

where gP(t) is a mathemat ica l  g roup  def ined as 

gP(t) = [ H I R P * ( t )  = RP(t),CO*(t) = UP(t), and  de t (H)  = ---1], (37) 

for the par t icular  history under  cons idera t ion .  

A n  explicit s ta tement  of  the values of  H which satisfy (31) can be given once more  
s t ructure  is given to the funct ionals  6{ p and  C p. Since (R v is an o r thogona l  tensor  val- 

ued func t iona l  of  its a rgument ,  there is an  o r thogona l  tensor  valued func t iona l  v such 
that  

(R p H r C ( s )  H = v  H ; C ( s )  6{ p ) 
k S=t s  k s = &  J 

(38) 

for every H E g(ts). Fur the rmore ,  since C p is a symmetr ic  tensor valued func t iona l ,  
there is a tensor  valued func t iona l  ~ such that  

t3 p H r C ( s )  H =/~ H ; C ( s )  e p ) ~ r  H ; C ( s )  
k S~I~  S' : I~  J \ . s ' : l s  J 

(39) 

for every H E g( ts ) .  7 

As examples,  we consider  the fol lowing two special cases: 

/ / ,/  1. v I t ;  = I ,  a n d ~  I t ; C ( s  = I t  T . 
S : I s  J 

2. v I t ;  C ( s  = I, and  ~ I t ;  C ( s  = 1. 
S = t  s ) S : l ~  J 

In  each case, we show how the assumpt ions  inf luence the s tructure of  the funct ionals ,  
and  how they influence the elastic response of  the material .  The results will be presented 
for the case of  an  ini t ial ly isotropic mater ia l ,  even though  this procedure  is no t  l imited 
to such materials .  

7 A n y  t w o  symmetric positive definite matrices A and B can be written as A = D B D  T for some matrix D. 
The symmetry of A and B guarantees the existence of A d = PAP r and Ba = QBQ r, where A d is the diago- 
nal matrix of the eigenvalues of A, Bd is the diagonal matrix of the eigenvalues of B, and P and Q are or- 
thogonal. Let A d = DIAG(al, a2, a3) and Bd = DIAG(bl, b 2, b3) .  Since A is not singular, one can always 
write Bd = JrAaJ, where J is a diagonal matrix given by J = DIAG(b~l/aj, b~E/a2, b~3/a~). This results 
in the relation B = QrjrPAPrJQ which gives D = Qrjrp. 
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VI. SPECIAL CASES 

Before proceeding further, it will be useful to summarize the assumptions as follows: 

1. The constitutive equation for the Cauchy stress is given by 

T( t )  = F ( t ) 8 [ C ( t ) ;  RP(t) ;  C.P(t)}Fr(t) ,  (40) 

where l iP( t )  = 61 p C( ) is orthogonal, and C.P(t) = e p C(s) is symmetric. 
s = s  k S = t s  J 

2. The yield function is given as 

f ( t )  = f l c ( t ) ;  RP(t) ;  CP(t); /~(t)},  (41) 

and/~( t )  = k, ( ) (see the appendix for details). 
= 

3. For a fixed yield surface, l iP(t)  and CP(t)  are both constants, denoted respec- 
tively as RP and I~ p. For deformations within this yield surface, the elastic re- 
sponse is given as 

T( t )  = F ( t ) ~ l C ( t ) l F r ( t )  (42) 

where 

~lC(t)} - g { C ( t ) ; R P ; C P l .  

I t  will henceforth be assumed that f o r  all times and histories 

I t)/ RP(t )  = (R p C(s = I. 8 
k. s = t  s J 

Then (40) and (43) become 

T( t )  = F ( t ) g l C ( t ) ;  I; CP( t ) lFr ( t ) ,  

and 

(43) 

(44) 

(45) 

l~{C(t)} = 8{C(t) ;  I; CP}. (46) 

It is worth mentioning at this point that a relation can be established between RP(t) 
and RP, (t) ,  where r '  denotes a new reference configuration. Even though we have 

gThis assumpt ion  is not  in contradiction with any invariance conditions imposed by material f rame indif- 
ference on the stress. These conditions are all satisfied directly in Section II. As has been shown by CASEY 
and N^GrtDI [1980], [198 I], it is possible to violate invariance conditions associated with frame indifference 
if restrictions are put  on both F e and F p and if it is also assumed that F = FeF p. This is not  the case in our 
presentation. (Also see footnote 4 o f  Section II.) 
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made the assumption in (44) that I t~(t)  is always equal to the identity, it can be shown 
that R~,(t) ~: I, in general (NEoAnaAr4 [1988]). 

