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Abstmct-This paper concerns the synthesis of dynamic output feedback controllers for minimum-phase 
nonlinear processes. The problem is addressed first for open-loop stable and then for general minimum- 
phase nonlinear processes, leading to one- and two-degree-of-freedom controllers, respectively. The syn- 
thesis of the controllers essentially Involves combination of state feedback and state observers. An 
input/output interpretation of the resulting control structures illustrates the importance of alternative 
statcspace realizations of the process inverse for the controller implementation. Internal stability condi- 
tions are derived for the closed-loop system. Simulation studies in a chemical reactor example illustrate the 
application of the control method&gy developed. 

INTRODUCTION 

Nonlinear control has emerged as a research area of 
rapidly increasing activity during recent years. This 
was motivated by the need to deal directly with the 
nonlinear nature of processes and was facilitated by 
the increasing computational capabilities and avail- 
ability of nonlinear process models. Two major ap- 
proaches can be identified in the relevant literature: 

(1) The input/output approach, which deals with 
nonlinear systems as input/output operators. 

(2) The state-space approach, which deals explicitly 
with the state-space description of nonlinear 
systems. 

The input/output approach in a nonlinear setting is 
essentially an abstract operator approach. It has 
mainly been used to study stability and feedback 
properties, using operator methods and/or functional 
analysis methods [e.g. Safonov (1980) and Desoer and 
Vidyasagar (1975)]. From a synthesis point of view, 
however, the input/output approach cannot lead to 
analytical controller formulas, given the abstract na- 
ture of nonlinear operators. Therefore, numerical con- 
trol algorithms have been proposed for minimum- 
phase open-loop stable processes (Economou et al., 
1986; Parrish and Brosilow, 1988) and special cases of 
open-loop unstable processes (Cheng and Brosilow, 
1987; Hidalgo and Brosilow, 1990). The above ap- 
proach is in contrast with results in linear systems, 
where the transfer function description captures es- 
sential process information (e.g. poles and zeros) and 
allows the derivation of explicit dynamic output feed- 
back controllers in the form of transfer functions. In 
a nonlinear setting, all useful process information is 
hidden in the state-space description of the process. 
Consequently, the problem of synthesis of nonlinear 
dynamic output feedback controllers becomes the 
problem of deriving stat-pace realizations of the 
controllers, and, therefore, state-space considerations 
must necessarily be taken into account for its solution. 

The state-space approach for nonlinear systems is 
based on the mathematical and conceptual frame- 
work of differential geometry. In this framework, key 
elements of linear control theory have recently found 
their nonlinear analogs [e.g. nonlinear inversion, 
Hirschorn (1979) and zero dynamics, Byrnes and 
Isidori (1985) J. Furthermore, the notion of input/out- 
put linearization through state feedback has provided 
an explicit controller synthesis framework for min- 
imum-phase nonlinear processes (Kravaris and 
Chung, 1987). The controller synthesis formulas that 
have been developed, however, are predominantly 
based on state feedback, i.e. the controller implemen- 
tation requires measurements of the process state 
variables. Qn the other hand, the state feedback re- 
sults have provided valuable insight on the nature of 
the output feedback control problem. A combination 
of state feedback and open-loop state observer has 
been proposed for open-loop stable minimum-phase 
processes (Kravaris and Chung, 1987), leading to 
a dynamic output feedback controller. Despite the 
above result, however, the output feedback control 
problem has not been directly and systematically ad- 
dressed in a general nonlinear setting. 

Motivated by the above considerations, the ob- 
jectives of the present work are: 

(1) to solve the dynamic output feedback control 
problem for general minimum-phase nonlinear 
processes; 

(2) to interpret the resulting controllers from an 
input/output perspective. 

With regard to the first objective, the synthesis of the 
controllers will be based on combination of state 
feedback controllers and state observers. This ap- 
proach seems the most logical, given the power and 
explicitness of the state-space methods for nonlinear 
systems. With regard to the second objective, an in- 
put/output interpretation of the control structures 
developed will illustrate the importance of alternative 

837 
CES 17*.-a 



838 PRODROMOS DAOUTIDIS and COSTAS KRAVARIS 

state-space realizations of the process inverse oper- 
ator for the controller implementation, establishing, 
thus, a precise and rigorous connection between the 
state-space and input/output approaches. More 
specifically, in the rest of the paper we will consider 
single-input/single-output (SISO) minimum-phase 
nonlinear processes. Following a brief discussion of 
the input/output and state-space approaches in non- 
linear control, we will formulate precisely the dynamic 
output feedback controller synthesis problem, and we 
will solve it initially for open-loop stable processes 
and then for general nonlinear processes. The issue of 
closed-loop stability will be discussed and precise 
internal stability conditions will be derived. Finally, 
simulation studies in a chemical reactor example will 
illustrate the application of the control methodology 
developed. 

represents a full-order realization of the process in- 
verse (Hirschorn, 1979). 

