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The authors propose a new method for generation (by grinding or cutting) of a surface (&) with the optimal 
approximation to the theoretical (ideal) surface Q,). The method is based on the following ideas: (1) A region of 
space is swept out by the tool surface P, performing certain motions with respect to P,. The surface of the tool (as 
grinding wheel or cutter) is a surface of revolution with a circular arc in axial section, and a circular cone in 
particular cases. (2) The space swept out by P, is considered as a family of surfaces Z,, and the envelope to this 
family is surface & (generated surface) that must be in optimal approximation to the theoretical surface &,. (3) The 
continuous varied setting and orientation of P, with respect to ,Zp are executed by a multi-degree-of-freedom 
machine, that is a computer numerical controlled (CNC) machine. The approach developed can be applied for 
grinding of face-gears, helical involute gears with modified topology, ruled undeveloped surfaces and others. An 
example of application is considered. 

1. Introduction 

The development of multi-degree-of-freedom machines, numerically controlled by computer (CNC) 
machines, has opened new perspectives for the generation of surfaces with new topology, and the 
generation of a surface (2& that must be optimal approximation to the theoretical (ideal) surface (&,). 

The authors propose a method for generation of _I$ (with optimal approximation to &,) based on the 
following ideas: 

A mean line L, on the ideal surface ZP is chosen as shown in Fig. 1. 
The tool surface Zt is a properly designed surface of revolution (in particular cases 2, is a circular 
cone as shown in Fig. 1) that moves along L,. Surfaces 2, and Z,, are in continuous tangency along 
L,; M is the current point of tangency (Fig. 1). The orientation of J& with respect to T,, 
(determined with angle p) is continuously varying. Angle p at the current point M of tangency IS 
formed by the tangents t, and t, to L, and the tool generatrix, respectively (Fig. 1). Tangents t, 
and t, form a plane II that is tangent to 2, and ZP at point M. 
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Fig. 1. Installment and orientation of tool surface 2, with respect to ideal surface 

,_ ,’ 

t 
_. 

tb 

(3) The tool surface 2, in its motion with respect to zl, swept out a region of space as a family of 
surfaces &. The envelope to the family of 2, is the surface 2, (the ground, cut surface) that is in 
tangency with the theoretical surface .CP at any point M of L, and must be in optimal 
approximation to .Z, in any direction that differs from L,. 

(4) The optimal approximation of Xp to Zr, is obtained by variation of angle p (Fig. 1). 
(5) The continuous tangency of tool surface Z; with ZP and properly varied orientation of Zt can be 

obtained by the execution of required motions of the tool by a computer controlled multi-degree- 
of-freedom machine. One of these degrees of freedom, rotation of the tool about its axis, provides 
the desired velocity of grinding (cutting) and is not related to the process for generation of &. 

The paper covers the following topics: 
(1) Determination of the equation of meshing between the tool surface & and the generated surface 

&. The term ‘equation of meshing’ is used in the theory of gearing [l] and is represented as 
f(z+, @,, S,,) = 0 where (u$, 8,) are the Gaussian coordinates of Z; and 19~ is the generalized parameter 
of motion. The equation of meshing provides the necessary condition of existence of the envelope 
to the family of surfaces. 

(2) Determination of the generated surface J$ as the envelope to the family of surfaces 2, swept out by 
the tool. Surface ,Y$ coincides with the theoretical (ideal) surface &, along the mean line L, and 
deviates from XP out of L,. 

(3) Determination of deviations of 2, from &, (in regions that differ from L,) and minimizations of & 
deviations for optimal approximation of & to J$,. 

(4) Determination of curvatures of _& that are required when the simulation of meshing and contact of 
two mating surfaces are considered. 

(5) Execution of required motions of & with respect to ,ZP by application of a multi-degree-freedom, 
computer numerically controlled machine. 

The authors have developed an effective approach for the derivation of the necessary condition for 
the existence of the envelope & using the idea of motion of the Darboux-Frenet trihedron along L,, 
the chosen mean line of X,,. 