VI.1. Casel:  v = l , / ~ = H  r 

With this assumption applied to (38) and (39), the statement of the restrictions im- 
posed by the material's initial symmetry, given in (18), becomes 

H ~ [ H r C ( t ) H ;  I; HrCP( t )HIH r = SIC(t) ;  I; (~P(I)}, (47) 

for every H E g(tA.  The problem of finding the symmetries of the current elastic re- 
sponse function K, as defined by (32), can be restated as: Find every unimodular H 
which results in 

H S [ H r C ( t ) H ;  I; CP }H r = ~[C(t) ;  I; CP} (48) 

for all values of C( t ) .  
A comparison of  (47) and (48) shows that H will be a symmetry of ~ if H E g(ts) 

and satisfies the equation 

H r C P H  = C p (49) 

for the particular value of  (~P corresponding to ~t. The transformations which satisfy 
(49) form a group, and are denoted by gP(t).  

The solution to the problem of evaluating the symmetries of the elastic response for 
the case currently under consideration can now be stated as: 

ge(t ) D_ g(ts) n gP(t),  (50) 

where 

g(ts) n gP(t)  = {HIH • g(ts) and HrCPH = CP}. (51) 

Hence, when the value of  CP corresponding to the current yield surface is known, 
the problem is reduced to solving for all H which satisfy (51). 

VI.2. Case 2: v = I, t~ = I 

With this assumption applied to (38) and (39), the statement of the restriction imposed 
by the material's initial symmetry, given in (18), becomes 

H S { H r C ( t ) H ;  I; ~2 p }H r = ~ { C ( t ) ;  I; C p }, (52) 

for every H E g(ts). A comparison of  (48) and (52) leads to the conclusion that each 
symmetry transformation H E g(ts) is also a symmetry transformation of  the current 
elastic response function ~. In other terms, for the present case 

ge(t) D_ g(ts). (53) 
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It must be noted that both g e ( t )  and g ( t s )  are groups representing the symmetry in 
terms of  linear transformations of  the same initial reference configuration r. 

v l l .  INITIALLY ISOTROPIC MATERIALS 

For materials which are initially isotropic, g( t s )  = 0 --- [the full group of  orthogonal 
transformations I. 

VII.1. Case  l :  p = l a n d  # = H r 

The condition (39) becomes 

H T C  p C(S) H = C p H r C ( s )  H 
k S = t s  J k. s = t  s 

(54) 

for every H E g( t s )  = 0 and every arbitrary C(s) and t. This constrains C p to the form 
of  an isotropic functional of the history of  C(s) (in discussing isotropic materials, we 
use the terminology "isotropic function" and "isotropic invariants." This is consistent 
with common usage in the literature and as given in SPENCER [1975]). Using the repre- 
sentation developed by WIN~MAN and PIPKIN [1964] for such functionals, the constitu- 
tive equation for CP(t) can be written as 

/ ' ]  5 
C,P(t)  = e p C(s) = ~ a L t i ) l j t i ) ; I i  . . . . .  161, (55) 

k S = t s  J i =O  

where each L (i) is a functional which is linear in the argument j ( i ) ,  where 

j (o)  = I (56) 

j ( i ) =  ~(H(i ) + / / ( i ) r ) ,  i =  1 . . . . .  5 

11 (i) = C(~bz)...C(~bi), for t~ < ~b~ < t, 

and where I, . . . . .  16 are scalar invariants of C(s) defined by 

Ii = t r [ C ( ~ ) C ( ~ 2 ) . . . C ( ~ i ) ] ,  i = 1,2 . . . . .  6 

t s < ~ i < t ,  

(57) 

and where tr stands for the trace operation. Each functional L (i) depends on all values 
of  its arguments as the time variables ~bi and ~i vary in the indicated intervals. Even 
though this representation is more general than that normally used for theories of  plas- 
ticity, any representation of  plasticity which satisfies (54) should have a e p expressible 
in this form. 