Also, let tl(x), . . . , t,-,(x) be scalar fields such that 

0 the scalar fields t1c4, * . -,L-r(X), h(x)> 

Lfh(X), . . *, L>- ’ h(x) are linearly independent; 
0 L,&(x) = 0, i = 1,. . . , (n - r). 

Then, the nonlinear mapping 

c = T(x) = (3) 

PRELIMINARIES 
The dynamic behavior of chemical processes is typi- 

cally described by a set of nonlinear ordinary differen- 
tial equations. These equations, together with the 
specification of some output variables and some 
manipulated input variables, constitute the 
state-space description of the process. The import- 
ance of the state-space description in nonlinear pro- 
cesses goes beyond allowing the simulation of the 
dynamic behavior of the processes: it captures essen- 
tial information about the process dynamic character- 
istics (e.g. poles and zeros, in linear systems 
terminology), and can also be used implicitly or ex- 
plicitly as part of a control scheme for the process. 

In this work, we consider SISO nonlinear processes, 
with a state-space description of the form: 

1 =f(x) + g(x)u 
(I) 

Y = Hx) 

where x E Iw”, u E R and y E R denote the state variable 
vector, the manipulated input and the output, respect- 
ively, f and Q denote smooth vector fields on R”, and 
h denotes a smooth scalar field on R’“. For the purpose 
of the theoretical development, and without loss of 
generality, we assume that the origin is the equilib- 
rium point of interest. Referring to a nonlinear pro- 
cess of the form of eq. (l), let r be the relative order of 
y with respect to u, i.e. the smallest integer for which 
L,Lj-‘h(x) f 0. We assume that the relative order r is 
well defined in an open set X c IV which contains the 
origin and which will be considered to be the state 
manifold in the subsequent development. Then, the 
dynamic system 

qualifies as a curvilinear coordinate system. In this 
new coordinate system, eq. (1) is transformed into the 
normal form (Byrnes and Isidori, 1985) 

(4) 

G- 1 = i. 
L = L;h(C) + LB L;- 1 h(& 

Y = cm-,+ 1 

where the [-dependence in the right-hand side of the 
above equations implies that the corresponding ex- 
pressions are evaluated at x = T-‘(c). The above 
normal form allows the calculation of a minimal- 
order realization of the process inverse, given by the 
dynamic system 

ir = LJti 
dy d’-‘y 

zr,. . .,z,_,,y,-,. . .,- 
dt dt’- ’ > 

i,_, = Lft._, dy 
. . , Z”_-r, y,-, . 

d’-‘y 
Zl,. 

dt “Sdt’-l 
> 

(5) 

dy 
1,. * .A-.,Y,&,. . ., dt’-l 

El= 

.,z_-,,y,z ,.t_, 

The unforced minimal-order inverse, i.e. the dynamic 
system 

1, = AL,t,(z,, . . .) z,--,, 0, - . . ,O) 

(6) 

i._, = L,t._,(zl,. - . ,z,-,, 0,. . . ,O) 

is then called the (unforced) zero dynamics of the 
process, and provides a nonlinear analog of the wn- 
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cept of zeros in linear systems (Byrnes and Isidori, 
1985). In analogy with the linear case, a process of the 
form of eq. (1) is said to be minimum phase if its zero 
dynamics [eq. (6)] is asymptotically stable. 

NONLANEAR PROCESS CONTROL INPUT/OUTPUT 

VERSUS STATE-SPACE APPROACH 

In what follows we will provide a review of key 
elements of the input/o&put and state-space ap- 
proaches in nonlinear process control. The review 
does not intend to be exhaustive; its primary purpose 
is to motivate the development that follows. 

Input/output approach 
Consider the classical error feedback control struc- 

ture of Fig. 1, where P and C represent nonlinear 
input/output operators corresponding to the process 
and the classical feedback controller, respectively. In 
analogy with the linear case, consider also the Q- 
parametrization of the classical controller operator 

C=Q(Z-Z’Q)-’ (7) 

where I denotes the identity operator and Q an appro- 
priate nonlinear operator. Then, one obtains the equi- 
valent control structure of Fig. 2, which is usually 
referred to as the internal model control (IMC) struc- 
ture, with Q being the IMC controller. In the above 
setting, the input/output behavior of the closed-loop 
system is described by 

y = PC(Z + PC)_ 1 y,, (8) 

or, equivalently, by 

Y = Z’QY,, (9) 

where y,, denotes the output set point. The controller 
synthesis problem can then be stated as follows: given 

the process operator P, specify the controller operator 
C (or Q) that enforces a closed-loop response of the 
form 

Y = RY=, (10) 

where R is the desirable closed-loop operator (pas- 
sibly nonlinear). The requirement of eq. (10) yields 

C = P-‘R(Z - R)-’ (11) 

or equivalently 

Q = P-‘R 

for the controller operators. 