An additional effective approach has been proposed and developed for determination of curvatures 
of generated surface $_ This approach is based on the fact that the normal curvatures and surface 
torsions (geodesic torsions) of -G, are: (i) equal to the normal curvatures and surface torsions of -Y$, 
along L,, . and (ii) equal to the normal curvatures and surface torsions of tool surface Ir, along the 
characteristic L, (the instantaneous line of tangency of Z; and &). 
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2. Mean line on the ideal surface Zp 

The ideal surface &, is considered as a regular one and is represented as 

where (up, ep) are the Gaussian coordinates of Zp. 
The unit normal to &, is represented as 

np=k, ar, ar, 
N,=du,Xq. 

(1) 

(2) 

The determination of the mean line L, is based on the following procedure: 
(i) Initially, we determine numerically n points on the surface _Xp that will belong approximately to the 

desired mean line L,. 
(ii) Then, we can derive a polynomial function 

up = i ajep) 
j=l 

(3) 

that will relate the surface parameters (up, ep) for the IZ points of the mean line on Xp. 
The mean line L,, tangent T, and unit tangent t, to the mean line are represented as follows: 

(4) 

The constraint for t, is that it must be of the same sign and differ from zero at the same intervals of 
interpolation. 

3. Tool surface 

The tool surface Xt is represented in coordinate system S, rigidly connected to the tool by the 
following equations: 

X, = ~~(t.4~) cos et , y, = x,(u,) sin 0, , z, = z&J > (5) 

The axial section of _& obtained by taking 8, = 0 represents a circular arc, or a straight line in the case 
where St is a circular cone. 

The surface unit normal is determined as 

ar ar, 

Nt= ae, t 
-xz. (6) 

4. Equation of meshing between 2, and J$ 

Equation of meshing represents the necessary condition of existence of envelope & to the family of 
surfaces & that is swept out by the tool surface & 

In the theory of gearing [l], the equation of meshing can be derived by using the equation 
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Here, i indicates the coordinate system where the vectors of the scalar product are represented, Nftf is 
the normal to surface &; and uCtg) is the relative velocity in the motion of & with respect to &,. 

Henceforth, we consider two basic coordinate systems, S, and SP, that are rigidly connected to the 
tool surface 2, and the ideal surface &. In addition to &, we consider two trihedrons: S,(t,, db, q,) and 
S,(t,, d,, n,). Trihedron S, is rigidly connected to .X, and coordinate system S, (Fig. 2). Here, 0, is the 
point of the chosen generatrix of ;zl where the trihedron is located, tb is the tangent to the generatrix at 
0,; nb is the surface unit normal of Z, at O,, d, = nb X t,, and vectors t, and db form the tangent plane 
to Z:, at 0,. Trihedron S, moves along the mean line L, (Fig. 3); t, is the tangent to the mean line L, at 
current point M (Fig. 3); n, is the surface unit normal to _ZP at point M; d, = n, X t,; vectors t, and d, 
form the tangent plane to ZP at point M. 

The tool with surface Z; and trihedron S, moves along mean line L, of ZP and 0, coincides with 
current point M of mean line L,. Surfaces Z; and ZP are in tangency at any current point M of mean 
line L,. The orientation of S, with respect to S, is determined with angle p that is varied in the process 
for generation. 

We start the derivations with the case where Z;; is a circular cone (Fig. 4). The angular velocity q of 
rotation of S, with respect to S, is represented as [2,3]: 

nb 

Fig. 2. Tool surface &. 

Fig. 3. Orientation of trihedron S, with respect to S,. 
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Fig. 4. Surface of grinding tool cone. 

Of = (ttf - k,d, + kp,) $ . (8) 

Here, t is the surface torsion (geodesic torsion), k, and k, are the normal and geodesic curvatures of 
surface &, at the current point A4 of the mean line L,, ds is the infinitesimal displacement along L,. 
The definition of surface torsion is given in [3]; the concept of the equivalent term ‘geodesic torsion’ is 
also discussed in [2]. 

The angular velocity fl, of trihedron S, is represented in S, as 

W 
f2,=cof+dtn,= 

dfl ‘ds 
-k, k,+x 1 5. 