In the constitutive eqn (45), the response functional g must satisfy the material sym- 
metry restriction in (47) for every I t  E g( t s )  = O. Therefore, g is an isotropic function 
of  its two symmetric tensor arguments C(t)  and CP(t).  Its representation, given by the 
results of  RIwn~ and E ~ c t s o N  [I 955] on isotropic functions of  two symmetric second 
order tensors, is 
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SIC(t) ;  I; CP(/)} = a~l + a2C(t) + a3C2(t) + a4CP(I) 

+ a~Cp2(t) + a6[C(t)CP(t) + CP(t)C(t)] 

+ av[C2(t)CP(t) + CP(t)C2(t)] + a8[CP2(t)C(t) + C(t)Cp2(t)] 

+ ag[C2(t)cPz(t) + CPZ(t)C2(t)], (58) 

where a~ . . . .  , a9 are functions of the 10 isotropic invariants of C(t)  and CP(t) given by 

I ; ' = t r [ C ( t ) ] ,  I~ = t r [CZ( t ) ] ,  l ~ = t r [ C 3 ( t ) ] ,  

I~ = t r [CP(t)] ,  I~' = tr[CPZ(t)], Ig = tr[Cp3(t)] ,  (59) 

I~ = tr[C(t)CP(t)], I~ = tr[C(t)CP2(t)], I¢ = tr[CZ(t)CP(t)], 

I~o = tr[CZ(t)(Apz(t)]. 

According to (42) and (43), the current elastic response function ~ is given by g in 
(58), in which CP(t) has a constant value, denoted by (2 p. Thus, 

T( t )  = F(t)fClC(t)lFr(t),  (60) 

in which 

~[C( t ) l  = a l l  + a2C(t) + a3C2(t) + a4 ~p + asC p2 

+ a6[C(t)C p + CPC(t)]  + aT[C2(t)C p + C.PCZ(t)] 

+ as[CP2C(t)  + C ( / ) C  p2 ] + a9[CZ(t)C p2 + C P 2 C 2 ( / ) ] .  

Note that, by (51), ~ has the property 

H ~ [ H T C ( t ) H I H T  = ~[C(t)]  

(61) 

(62) 

The preferred axis of transverse isotropy is along the principal axis of CP associated 
with the principal value Ap3. The preferred axes of orthotropy are along the principal 
axes of CP. 

In short, the symmetry of the current elastic response function of the material will 
at least be that of isotropy, transverse isotropy, or orthotropy, depending on the eigen- 
values of CP (no other choices exist for this material). 

1. Isotropy if Apl = Ap2 = Ap3, 
2. Transverse isotropy if Apl = ApZ ~ Ap3, 
3. Orthotropy if Apl ~ Ap2 ~e /~p3 :~: '~pl" 

for every H E gP(t) 71 g(G). 
The structure of the group of transformations gP(t) f) g,(ts) has been discussed in 

NE6AI~BAN and WINEMA~r [1989a]. It is shown there that the material symmetry of the 
current elastic response function depends on the principal values of CP, denoted as 
Apl, Ap2, A;3, in the following manner: 

The transformations in gP(t) I') g(ts) are those associated with 
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VII.2. Case 2: u = I and  tt = I 

In this case, condition (39) becomes 

C p C(s)  = C  p H r c ( s )  H 
s = t  s J k. s = t s  

(63) 

for every H E g(ts)  = O. Therefore, C p must be a functional of  the history of  the six 
isotropic invariants of  C(s) .  That is, 