(12) 

In the above framework, two issues of primary 
importance are the stability of the closed-loop system 
and the specification of the desired operator R. For 
the special case of a stable process operator P, it is 
clear that the closed-loop system will be stable if and 
only if the operator (P- ’ R) is stable. Therefore, if P- ’ 
is also stable (i.e. the process is minimum phase), one 
can choose R to be any stable linear time-invariant 
operator. In the general case where the process oper- 
ator P can be unstable, the issue of closed-loop stabil- 
ity seems intractable in such an abstract setting. Even 
for the simplest case of open-loop stable minimum- 
phase processes, however, the input/output approach 
cannot provide definitive answers to questions like: 

(1) What order of R would make the controller 
C (or Q) proper? 

(2) How should the controller C (or Q) [eqs (11) 
and (12)] be implemented? 

With respect to the first question, Economou et al. 
(1986) identified a connection between the order of 
R and the concept of relative order, which arises 
rigorously from a state-space perspective. More 

OPERATOR 

I 
CONTROLLER 

Fig. 1. Classical error feedback control structure. 

CONTROLLER u PROCESS Y 
OPERATOR __) OPERATOR _c) 

Q P 

PROCESS 
OPERATOR 4 

P 

Fig. 2. IMC structure. 
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specifically, since the inverse of the process requires 
differentiation of the output up to r times [see eqs (2) 
and (5)], the operator R must perform at least r inte- 
grations to make the controller operator proper [see 
eqs (11) and (12)]. Consequently, the operator R must 
be a dynamic system of relative order at least r. With 
respect to the second question, Economou et al. (1986) 
and Parrish and Brosilow (1988) proposed iterative 
numerical methods for the implementation of the in- 
verse operator. Attempts of Economou et al. (1986) to 
use the Hirschom inverse [eq. (2)] have failed, since, 
as can be easily verified, it suffers from internal insta- 
bility due to pole-zero cancellations at the origin. As 
will be seen later, internally stable realizations of the 
inverse operator for the controller implementation 
can only be constructed in a state-space framework. 
In conclusion, although the input/output approach 
provides a macroscopic perspective and valuable in- 
sights on the role of the inverse operator in the con- 
troller synthesis problem, it cannot lead to explicit 
controller formulas, unless state-space considerations 
are also taken into account. 

State-space approach 
One of the most important controller synthesis 

results for minimum-phase nonlinear processes is the 
notion of input/output linearization, which we now 
briefly review. Referring to a minimum-phase nonlin- 
ear process of the form of eq. (l), with relative order r, 
the state feedback law (Kravaris and Chung, 1987) 

, 

(13) 

induces the linear input/output behavior 

& Big = 0. (14) 

The input/output stability of the closed-loop system 

depends on the choice of the parameters &, while for 
an input/output stable closed-loop behavior, the in- 
ternal stability of the closed-loop system is guaranteed 
by the minimum-phase assumption for the process. 
Once the input/output dynamics has been linearized, 
a linear controller can be used around the linear (u-y) 
system, to incorporate integral action to the control 
structure. The resulting control structure is called the 
globally linearizing control (GLC) structure (Kravaris 
and Chung, 1987) and is shown in Fig. 3. A modifica- 
tion of the GLC structure has also been proposed for 
open-loop stable processes (Kravaris and Chung, 
1987), where the state variables are reconstructed 
through an open-loop state observer, which is the 
process model itself. The resulting error feedback 
structure is depicted in Fig. 4. Note the similarity 
between this structure and the IMC structure of Fig. 
2. The open-loop observer essentially acts as an inter- 
nal model that is simulated in parallel to the process, 
while the input/output linearizing control law of eq. 
(13) can be interpreted as generating an internally 
stable inverse of the process model. 

DYNAMIC OUTPUT FEEDBACK CONTROL OF 

MINIMUM-PHASE NONLlNJMR PROCESSES 

Referring to minimum-phase nonlinear processes of 
the form of eq. (l), we will now consider the problem 
of synthesizing a dynamic output feedback controller 
which induces a prespecified closed-loop response be- 
tween the output y and the set point y,. The assump- 
tion of minimum-phase behavior (i.e. stable zero 
dynamics) will allow requesting a closed-loop re- 
sponse of order r, resulting by cancelling the zero 
dynamics of the process. For convenience we will also 
request a linear closed-loop response, for which per- 
formance specifications can be easily expressed. The 
characterization “dynamic output feedback control- 
ler” implies that the controller will be a dynamic 
nonlinear system by itself, with inputs the set point 

” LINEARIZING u 

CONTROLLER 
STATE 

FEEDBACK 

t 

Fig. 3. GLC structure. 

Fig. 4. GLC structure with open-loop state observer. 



Dynamic output feedback control of minimum-phase nonlinear processes 841 

ySP and the process output y and output the process 
input u. 