The orientation of cone Zt is determined by function /3(0,) and 

(9) 

(10) 

where T, is the tangent to the mean line L, at current point M. 
The transformations of vector components in transition from S, to S, and S, are represented by 3 X 3 

matrix operators L,, and L,,. Here, 

L 
cos p -sin p 0 

L,, = sin p cosp 0 1 , 

0 0 1 
(11) 
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sin cos yt 0, sin sin 0, yt cos 3: 
L,, = [ sin 8, - cos 8, 0 1 . 

cos yt cos 0, cos yt sin 8, -sin 3: 

The cone surface .Zc, is represented in S, as follows (Fig. 4): 

rt = u,[sin y( cos 0, sin yt sin 8, COs y,]’ - 

(12) 

(13) 

where (ut, 0,) are the surface parameters and yt is the cone apex angle. 
The unit normal to the cone surface is 

n, = U,[COS yt cos 0, cos yt sin f3, -sin y,]’ . (14) 

The required equation of meshing (necessary condition of existence of envelope ZJ is represented in 
the form 

(t) 
nf 

. @) = () 
f 7 (15) 

where 
n(f) = Lttnt . f (16) 

The derivation of the expression vjfg) is simplified while taking into account the following 
considerations: 
(a) The relative velocity vector uitg) can be represented as 

(17) 

Here, 0:“’ is the skew-symmetric matrix represented as 

Vector &I, is represented by 

a,=o,t,+o,d,fo,n,= 
dp ‘ds 

-k, k,+z 1 dt. (19) 

(b) Consider that point N on surface & is the point of the characteristic (the line of tangency of 2, and 
the generated surfadg). Certainly, the equation of meshing must be satisfied for point N. 

The position vector 0,N can be represented as 

--- 
0,N =O,N -O,O, , (20) 

Here, 0,N is the position vector of point N that is drawn from the origin 0, of St to N; vector 0,N is 
represented as 

where 
0,N = u,e, = u,(sin yt cos e,i, + sin 3: sin f3,j, + cos y,k,) , 

& (rt) 
et = 

(21) 

(22) 
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is the unit vector of cone generatrix 0,N. 
Vector O,O, (Fig. 4) is represented in S, as 

45 

O,O, = l,i, , 

where I, =&O,l. 

(23) 

Vector 0,N is represented in S, using the matrix equation 

ri’) = u,L,,e, - ltLfbib . 

(c) We now represent the equation of meshing as 

(24) 

(t) 
nf 

. vw - 
f - {nit) . [i2@)(utLfte, - l,L,,i,)] + nit’ . tf} s = 0 . (25) 

(d) Further simplification of the equation of meshing is based on the following rule for operations with 
skew-symmetric matrices [4]: 

A’B’“‘A = C’“’ 
3 (26) 

where B’“’ and C’“’ designate skew-symmetric matrices, A’ is the transpose matrix for A. 
Considering that elements of I?‘“’ are represented in terms of components of the vector 

b=]b, b, &I’, (27) 

we obtain that the elements of skew-symmetric matrix C’“’ are represented in terms of the components 
of vector c, where 

Cc1 c2 C$ = -A’[b, b, bJt . (28) 

Using the above considerations and eliminating dsldt, the final expression of the equation of meshing 

a1 [I a2 =- 

a3 

can be represented as 

(t) . uifg) =f(ut, 15,, 0,) = utfl~A(S)et - l,n:B(“)i, + n$:ttf = 0 , 
where 

A’“’ = L’ &“‘L 
ft f ft 3 

B’S’ = L’ fl(S)L 

:_, ] 

fb f fb 3 

0 -a3 a2 

Cs) - a3 0 -a, 

-a2 al 0 ’ 

i 

tcospsinr,-k,sinp+ 

t sin 0 sin ‘yt + k, cos p + 

tcosy,--(k,+z)siny, 

0 -b, b, 

b3 ’ -b, 

-b, b, 0 

-tcosP +k,sinp’ 
tsinp +k,cosp 

-(kg+% . 

(29) 

(30) 

(31) 

(32) 

(33) 
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The family of characteristics L,, the instantaneous lines of tangency of & and &,, is represented in S, 
by the equations 

rt = r&,3 0,) > f(%, et, opp> = 0 7 (34) 

where 6r is the parameter of the family of L,. Taking 6~~ = 0:) (i = 1,2,. . . , n), we obtain the current 
characteristics on the surface .Zt. 