C P ( t )  = e P l l l  . . . . .  16}, (64) 

where 11 . . . . .  16 are given in (57). 
In constitutive eqn (45), the response functional ~ must satisfy the material symme- 

try restriction (52) for every H E g(ts)  = O. Thus, 8 is an isotropic function of  only 
C( t ) .  It is well known, in this case, that the most general constitutive equation has the 
form 

T ( t )  = p01 + p l B ( t )  + p2B2(t), (65) 

where B (t)  = F ( t ) F r ( t ) .  The three scalars Pl ,  P2, and P3 will be functions of  the three 
isotropic invariants of  B( t )  and the six independent components of  C P ( t ) .  It is seen 
that the principal directions of  the Cauchy stress will be the same as that of  the left 
Cauchy strain B( t ) .  

Recall that the current elastic response function is obtained from the general response 
function when CP( t )  has a constant value. In this case, the current elastic constitutive 
equation will be given by an equation similar to (65) in which Pl ,  P2, P3 are functions 
of  only the three isotropic invariants of  B( t ) .  This representation for the current elas- 
tic response function illustrates the statement in (53) that g~( t )  ~_ g( ts )  = O. 

In concluding this section we make the following comments and comparisons about 
cases 1 and 2. 

1. The principal directions of  the Cauchy stress, T ( t ) ,  and the left Cauchy strain, 9 
B( t )  = F ( t ) F r ( t ) ,  do not coincide for the first case (in general), but always co- 
incide for the second case. 

2. Consider a history of  deformations in which the material returns to the reference 
configuration r, corresponding to B( t )  = I. The state of  stress corresponding to 
this configuration could have any structure for the first case under consideration, 
but it can only correspond to hydrostatic pressure or tension for the second case. 

3. Because of  the similarity of  constitutive eqn (65) and that of  nonlinear isotropic 
elasticity, universal relations which have been obtained for nonlinear elasticity ap- 
ply directly for the second case, and can be used for experimental verification of  
this model. 

9The left Cauchy strain is measured relative to the initial reference configuration r and not the interme- 
diate configuration rp. 
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4. The second case allows a distinct possibility that there exists a stress-free config- 
uration corresponding to an equal triaxial extension from the reference configu- 
ration K (i.e., B = AI). 

VIII. CHANGE OF REFERENCE CONFIGURATION-GENERAL MATERIAL 

It is common in plasticity to write the constitutive equation for stress in terms of  the 
"elastic strain" (strain measured with respect to the intermediate configuration Kp and 
not with respect to the initial reference configuration K). To show how our results com- 
pare with these models, we will rewrite the above constitutive equations relative to the 
intermediate configuration rp. This will be accomplished by a proper change of  refer- 
ence configuration. 

As distinction between reference configurations is necessary in this development, we 
will add the reference configuration to all variables of  the development. 

To simplify the presentation we assume F~(t )  to be the same  as F~ ( t ) .  This elimi- 
nates the possibility of  Fff(t) changing with the superposition of  rigid body motions on 
the deformation history. 

The current response function g~ is associated with a specific yield function and a 
specific value of  F~P(t). The argument of  ~ is the deformation gradient FK(t) which 
compares the current configuration to the reference configuration K. The transforma- 
tions I t  which describe the symmetries of  ~t~ are transformations of  the reference con- 
figuration r to mechanically equivalent ones. 

We now consider a change from the initial reference configuration r to the configu- 
ration Kp associated with the current yield function. There will be a change in the form 
of  the current response function. There will also be different material symmetry trans- 
formations representing the same symmetries,  but which now are transformations from 
the new reference configuration to mechanically equivalent ones. 

In Section II Fff(t) was interpreted to be a deformation gradient which compares Kp 
to the initial reference configuration K. Since a constant value of  F~ is associated with 
a fixed yield surface, the configuration Kp can also be taken as constant (up to a pure 
translation). In this section, we will rewrite the response functionals with respect to this 
configuration, and discuss the corresponding material symmetry transformations. 