In what follows, the above synthesis problem will 
be addressed from a state-space perspective. In par- 
ticular, given the state-space description of the pro- 
cess [eq. (l)], the problem will be to derive 
a state-space realization of a controller which will 
induce a closed-loop input/output behavior of the 
form 

Y + i Yk$ = y,p 
k=l 

(1% 

where yk are adjustable parameters. The derivation of 
the controller will essentially be based on combina- 
tion of state feedback and state observers. The output 
feedback controllers that will be developed, will, how- 
ever, find a transparent interpretation from an 
input/output perspective, establishing thus a precise 
connection between the two approaches. 

Controller synthesis for open-loop stable nonlinear pro- 
cesses 

The output feedback control problem for open- 
loop stable processes can be handled through 
a GLC/open-loop observer configuration, as dis- 
cussed in the previous section. The purpose of 
theorem 1 that follows is to state this result in a more 
precise and explicit way, allowing at the same time for 
alternative interpretations of the controller. 

Theorem 1: Consider a nonlinear process of the form of 
eq. (1) with relative order r. Then, the dynamic system 

ri = A*< + b*(y,,- y) 

* = f(w) + dw) 

where A*, b*, c* are matrices of dimensions r x r, r x I 
and 1 x r, respectively, given by: 

A* = 

‘0 1 0 . . . 0 0 
0 0 1 . . . 0 0 
0 0 0 _._ 0 0 

-. 

0 ;, ;, ..: ;> ; 

0 Y1 Y2 %-2 h-1 -- -- . . . -- -- 

. Yr Y, Yr Yr 1 9 

represents an (n + r)th order state-space realization of 
a dynamic output feedback controller which induces the 
closed-loop input/output behavior 

dky 
Y+ 2 ykdt"=y.,. 

C=i 

Proofi Define the auxiliary variable 

v = c*e + J$, - y). (18) 

Then, recalling standard linear systems theory, it can 
be easily verified that the system 

t = A*5 + b*(yap - y) 

v=c*C.+$(y.,-Yl 

represents a minimal state-space realization of 

with input the error (Y,~ - y) and output the auxiliary 
variable v, which can be interpreted as a choice of the 
linear controller in the GLC structure. The other 
component of the controller of eq. (16) becomes then 

V - k /%L:h(w) 
3 = f(w) + g(w) k=O 

/W&j- ‘44 

which is an input/output linearizing state feedback 
law, with the states reconstructed through an open- 
loop observer. Under consistent initialization of 
w and x [i.e. w(0) = x(O)], it easily follows that 
w(t) = x(t); then, eq. (21) induces exactly the behavior 
of eq. (14) 

b* = 

0 

0 

0 
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Combining eq. (14) and eq. (20) we easily obtain the 
desired closed-loop input/output dynamics: 

Y+ i Y&g=,. 
k=l 

From an input/output perspective, the dynamic 
controller of theorem 1 is clearly a one-degree-of- 
freedom controller and in particular an error feedback 
controller; its input is the error (y,, - y) and its out- 
put is the value of the process input u, while it involves 
(n + r) state variables. Therefore, the control structure 
resulting from theorem 1 coincides with the classical 
error feedback control structure of Fig. 1, and eq. (16) 
can be interpreted as a state-space realization of the 
classical controller operator C. 

Furthermore, referring to eq. (1 l), one can easily 
identify two distinct components of the controller. 
The first component is the dynamic system 

4 = A+C + b*(ys, - Y) 

Y *- - Cl 
which represents a minimal state-space realization of 
the input/output dynamics described by the operator 

R(f - R)-l = (k$l?k-$)-l (23 

with input the error (y, - y) and output the auxiliary 
variable y*. From eq. (22) it can be easily verified that 

Y) = 5 B*g. 
c=o 

(24) 

Then, the second component of the controller takes 
the form 

2 Sk% -&go PkL$h(w) 

I6 =f(w) + g(w)k’O 
B&&i- ‘h(w) 

k$oskz- k& flk L;h (w) 
u= 

B&&F1 h(w) 

(25) 

which is an internally stable (full-order) realization of 
the process inverse operator P-r, in the sense that 
when driven by y*, it produces the process input 
u necessary to make the process output y equal to y*. 
The two components of the controller identified 
above are shown explicitly in Fig. 5. 

Remark 1 (reduced-order reaRxation): It is interesting 
to observe that the realization of the controller of eq. 
(16) is not minimal. Indeed, from the second equation 

of eq. (16) it easily follows that 

dkChWl &go PC dt' = c*c + E(Y,p - Y) (26) 

which combined with eq. (24) yields 

Thus, if 

e,(O) = L>-‘h(w)(O), i = 1,. . . , f (28) 

it follows that 

t1 = L$-‘h(w), i= 1,. . .,F WJ) 

Substituting the relations of eq. (29) into the second 
and third equations of eq. (16), we easily obtain the 
following nth order realization of the controller 

(Y‘P- Y) - i ykLjh(w) 

IQ = f(w) + g(w) 
k=l 

~,4$;- ‘h(w) 

u= 
b%, - Y) - k$l YkL$h(w) 

(30) 

y,L,Lj_‘h(w) . 