It is easy to verify that the equation of meshing between Z; and J$ is satisfied for the current point M 
of the mean line L, on the ideal surface &. This means that the characteristic L, intersects L, at point 
M, for which we can take 0, = 0 since _& is a surface of revolution. In the case where St is a circular cone 
(Fig. 4), we can take for point M that U, = )O,Or,l = I,. 

The approach discussed above for the derivation of equation of meshing can be easily extended for 
application in the more general case where the tool surface is a general surface of revolution. 

5. Determination of generated surface 2’, 

The ground surface & is generated as the envelope to the family of tool surfaces &:t; surface & is 
represented in S, by the following equations: 

where f(ut , 0,, or,) = 0 is the equation of meshing; T~‘)(u~, 0,) is the equation of the tool surface -& 
represented in S,; r~“‘(u,(O,), $,p> is the vector function that represents in L$, the mean line L,; the 3 X 3 
matrix operator L,, which transforms vectors in transition from S, to S, is represented as t PX dpx npx 

L,, = tPY dPY nPY 3 

i 1 t P* dpz npz 
where 

is the unit target to the mean line L,; 

(36) 

(37) 

(38) 

d, = np x t, , (39) 

The sign chosen in (38) must provide the direction of np towards the surface ‘body’. 
Equations (35) represent in S, the generated surface & in three parametric form but with related 

parameters. Parameter U, is linear in the equation of meshing when & is a cone, therefore this 
parameter can be eliminated and the generated surface & can be represented in S, as 

r:’ = rg = t-,(0,, 0,) . (40) 

We recall that surfaces Z, and .Zp have a common line L, where they are in tangency. Surface &. is 
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in tangency with 2, along the instantaneous line L, that passes through the current point M of line L,. 
The tangents to L, and L, lie in the plane that passes through M and is tangent to three surfaces (zP, 2, 
and 2,) simultaneously. 

6. Optimal approximation of the generated surface &. to the ideal surface x, 

The procedure of optimal approximation of Zg to &, is divided into the following stages: (i) design of 
grid on _I$,, the net of points, where the deviations of & from Z,, will be determined; (ii) determination 
of the initial function PC”($) for the first iteration; angle p determines the orientation of the tool 
surface _St with respect to _‘ZP (Figs. 1 and 3); (iii) determination of deviations of 2, from &, with the 
initial function p”‘(0,); (iv) optimal minimization of deviations. 

6.1. Grid on surface 2,, 

Figure 5(a) shows the grid on the surface Cp, the net of (n, m) points, where the deviations of & 

from Z, are considered. The position vector is Or,Qi,j = rF9’) (Fig. 5(b)). The computation is based on 
the following procedure: 
(i) The desired components Li,j and Ri,j of the position vector rg7’) are considered as known. 

(ii) Taking into account that 

we will obtain the surface XP parameters (u:‘“, 8zXi’) for each grid point. 

(a) 
TP 

(b) 

Fig. 5. Grid on surface 4. Fig. 6. Determination of maximal deviations along line L,,. 
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6.2. Determination of initial function p”‘(t$) 

The determination of p”‘(0J is based on the following idea: the instantaneous direction of t, (the 
tool generatrix) with respect to tangent t, to the mean line L, (Fig. 3) must provide the minimal value 
lkr’l. Here, k, (r) is the relative normal curvature determined as 

k”’ = /p _ k(P) 
n n n 1 (42) 

where k:’ and k:’ are the normal curvatures of surfaces L$ and Zp along t,. In the case of a 
nondevelopable ruled surface &, vector t, can be directed along the asymptote of &. 

The requirement that lkt’l is minimal, enables us to determine the function /3”‘(ti,,) numerically. 
Since we need the derivative dpldt$, for further computations the function p”‘($,) is represented 
analytically as a polynomial function that must satisfy the numerical data obtained for the chosen points 
of mean line L,. 

6.3. Determination of deviations of Xg from Zp 

We are able at this stage of the investigation to determine the equation of meshing between surfaces 
Zt and _Z!, and surface _& as discussed in Sections 4 and 5. The computation of deviations of & from Zp 
at the grid points is based on the following considerations: 

(i) Surfaces Z’, and & are represented in the same coordinate system (S,) by the following vector 
functions: 

(43) 

(ii) The position vector r-z,‘) and surface coordinates (u:,‘), OzX”) are known for each point QF’” of 
the grid on surface Zp. 