The deformation gradient of  the current configuration with respect to configuration 
Kp is defined as 

0x~p(X~; t) 
F ~ ( t )  - 0X~ (66) 

where X~p is the position in configuration Kp of  the particle which had position X~ in 
configuration r. lo Deformation gradients F~p ( t )  and F~ ( t) ,  defined in (2), are related 
by 

FK(t) = FKp(t)F~, (67) 

l°As stated in Section II, since the intermediate configuration is not a real configuration in most theories 
of plasticity, we consider Ku to be a set of configurations each representing a neighborhood. 
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where, according to the interpretation discussed in Section 2, 

~ = aX~ (68) 
OX~ " 

The constitutive equation in (25) establishes the relation between the current response 
function 1~, associated with reference configuration K, and the response function R~p, 
associated with reference configuration Kp, 

T( t )  = I~{FK(t)} = l~p{FKp(t)}. (69) 

l~p can be expressed in terms of  ~ by means of  (67) and (69) as 

g~p[F~p(t)} --- g~lF~p(t)FP}. (70) 

The form of the constitutive equation in (27) can be referred to configuration rp by use 
of (67). Thus 

T( t )  = F~(t) f~{C~(t) lFr~(t)  = FKp( t )~ . {C~p( t ) lFr  ( t ) ,  (71) 

where C.p(t) = Fr~p(t)F~p(t) and 

--p -- - -pT  --p - -pT  
~ r p [ C K p ( t ) ]  E F K gK[FK C K p ( t ) F  K }F~ . ( 72 )  

A transformation H'  will be a material symmetry transformation associated with Kp 
of  the response function ~p  if it satisfies an equation which is analogous to (30), 
namely 

~p[F~p(t)} = R~.{F~.(t)H'}. (73) 

Each transformation H'  for which (73) is satisfied is related to a transformation H for 
which (30) is satisfied through an application of NOLL'S rule [1958] (also see NEOAHBAN 

WINEMAN [1989a]). Noll's rule states that 

H' [~P I-I[ ~p-' (74) 

Let gep(t) denote the group of all transformations H'  which satisfy (73). Therefore, 
e --P e - - p - l  Noll's rule states that g~p(t) = F~g~(t)F~ . 

In a similar manner, it can be established from (25), (27), (30), (31), and (71) that 

H ' ~ p [ H ' r C ~ p ( t ) H  ' }H ' r  = ~p{C,,( t)},  (75) 

where H'  = FPHF p- ' ,  for each H E ge( t ) .  
These results are now applied to the two special cases treated in the previous sections. 
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VIII.I .  Case 1: vK = I and  ~ = H T 

Consider a transformation H E gff(t ) f7 g~ (t~) and its corresponding transformation 
H '  F P H F  p- '  E g~p(t). By use of  the definition - P  - p r - p .  = C~ = F~ F~ in (17), the property (49) 
satisfied by H can be restated as 

H T • p T • P H  : ~ p T ~ p  
- - K  - - K  - - - -  - - K  - - K  (76) 

o r  

- - p - T  T--pT --p - - p  J (F~ H F~ )(F~HF~ ) = I .  (77) 

This is a statement that H ' r H  ' = I. In other words, each material  s y m m e t r y  transfor- 
mat ion  H E g ~ ( t )  (3 g~(ts) corresponds to a transformation H'  which is orthogonal.  
Equivalently, the material symmetry transformations of  ~p,  which correspond to those 

- F~g~(ts)F,  . in g ~ ( t )  (7 g,(t~),  form an orthogonal subgroup of  g~,(t~) - -P  - P - '  

VIII.2. Case 2: v~ = I and  I~ = I 

- ~ - P  ( t s ) ~ - ' .  Since by (53), g~( t )  D g~(ts), it follows that g~p(t) c_ F~g~ 
In concluding this section, note that the last form in (71) is very similar to the con- 

stitutive equation proposed in some theories (like LEE [1969]). This can be seen if we 
write (71) in the form 

T ( t )  = F e ( t ) ~ p l C ~ ( t ) l F e r ( t ) ,  (78) 

where F e ( t )  = F..  ( t )  is the "elastic deformation gradient," and C e ( t )  = FeT(I)F ~ ( t ) .  
In contrast to these theories, where the symmetries of  g are independently prescribed, 
it is shown here that the symmetry properties of ~p  cannot be independently prescribed 
since they are constrained by the initial symmetries of  the material given by g~ (ts), and 
other specific constitutive assumptions and the deformation history. In particular, this 
can present a problem when modeling initially anisotropic materials. 