Equation (30) can be interpreted as a feedforward 
controller on the error (y.,, - y), which enforces the 
dynamics 

(31) 

between the error (ysi, - y) and the process output y. 

Remark 2 (IMC redization)~ The reduced-order con- 
troller realization of eq. (30) is equivalent to the real- 
ization 

+iJ = f(w) + g(w) 

(Y.p - Y + Ym) - h(w) - i Yklt;h(w) 

X 
k=l 

rr4L~-'W~ 

(Ya, - Y + ~,a,) - h(w) - $ Y&h(w) 
u= k=i 

Y,L,Lj-‘w) 
(32) 

. 
x, =f(x,) + B(Xm)U 

YM = Wm) 
under consistent initialization of w and 
x, [w(O) = x,(O) clearly implies that w(t) = x,,,(t) and 
Ym = W)l- 

Fig. 5. Error feedback control structum. 
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Equation (32) represents a reduced-order IMC real- 
ization of the controller (see Fig. 2), consisting of 
realizations of the controller operator Q and the pro- 
cess model P. A similar realization was proposed by 
Henson and Seborg (1991), where the controller oper- 
ator Q was interpreted as an internally unstable realiz- 
ation of the process inverse combined with a nonlin- 
ear filter. Finally, from eq. (32) and using similar 
arguments as in remark 1, one easily obtains a full- 
order IMC realization of the controller, given by: 

r’= 

-0 1 0 .I. 

minimum-phase nonlinear processes 843 

and output II. Finally, the remaining n equations rep- 
resent a realization of the process model P. The com- 
ponents of the controller identified above are shown 
explicitly in Fig. 6. 

Controller synthesis fdr general nonlinear processes 
The applicability of the output feedback controller 

of theorem 1 and the control structure of Fig. 5 is 

0 0 1 . . . 0 

0 0 

0 

. . . 0 0 

* 

d Ii ; .:: 0 1 I t+ 
1 Yl Y2 Y,-2 35-l -- -- -- *.. -- -- 

. Yr Yr YI Yr Yr J 

-0 

0 

0 :I 0 
1 

.rr 

(YSP -Y + Ym) 

* = f(w) + s?(W) 

YWI = h(x,). (33) 

The above realization allows identifying directly the 
various components of the controller. In particular, limited by the assumption of open-loop stability for 
the first r equations of eq. (33) represent a realization the process. This occurs for the following reasons: 
of the operator R (called %lter” in the IMC terminol- 
ogy), with input (Y, - y + y,,,) and output y* = rl. l 

The next n equations represent a realization of the 
process inverse P-‘, with input 

(Bo-8,~)e,+(a,-B,~)5.+.-. . 

+ 
( 

IS-1 - /%~)r, 

dky* 
+$(y.,-Y+Yy,)= 2 h,,, 

k=O 

The controller of theorem 1 incorporates an 
open-loop state observer, which is the process 
model itself. Therefore, in the case of an open- 
loop unstable process, any error in the initial 
conditions will grow indefinitely. 
The control structure of Fig. 5 involves a series 
connection of P and P-‘. Therefore, in the case 
of an open-loop unstable process, it will essen- 
tially involve cancellation of unstable dynamics, 
with obvious consequences on the internal stab- 
ility of the closed-loop system. 

Fig. 6. IMC form of the error feedback control structure. 
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It is apparent from the above, that, in order to cope 
with a potential instability of the process, a different 
kind of observer must be used together with an appro- 
priate modification of the control structure. To this 
end, the normal form representation of the process is 
of great convenience. In particular, for minimum- 
phase processes, and referring to their normal form 
representation [eq. (4)], the (n - r) states of the zero 

an error feedback component 

f = A*t’ + b*(ysp - Y) 

0 = c*e + !(Y,,p - Y) 

which can be interpreted as a choice of the linear 
controller of the GLC structure, with input/out- 
put dynamics given by eq. (20) and 
an output feedback component 

Lftl 21, - * 
dy d’-‘y ’ 

.,&-r.Y,~,.-~,dt’-l 
> 

Lfh-r Zl,. * . ,z.-r7y.g.. . . 
d’-‘y 

. *dt’-l. > 
r-l 

u= 

v-k~OBt~-ALi+l... .,z”-,,Y,$,.. .,fg 

BJ-,L;-‘h 
( 

d’-‘y 
~~,-.-.~n-r.y,~ ,..., dt’-’ 

> 

dynamics can be reconstructed by using measure- 
ments of the output and its derivatives. The remaining 
r state variables are exactly the output and its derivat- 
ives up to (r - 1)th order, assumed available. 
Theorem 2 that follows provides a solution to the 
general output feedback synthesis problem for min- 
imum-phase systems, along the above lines. For con- 
venience, the controller is written in the normal form 
coordinates. 