(iii) Point Q”*j) 
P,, ) 

on surface & corresponds to point QF*” on surface Zr. The surface &_ parameters 
(0 0.i) 

&? ,Oz’ ‘) can be determined by using the following two equations: 

(44) 

(iv) Due to deviations of & from Zp, we have that x:*” 
point QF-” is determined by the equation 

Zx”‘“. The deviation of J$ from Zr, at the grid p 

(45) 

where ,F,‘) is the unit normal to surface 2, at the grid point QF,“. 
The deviation 8i,j can be positive or negative. We designate as positive such a deviation when 8i,j > 0 

considering that ny.‘) is directed into the ‘body’ of surface Zp. Positive deviations of Zg with respect to 
&, provide that _YZg is inside of -?;b and surface JZg is ‘crowned’. 

It is not excluded that initially the inequality S,, j > 0 is not yet observed for all points of the grid. 
Positive deviations 8i,j can be provided choosing the following options: 
(1) choosing a surface of revolution with a circular arc in the axial section instead of a circular cone; a 

proper radius of the circular arc must be determined. 
(2) changing parameter I, = IO,O,I (Figs. 3 and 4); this means that the grinding cone will be displaced 

along t, with respect to the mean line L,. 
(3) varying the initially chosen function p”‘(0,). 

6.4. Minimization of deviation 4,, 

Consider that deviations ?5i,j (i = 1, . . . , n; j = 1, . . . , m) of 2, with respect to _Ep have been 
determined at the (n, m) grid points. The minimization of deviations can be obtained by corrections of 
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the previously obtained function /3’1’(Or,). The correction of angle p is equivalent to the correction of 
the angle that is formed by the principal directions on surfaces 2, and X9. The correction of angle @ can 
be achieved by turning of the tool about the common normal to surfaces .Zt and &, at their 
instantaneous point of tangency M,. 

The 

Step 1. 

Note 1 

minimization of deviations S,,j is based on the following procedure: 

Consider the characteristic L,, , the line of contact between surfaces & and C,, that passes 
through current point M, of mean line L, on surface .& (Fig. 6). Determine the deviations 6, 
between -C, and J$, along line L,, and find the maximal deviations designated as 6 ‘,‘I, and 6 ria,. 
Points of L,, where the deviations are maximal are designated as NF’ and NY’. These points 
are determined in regions I and II of surface & with line L, as the border. The simultaneous 
consideration of maximal deviations in both regions enables us to minimize the deviations for 
the whole surface Z:,. 
The deviations of & from S:, along L,, are simultaneously the deviations of X8 from & along - - 

L,, since L,, is the line of tangency of Zt and 2,. 
Step 2. The minimization of deviations is accomplished by correction of angle & that is determined at 

point M, (Fig. 6). The minimization of deviations is performed locally, for a piece k of surface 
J$ with the characteristic t,,. The process of minimization is a computerized iterative process 
based on the following considerations: 
(i) The objective function is represented as 

with the constraint 8i,j 30. 
(ii) The variable of the objective function is A&, Then, considering the angle 

pfkz) = p’,” + A& 

(46) 

(47) 

and using the equation of meshing with &, we can determine the new characteristic, the 
piece of envelope 2:) and the new deviations. The applied iterations provide the required 
objective function. The final correction of angle &, we designate as /3rpt). 

(*) Note 2. The new contact line L,, ( determined with pr’) differs slightly from the real contact line since 
the derivative d@ p “‘ids but not d~~‘/~ is used for dete~ining L$‘. However, L$’ is very close to the 
real contact line. 
Step 3. The discussed procedure must be performed for the set of pieces of surfaces -6, with the 

characteristic L,, for each surface piece. 

We recall that the deviations for the whole surface must satisfy the inequality ajVj 2 0. The procedure 
of optimization is illustrated with a flowchart (Fig. 7). 

7. Curvatures of the ground surface SE 

The direct determination of curvatures of L$ by using surface Zs equations is a complicated problem. 
The solution to this problem can be substantially simplified using the following approach proposed by 
the authors: (i) the normal curvatures and surface torsions (geodesic torsions) of surfaces -6, and J$ are 
equal along line L,, respectively; (ii) the normal curvatures and surface torsions of surfaces 2, and Zg 
are equal along line L, in terms of curvatures of J$, and Zt. However, only three of these equations are 
independent (see below). 