IX. CHANGE OF REFERENCE C O N F I G U R A T I O N -  ISOTROPIC MATERIALS 

The results in Section VIII are illustrated here for the case of  initially isotropic ma- 
terials, for which gK(ts) = 0. Let the constitutive equation in (71) be written with re- 
spect to configuration Kp in the form given in (78), where Fe(t)  = FKp(t) = FK(t)F~ -z, 
and c e ( t )  = F e r ( t ) F e ( t )  = CKp(t). 

For this particular transformation of  configuration it can be shown (see N~.GM-mAN 
[1988]) that if we assume [lff = I for all deformation histories, then [I p = I for all de- Kp 

formation histories. 
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IX.1. Case  1: v, = I a n d  #~ = H r 

By use of (60) and (61), ~,p in (78) can be written as 

alB~ + a2B, C (t)B~ + a3B, C (t)B~ C (t)B~ i~,[ce(t)} = -p  - - P  e - - P  - - P  e - - P  e - - P  

- - P  e - - p 2  - - p 2  e - - P  + a4 ~p2 + asB p3 + a6[B, C (t)B~ + B~ C (t)BK ] 

- - p 2  e - - P  e - - P  + a 7 [ i ] P c e ( t )  B P C e ( t ) B  p 2  + B ,  C ( t ) B ~  C ( t ) B ~  ] 

- - P  e - - p 3  + a s [ B P 3 C e ( t ) f i  p + B~ C (t)B~ ] 

- - P  e - - P  e - - p 3  p3  -- + a9[n, C (t)n,  C (t)B, + ~, c e ( t ) B P C e ( t ) B P ] .  

(79) 

In this equation, a~ . . . . .  a9 are functions of the three isotropic invariants of C,(t)  = 
--pT e --P F, C ( t )F , ,  and the four mixed isotropic invariants of C~(t) and Cff (given in (59)), 
a n d - a  ~p~pr. B, = The functions al . . . . .  a 9 can be also written in terms of the invariants 
expressed in terms of ce(t) .  In this form, ~,p will have the property 

H ' f < , p { H ' T C e ( t ) H ' ] H ' T  = f~ ,p[Ce( t )} ,  (80) 

--p p --p-1 
which holds, at least, for H' E F, [g, N g~(ts)]F, . 

It was shown in Section VII that the transformations representing the symmetries of 
the current elastic response for an initially isotropic material represent one of three pos- 
sible symmetries (i.e., isotropy, transverse isotropy, or orthotropy). As shown above, 
the symmetry groups F~ [gP fl g,(t~)] FP-I are simply conjugate (through Noll's rule 
[1958]) to the groups given in Section VII. 

IX.2. Case  2: v, = I a n d  I~ = I 

If (65) is written with respect to configuration Kp, the constitutive equation for the 
current elastic response will have the form in (78) where 

- - P  e - - P  - - P  e - - P  e - - P  l~,p{Ce(t)} = r lBf  + r2B, C (t)B, + r3B, C (t)B, C ( t )B, .  (81) 

The function l~,p will satisfy (80) for every H' E FP0Fp-Io As has been discussed in 
NEGArmAN and WINEMAN [1989a] and WrNEMAN et  al. [1988], the group FPOF p-~ con- 
tains both orthogonal and unimodular non-orthogonal elements. This is in strong con- 
trast to the results for case 1, in which FP [gf tq gK(ts)]F p-I contained only orthogonal 
elements. It is worth noting that the orthogonal elements of FPOF p-~ coincide with 
those of Fff[gf O g,(G)]F ff-I of case 1, and, therefore, describe isotropy, transverse 
isotropy, and orthotropy, depending on the principal values and vectors of Bff in the 
same manner as in case 1. It is also worth mentioning that the unimodular non-orthog- 
onal members of FPOF p-~ impose further restrictions on the form of the constitutive 
equation for the present case. These additional symmetries are responsible for the dif- 
ferences between (81) and (79). 
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X. VISCOELASTIC-PLASTIC MATERIALS 