Theorem 2: Consider a nonlinear process with relative 
order r, in its normal form description of eq. (4). Then, 
the dynamic system: 

< = A*C + b*(yw - Y) 

‘il 1 rL,tl(zl ,..., z_y,$ ,..., $2) 

( 
Zl,. . . .,-nY.g,. . - 

d’--‘Y’ 
*dt’-l, 

which is essentially an input/output linearizing 
state feedback law, which makes explicit use of 
the output and its derivatives up to (r - 1)th 
order, while the other (n - r) states are recon- 
structed through a reduced-order observer. 

Under consistent initialization of z in eq. (35) and 
c in the process normal form of eq. (4), i.e. Cl(O) = zt(O), 
i= 1,. . .,(n- r), it easily follows that C‘(t) = z&), 
i.= 1,. . .,(n-r). Then, given that In_+,= 
dj-‘y/dt’-‘,j = 1 ,. - *, r, eq. (35) induces exactly the 

c*e + $Y, > 
u= w 

where A+, b*, c* are given by eq. (17), represents an nth 
order state-space realization of a dynamic output feed- 
back controller which induces the closed-loop in- 
put/output behavior 

k 

Y+ i; Yk~=Ysp. 
k=l 

Proof: The proof outline is the same as the one in 
theorem 1. In particular, the controlier of eq. (34) is 
composed of: 

(35) 

dynamics of eq. (14); combining eq. (14) with eq. (20) 
results in the desired closed-loop input/output behav- 
ior. 

Clearly, the controller of theorem 2 is a nonlinear 
analogue of a two-degree-of-freedom controller, i.e. 
a mixed error and output feedback controller, with 
the two controller blocks shown explicitly in Fig. 7. 
This is in agreement with the intuition from linear 
systems, where a two-degree-of-freedom controller is 
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usually employed for open-loop unstable systems, The latter equation can be loosely interpreted as 
with the output feedback essentially having a stabiliz- a minimal-order realization of the process inverse 
ing effect on the overall structure. It is conceivable operator P-l, in the sense that when driven by y* and 
that a similar control structure can be obtained in an y, it produces the process input u necessary to make 
IMC framework, with an output feedback controller the process output y equal to y*. Figure 8 identifies 
employed in an inner loop to stabilize the unstable explicitly the above input/output operators. A com- 
process (Economou et al., 1986). parison with Fig. 5 shows the modified control struc- 

In analogy with the treatment in the previous sub- ture which accounts for possible open-loop instability. 
section, the controller of eq. (34) can find an in- 
put/output interpretation, as follows. The error Remark 3: In the special case of r = 1, the controller 

of eq. (34) reduces to 

r’l =$(y.*-Y) . 21 
L-1 [ 

L/ti(zI,-. .*G-l,YI 

: = : 

%-i L/t.-l(Zl,. - -,Z”-l,YI 
I (37) 

or equivalently to . 
21 [;I [ Lfhh,. - -,zm--1,Y) 

= 

k-1 &L-lh,.. ..G-I,Y) 
I 

(38) 

I[ - $y+L,h(z,,. . -r&I,$) I LW,, . . .,z.-1,Y) 

I_ 
The error feedback part of the controller is a PI 

feedback component of the controller can be written controller with settings K, = l/y1 and zr = fli /PO, 
in the form of eq. (22), which is a minimal state-space 
realization of the operator R(I - R)-‘. Then, given 

while the output feedback part of the controller uses 
measurements of the process output y only. 

eq. (24), the output feedback component of the con- 
troller takes the form Remark 4: In the special case oft = n, the controller 

of eq. (34) takes the form 

21 HL 
Lftl ( dv 

zt,. ..A-“Y,Z ,..a, 
d’-ly 
dt’- 1 > 

. 
zn-, Jqm-, 

( 

dy d’-*y 
Zl,. * .,z,-,,Y,$. . .,- dt’- 1 > 1 

~=~~~B,~-~~~BI~-~,Lih(zl....,zl--,,y,~ ,..., s) 

. (36) 
&L&j-‘h z1 ,..I, z”--.,y,$ ,..., 2 

> 
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I ‘_____~~_____1_-_____-_______-_____””’~-~*.~-~~.____~ ;“___““““‘-__“““‘-____----________. 
i i : 

ERROR V 
FEEDBACK + FEEDBACK 

CaMPENSATOR 

Fig. 7. Error aud output feedback control structure (a). 

Fig. 8. Error and output feedback control structure (b). 