The term ‘surface torsion’ instead of ‘geodesic torsion’ has been proposed by Nutborne and Martin 

[31. 
Further derivations are based on the following equations: 
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q 

Fig. 7. Flowchart for optimization, 

k, = k, cos’q + k,, sin’q = +(k, + k,,) + &(k, - k,,) cos 2q , (48) 

t = OS&, - k,) sin 2q , (49) 

where k, and k,, are the surface principal curvatures, angle q is formed by unit vectors ei and e 
measured counterclockwise from e, and e; e, is the principal direction with principal curvature k,; e is 
the unit vector for the direction where the normal curvature is considered; t is the surface torsion for 
the direction represented by e. 

Equation (48) is known as the Euler equation. Equation (49) is known in differential geometry as 
the Bonnet equation [2] and the Sophia Germain equation (31. 

The determination of the principal curvatures and principal directions for Zg is based on the 
following computational procedure: 

Step 1. Determination of ky’ and 6’) for surface Z;, at the direction determined by the tangent to L,. 
The determination is based on (48) and (49) applied for surface &,. Recall that .& and & have 
the same values of k, and t along the abovementioned direction. 

Step 2. Determination of kr’ and tC2). The designations kr’ and t(*) indicate the normal curvature of 

2, and the surface torsion along the tangent to L,. Recall that kr’ and 6’) are the same for -& 
and _Zg along L,. We determine k, w and tC2) for surface 2, using (48) and (49), respectively. 

Step 3. We consider at this stage of the computation that for surface & are known ky’ and t(l), ky’ 

and t(*) for two directions with tangents 7, and r2 that form the known angle I_L (Fig. 8). Our > 
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Fig. 8. To determination of principal directions of generated surface &. 

goal is to determine angle q1 (or q2) for the principal direction ,i”’ and the principal curvatures 
ki”’ and I$’ (Fig. 8). Using (48) and (49), we can prove that kf’ and 6’) (i = 1,2) given for 
two directions represented by r1 and 72 are related by 

t1 + t2 

k,, _ k,, = Cot p 

Step 4. Using (48) and (49), we can derive the following three equations for determination of qi, kig’ 
and ki;‘: 

tan2q, = 
t, sin 2j.~ 

t, - t, cos 2j.L ’ (51) 

k(g) = k(l) 
I ” - 4 tan q1 , (52) 

k;f’ = k’,” + t, cot q1 . (53) 

Equation (51) provides two solutions for q1 (qi2’ = 41” + 90°) and both are correct. We choose 
the solution with the smaller value of q,. 

8. Execution of motions on computer numerically controlled (CNC) machine: the (Phoenix’ machine 

The process discussed above for generation of 2, can be accomplished on a multi-degree-of-freedom 
CNC machine. In the following discussions, we consider as an example of the CNC machine, the 
‘Phoenix’ machine, designed by the Gleason Works (Fig. 9). This machine is provided with six degrees 
of freedom for three rotational motions, and three translational motions. The translational motions are 
performed in three mutually perpendicular directions. Two of the rotational motions are provided as 
the rotation of the workpiece with surface Xg and the rotation that enables us to change the angle 
between the axes of the workpiece with the to-be generated surface Zs and the tool with surface C,. The 
sixth rotational motion is provided as the rotation of the tool about its axis, and generally is not related 
to the process for generation. 

The ‘workpiece’ is the piece of metal that must be provided with the desired surface Z9. 

8.1. Coordinate systems applied for CNC 

Coordinate systems S&K,, yt, z,) and Sp(xp, y,, zr) are rigidly connected to the tool and the 
workpiece, respectively (Fig. IO). Coordinate system S, performs translational motion along axis z, 
with respect to the frame of ‘Phoenix’. 

Coordinate system S, performs translational motions with respect to S,. Coordinate system S, 
performs rotational motion with respect to S, about the z,-axis. Coordinate system S, performs 
rotational motion with respect to S, about the y,-axis. Axes of the coordinate system S, are parallel to 
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Fig. 9. Schematic of ‘Phoenix’ machine. 