Consider a viscoelastic-plastic material as discussed in NEGAHBAN [1988]. The con- 
stitutive equation is given by 

T( t )  = s);FP(t , 
k S ~ t ~  J 

(82) 

where FP(t)  is given by an equation similar to (4) and the notation implies that the 
range of deformation gradients needed to evaluate the viscoelastic response is given as 
all F(s) for s E (ts, t ] .  The constraint of frame-indifference is satisfied by the introduc- 
tion of  the alternate form of  (82) as 

T( t )  = F ( t  s);FP(t Fr ( t ) ,  
k S : t  s 

where FP(t) is given in (6). An alternate form for this can be written as 

(83) 

/ / T(t )  = F ( t )g  C(s);RP(t);CP(t)  Fr ( t ) ,  
S = I  s 

(84) 

where RP(t)  and CP(t)  are the orthogonal and the square of the right symmetric part 
of  FP(t) in its polar decomposition, respectively, and given in (14) and (17). 

The existence of symmetry in the response of the material at the starting time ts re- 
quires that the functional $ satisfy the condition 

/ '  / / / H$ H r C ( s )  H;FP*(t )  H r = $ C(s);FP(I) (85) 
k s= t , .  s=t~. 

for every H E g(ts), and where FP*(t) is given in (12). This restriction applied to the 
alternate form given in (84) will require that 

/ / / / HS HTC(s)  H;RP*( / ) ;CP*( t )  H T = S  C ( s ) ; R P ( t ) ; C P ( t )  (86) 
k. S = t  s S:/s 

for every H E g(ts), and where [IP*(t) and CP'(t) are given in (19) and (20). 
Henceforth we will assume that relative to configuration K the value of liP(t) = I for 

all deformation histories. Let 

['l T(t )  = F ( t ) ~  C(s) F r ( t )  (87) 
S=I~  ) 

give the current viscoelastic response functional of the material within a given yield sur- 
face. The functional ~ is given in terms of g as 

C(s  -= C ( s ) ; l ; C  p 
k S = t s  J S = l s  

(88) 
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for which the fixed value of  CP(t) within the yield surface under consideration is de- 
noted by CP. 

The symmetries of  the current viscoelastic response can be evaluated through find- 
ing every H which satisfies the condition 

H~ H r c ( s )  H H r = ~  C(s) , 
k S = t s  ~ s = t s  J 

(89) 

irrespective of the actual history of C(s) for s E (ts, t] .  Equation (89) can be written 
in terms of the functional 8 through (88), and is 

f t  I I H~ HrC(s) H;I;C-.P(t) H r = 8  C(s);I;CP(t) . 
k. s = t  s k. s = t  s ) 

(90) 

Comparing (90) to the restrictions imposed on the material by its symmetries at the start- 
ing time and given in (86), the solution to the problem of finding the symmetries of the 
current viscoelastic response can be stated as 

gve(t) ~- g(ts) N gP(t), (91) 

where g oe(t) is the group of transformations which represent the symmetries of the cur- 
rent viscoelastic response and gP(t) is given in (37). 

It is seen that the evolution of the symmetries in the current viscoelastic response of 
a viscoelastic-plastic material is given by an equation which is identical to that for the 
evolution of the current elastic response in an elastic-plastic material. Thus, all state- 
ments made about the symmetries of the current elastic response of the elastic-plastic 
material, given in Section V, can be directly restated for the current viscoelastic response 
of the viscoelastic-plastic material. 
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APPENDIX 