This case includes a class of input/output models 
which have heen considered in the context of the 
reference system synthesis control methodology 
(Bat-tee et al., 1989), i.e. quasi-linear ODE models of 
the form 

d” y d”-‘y 
dt” + %(Y)dt”- + . . * + %-l(Y) & 9 + a,(y) = u. 

(40) 

Defining y and its derivatives up to (n - 1)th order as 
state variables, such models can be represented as 
state-space models of the form 

1, = x1 

Remark 6: Theorems 1 and 2 are very similar in 
philosophy. They essentially utilize different internally 
stable state-space realizations of the process inverse 

as part of the controller. Theorem 1 uses a full-order 
realization, while theorem 2 uses a minimal real- 
ization (with measurements of the output and its de- 
rivatives). Of course, theorem 1 is applicable only to 
open-loop stable processes, while theorem 2 is applic- 
able to open-loop unstable processes as well. Further- 
more, the implementation of the controller of theorem 
2 for r 2 3 may require filtering of the output signal or 
approximation of the output derivatives, in order to 
suppress noise effects. Therefore, the best choice of an 
output feedback controller for a particular process 
will be determined by the characteristics of the pro- 
cess itself. 

. . 

X.-l = x. (41) 

f, = - U1(Xi)X._i -. * * - cz”_~(X~)X~ 

- &(X1) + u 

Y = Xl 

for which clearly r = n, and eq. (39) is applicable 
under appropriate definition ofJ 8, h. 

Remark 5: In order to achieve a critically damped 
closed-loop response of the form: 

(42) 

one simply uses the controller formulas of theorems 
1 or 2, with the particular choice of the parameters 

Yk= k 0 r Lk, k= 1,. _ ,,r_ 

Closed-loop stability 
In the control structures resulting from theorems 

1 and 2, the input/output stability of the closed-loop 
system will be guaranteed by a choice of the para- 
meters yk such that the roots of the characteristic 
equation 

l+y,s+---+y,sr=o (44) 

lie in the left half of the complex plane. In addition to 
input/output stability, one must obtain a character- 
ization for the internal stability of the closed-loop 
system, i.e. the asymptotic stability of the states in the 
unforced closed-loop system, for perturbations in the 
initial conditions. Employing a standard linear stabil- 
ity analysis, it is straightforward to show that the 
unforced closed-loop system (ySP = 0) under the con- 
troller of eq. (16) is locally asymptotically stable, if the 
following conditions are satisfied: 
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(1) The open-loop process is locally exponentially ture was employed using Newton’s method for the 
stable. calculation of the control law. The purpose of this 

(2) The roots of the characteristic equation study is to illustrate the application of the derived 

&+&s+*~*+B,s’=o (45) 
analytical controllers to the same process. 

Setting x1 31~ c,, x1 = c,. xj = T, u = To and 
lie in the left half of the complex plane. y = c&z,, + cB, the dynamic model of the process can 

(3) The zero dynamics of the process is locally be easily put in the form of eq. (l), with 
exponentially stable. 

f(x) = 

In a similar way, one can show that the unforced 
closed-loop system under the controller of eq. (34) will 
be locally asymptotically stable if conditions 2 and 
3 from above are satisfied. 

EXAMPLE 

Consider the ideal continuous stirred tank reactor 
(CSTR) shown in Fig. 9. A solution stream consisting 
of A at concentration cAo and temperature To enters 
the reactor, where the reversible exothermic reaction 

A#B 

takes place. The residence time in the reactor is z, 
assumed constant. The efluent stream leaves the reac- 
tor at concentrations cA, cE and temperature T. Under 
standard assumptions, the mass and energy balances 
describing the dynamic behavior of the process take 
the form 

&A 1 
dt = ;(Cm - c.4) - k,exp 

-k,exp(--$$)cs]+$-T) 

(46) 

where the values of the various process parameters are 
shown in Table I. The control objective is to operate 
the reactor at a desired conversion, by manipulating 
the inlet temperature To. The above process was ini- 
tially studied by Economou and MO& (1985) and 
Economou et al. (1986), where a nonlinear IMC struc- 

The relative order of the output y with respect to the 
manipulated input u is easily found to be r = 2, 
since L,L, h(x) = (kAE,@Px~) exp (- EA/i@x~)xI - 
(ksEB/5Vxja) exp (- E&Ux3)x2 f 0. The set of points 
in state space for which L,Lfh(x) = 0 correspond to 
a singular surface, where the relative order is not 
well-defined and invertibility is lost. Figure 10 shows 
the conversion versus temperature equilibrium dia- 
gram and the singular line for the particular process 
(note that, since x1 + x2 = cAo, assummg constant 
inlet concentration effectively reduces the problem to 
a two-dimensional one). It can be easily seen that the 
equilibrium diagram has a well-defined maximum, 
while the singular line crosses the equilibrium line 
exactly at the point of maximum conversion. For this 
reason, operation of the reactor exactly at the max- 
imum conversion is not feasible. For this particular 
study, the control objective was to operate the reactor 
at a conversion y = 0.508, with the maximum conver- 
sion being y = 0.5087 for an inlet temperature 
u = 435 K. Because of the open-loop stability of the 
process, the controller realization of eq. (16) was em- 
ployed. The adjustable parameters were chosen as 
Bo=L81=Y1= 120 and p2 = y2 = 3600, in order to 
obtain a critically damped closed-loop response with 
time constant equal to 60 s. Two representative runs 
of the reactor are presented. In the first run, 
the reactor is initially assumed to be at the steady 
state xl, = 0.84 gmoll-‘, x2‘ = 0.16 gmoll-’ and 
x3x = 353 K, which corresponds to a point at the left 