Fig. 10. Coordinate systems used for ‘Phaenix’ machine. 

the respective axes of S,; the location of origin 0, with respect to 0, is determined with the parameter 
xiod) = const. Coordinate system S, performs rotational motion with respect to S, about the x,-axis. 

8.2. Execution of motions 

Execution of motions of the ‘Phoenix machine for the generation of conventional spiral bevel gears 
and hypoid gears has been discussed by Goldrich [S]. The execution of motions for the method for 
generation proposed in this paper is based on the following matrix equations (Figs. 2, 3, 4, 10): 
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and L,, and L,, are unitary matrices. 

L:) = Lpf(e~)Lfb(P(e~))Lbt(eT) . (57) 

The superscript C indicates that the coordinate transformation is performed for the CNC machine. 
The superscript G indicates the coordinate transformation when the generation of Zg by the method 
proposed in this paper is considered. Parameter 0: is constant and designates the chosen generatrix of 
the tool surface with the unit vector t, (Figs. 2 and 4). 

Using matrix equation (54), we obtain the functions $(0,) and 4(6,) that are required for execution 
of rotational motions. Angle p represents the rotation angle of the tool and it can be chosen 
deliberately since the tool surface Zf is a surface of revolution. 

Matrix equation (55) provides that the position vector O,O, will be the same for both cases of 
coordinate transformation. Using this equation, we can determine the functions x,(,f?(0,,), yrh’($,) and 
zr”O”‘(6r) for th e execution of translational motions. 

9. Numerical example: grinding of Archimedes’ worm surface 

The worm surface shown in Fig. 11 is a ruled undeveloped surface formed by the screw motion of the -- 
straight line KiV((KN( = up). The screw motion is performed in coordinate system S, (Fig. 11(b)). The 
to-be ground surface _& is represented in S, as 

rp = up cos (Y cos e,i, + up cos (Y sin O,jp + (pep - up sin (Y) k, , (58) 

where up and 8r are the surface parameters. 
The surface unit normal is 

Thus, 

ar, ar, 

NP=aupxq) 

Fig. 11. Surface of Archimedes’ worm. 

(59) 
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1 
p sin BP + up sin a cos 8, 

nP = @; +py 
-p cos 19~ + up sin ff sin 9 

I 

(provided cos (Y # 0) . (60) 
up cos a 

The design data are: number of threads N, = 2; axial 
of the pitch cylinder is 1.125 in. The remaining design 
equations: 
(i) The screw parameter is 

NI 

(ii) The lead angle is 

diametral pitch Pax = 8 in-‘; CY = 20”; the radius 
parameters are determined from the following 

p-.__..- 0.25 
tan A, =F= l.125 , A, = 12.5288”. 

The mean line is determined as 

epP) > u, = 
(5+&)+(rp-F) G$f=, 1263in 

= 
2coscr cos (Y . 

where l/P,, and 1.25/P,, determine the addendum and dedendum of the worm. 
The worm is ground by a cone with the apex angle x = 30”, and an outside diameter of 8 in. 
The initial angle p (l) = -88 0121” provides the coincidence of both generatrices of the cone and the . 

Archimedes’ worm. The maximal deviation of the ground surface & from the ideal surface Z;, with the 
above value of /3(r) is 3 km. 

The optimal angle p (Opt) = -94.6788” has been determined by the developed optimization method. 
The deviations of the ground surface Ss from J$, with the optimal pCopt’ are positive and the maximal 
deviation has been reduced to 0.35 p,rn (Fig. 12). 

a 

Fig. 12. Deviations of the ground surface 4 from ideal surface 4 of Archimedes’ worm. 
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10. Conclusion 

(1) A computerized method for generation (by grinding or cutting) of a surface &_ with optimal 
approximation to the ideal surface Zr, has been developed. The tool used for generation is provided 
by a surface of a circular cone or a surface of revolution. The required motions of the tool with 
respect to the to-be-generated surface are executed on a computerized multi-degree-of-freedom 
machine. 

(2) The theory of the proposed method for generation, the algorithm for execution of motions in the 
process for generation, and the procedure for optimal approximation of _I$ to 2:, have been 
developed. 

(3) An effective approach for the determination of curvatures of the generated surface &, has been 
developed. 

(4) A numerical example of generation of an Archimedes’ worm has been presented. 
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