YIELD FUNCTION AND HARDENING PARAMETER 

The yield function in (21) must be subjected to the constraints of frame indifference 
and material symmetry. Consider first the restriction of  frame indifference. For two his- 
tories which differ by rigid body motions, the corresponding deformation gradients are 
F(s)  and Q(s)F(s) ,  where Q(s) E © for each s (0 is the group of  linear orthogonal 
transformations). We assume that the restriction of  frame indifference on the yield func- 
tion requires that: 

f l F ( t ) ;  FP(t) ;  k( t ) ]  = f l Q ( t ) F ( t ) ;  ~'P(t); k ( t ) ] ,  (92) 

where 

[Q '1 FP(t)  = q:P (S) F(s) , (93) 

and 

k ( t )  = k O(s)  V(s) . 
S=I~  ..I 

(94) 

Letting Q(s) = RT(s), the orthogonal part of the polar decomposition of F(s),  restric- 

tion (92), requires 

/ 1 f F ( t ) ; F P ( t ) = % P  F(s)  ; k ( t )  
k S = t ~  ) 

[ I l  I1 = f  u ( t ) ; ~ , ~ ( t ) = q  :p U(s)  ; k ( t ) = k  (s) . 
k_ s = t ~  ) = ~. 

(95) 

This can be written as 

f [ F ( t ) ;  FP(t) ;  k(t)} = f [ C ( t ) ;  FP(t) ;  k ( t ) ] ,  (96) 
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where eP(t) is given by (6), C(t)  is defined in (7), and k( t )  represents the value of k 
evaluated for the history of deformation gradients U(s) derived from the actual history 
F(s).  As in Section III, we can represent eP(t) by the products of its polar decompo- 
sition and introduce the alternate form 

f [ F ( t ) ;  FP(t); k(t)} = f l C ( t ) ;  RP(t);  UP(t);/~(t)l,  (97) 

where RP(t) and CP(t) are defined in (14), (17), respectively. 
We assume the restriction of material symmetry to require that 

f l F ( t ) ;  FP(t); k(t)} = f l F ( t ) H ;  FP*(t); k*(t)}, (98) 

for every H E g(t~), and where the ..... indicates that the functional for the parameter 
is evaluated for the history F(s)H. By using (97), this can be restated as 

f lC ( t ) ;RP( t ) ;CP( t ) ; k ( t ) }  = f[HrC(t)H;RP*(t);CP*(t); fc*(t)} ,  (99) 

where RP*(t) and CP*(t) are defined by (19) and (20), respectively. We will henceforth 
assume that/~(t) follows the material symmetry restriction 

(100) 

A. 1. Initially isotropic materials 

For materials that are initially isotropic, g(ts) = O. 

A. 1.1. Case 1: v = I and # = H r. The material symmetry restriction on the yield 
function, stated in (99), becomes, in view of the assumptions of the present case, 

f l H r C ( t ) H ;  I; HrcP(t)H;/~(t)} = f { c ( t ) ;  I; UP(t);/~(t)}, (101) 

for every H E g(ts) = O. Therefore, f will be an isotropic scalar function of the two 
symmetric tensors C(t)  and UP(t). This results in f ( t )  given by 

f ( t )  =f[ I~ '  . . . . .  I~0;/~(t)], (102) 

where I~ . . . . .  I~' o are given in (59). 

The constraints given in (100) requires that/~(t) be an isotropic scalar functional of 
the history of C(s) which can be written as 

/~(t) =k,16 . . . . .  161 

for 11 . . . . .  16 given in (57). 

(103) 
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A .  1.2. Case 2: v = I and/~ = I. In this case, the material symmetry restriction on the 
yield function is given as 

f I H T C ( t ) H ;  I; CP(t);/~ (t)l  = f l c ( t ) ;  I; C ; ( t ) ; /~ ( t ) ] ,  (104) 

for every I t  E g ( t s )  = O. T h e r e f o r e ,  w e  can write 

f ( t )  = f 1 1 1 , I 2 , I 3 ; C -  * * * - p ( t ) ; k ( t ) l ,  (to5) 

where I~, I~, and I~' are the three isotropic invariants of C( t ) .  
The constraint of  material symmetry on k ( t )  is identical to the first case and is given 

in (100) and these constraints result in the same equation as is given in (103). 