F q I =A0 
I 

lpq..) 
=A =B 

Fig. 9. A continuous stirred tank reactor (CSTR& 
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Table 1. Process parameters 

7=6Os 
k, = 5x 103s_’ 

1x106s-’ s = 
E, = 1 x 104cal gmol-’ 
Es = 1.5x 1o+calgInol-’ 

W = 1.987 calgmol-‘K-r 
- AH = 5 x 10scalgmol-’ 

p=lkgl-l 
C r,= 1 x lo’calkg-‘K-l 

c.40 = 1 gmo11-’ 

Fig. 10. Eauilibrium diagram and sinaular line for the 
-CSTR. - 

0.0 
0 x0 ~-64 900 Qim 

Fig. 11. Conversion profile for set-point change (a). 

side of the conversion maximum in Fig. 10. The con- 
trol objective is to bring the reactor to the desired 
conversion. Figure 11 illustrates the output profile 
under the controller of eq. (16), while Fig. 12 illus- 
trates the trajectory in the conversion/temperature 
diagram. As established by Economou and Morari 
(1985), even a linear controller can perform satisfac- 
torily in this case. In the second run, the process is 
assumed to be at the steady state xla = 0.59 gmoll-l, 
xj. = 0.41 gmol l- ’ and xss = 504 K, which corres- 
ponds to a point at the right side of the conversion 
maximum in Fig. 10. The control objective is again to 
bring the reactor back to the desired conversion. As 
shown by Economou and Morari (1985), because of 
a sign change in the steady-state gain in this operating 

Fig. 

‘U.,, 
“X,,, 

‘,., 
0.8 “,..., 0 Reactor traiector 

“...,. 
in,,. 

0 
300 400 600 0 

12. Reactor trajectory in the conversion/temperature 
diagram for set-point change (a). 

055 

0.50 

1 0.45 

0.40 

0.25 i 
0 

Fig. 13. Conversion profile for set-point change (b). 

oa 

300 4w T&RE (iQ 
600 

Fig. 14. Reactor trajectory in the conversion/temperature 
diagram for set-point change (b). 
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region, any linear controller with integral action leads 
to instability, while a proportional linear controller 
leads to offset. On the other hand, as shown in Fig. 13, 
the nonlinear controller of eq. (16) induces the theor- 
etically predicted output response, controlling the 
process to its set point. Figure 14 illustrates the cor- 
responding trajectory in the conversion/temperature 
diagram. As expected, the results presented here using 
the derived analytical control laws are in complete 
agreement with the results obtained by Economou 
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V 

W 

X 

Xlll 
Y 

Ym 

YSP 
Y* 
z 

auxiliary variable 
state vector of full-order process inverse 
state vector of process 
state vector of process model 
process output 
process model output 
output set point 
auxiliary variable 
state vector of minimal-order process in- 
verse 

and Morari (1985), where the numerical IMC 
algorithm was employed for the same cases. 

Greek letters 

pk adjustable parameters 
yk 
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e 

P 

adjustable parameters 
state vector in normal form coordinates 
state variables in the controllers 
density of the reacting mixture, kgl- ’ 

CA0 

CA, cl3 

CP 

c 
EA, Ea 

f 
$7 
h 
-AH 

k_,, ks 
Lfh 

L;h 

ii 
r 
R 

R 

W” 

s 

C 

T 
To 
u 

NOTATION 

inlet molar concentration of species A, 
gmo11-’ 
molar concentrations of species A and B, 
gIllOll-’ 

heat capacity of the reacting mixture, 
calkg-‘K-’ 
classical controller operator 
activation energies, cal gmol- ’ 
vector field 
vector field 
output scalar field 
heat of reaction, cal gmol- 1 
Arrhenius factors, s- 1 
Lie derivative of the scalar field h with 
respect to the vector field f 
kth order Lie derivative of the scalar field 
h with respect to the vector fieldf 
process operator 
IMC controller operator 
relative order 
closed-loop operator 
real line 
n-dimensional Euclidean space 
the Laplace domain variable 
time 
reactor temperature, K 
inlet temperature, K 
manipulated input 

‘F reactor residence time, s 
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