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Centrifugal Distortions in Linear Triatomic Molecules:
Application of an ab Initio Approach to HCP

LAWRENCE L. LOHR
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055

Our previously outlined method (J. Mo/l. Struct. THEOCHEM 99, 265-270, 1989) for em-
ploying analytic quantum chemical gradients to calculate the geometries, energies, and quartic
spectroscopic constants for centrifugally distorted molecules is extended to describe noncentro-
symmetric linear triatomic molecules. Results obtained at the HF/6-31G** and CISD/6-31G**
levels are presented for the molecule H '>CP and its isotopic variants D'*CP, H '*CP, and D "*CP.
© 1993 Academic Press, Inc.

INTRODUCTION

The distortion of a rotating molecule from its equilibrium geometry and its effect
upon energy levels has been recognized for a long time by molecular spectroscopists.
Interest in these centrifugal effects, as they are often called, has increased in recent
years due to the development of high-resolution spectroscopic techniques and to major
advances in the theoretical description of highly excited rotational states of molecules.
In a series of studies ( /-6) we presented a new approach to centrifugal distortions and
their associated rotational energy stabilizations which exploits ab initio electronic
structure computational methods. This approach is direct, bypassing in the simplest
applications the explicit calculation of spectroscopic constants such as vibrational
frequencies as this information is implicitly contained in the ab initio electronic energy
hypersurfaces. Specifically, the method is particularly useful at any computational
level for which analytic gradients of potential-energy hypersurfaces are available. Results
were presented in our first study (/) for H3, NH;, CH,, BF3, and SF. More detailed
studies followed of H,O (2), O; (3), and PH3 (4), as well as an outline of a generalized
extension of the method (5). The procedure is structurally oriented, that is, it focuses
on the question of the size and shape of molecules with nonzero rotational angular
momentum. Centrifugal distortion spectroscopic constants are a very useful form of
our computational output, providing an important and indispensable basis for com-
parison to experimental observations, yet their computation is in a way secondary to
the main task. Stated differently, our studies are an exploration of molecular energy
in those regions of the nuclear-coordinate hyperspace which are accessible by centrifugal
distortions from the equilibrium geometry. In the most recent (6) of our studies we
obtained closed-form analytic expressions parametric in the centrifugal displacement
for the classical rotational energy of a harmonic oscillator, Morse oscillator, and Len-
nard-Jones 6-12 oscillator. These expressions were used to construct Padé approxi-
mants for the rotational energy dispersion.

In the present study we explore the application of our methods to the rotational
energy of noncentrosymmetric triatomic molecules. The corresponding centrosym-
metric triatomic case needs no elaboration, as its description is formally the same as
that of a homonuclear diatomic molecule. However, the noncentrosymmetric triatomic
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involves simultaneous solution of two equations (see below) to obtain the quasi-
equilibrium structures which lie along the centrifugal distortion pathway. We illustrate
the general procedure with calculations for the methinophosphide (HCP) molecule;
this molecule has been the subject of many spectroscopic investigations (7-20) in-
cluding our combined experimental and ab initio determinations ( /8) of the bending
potential. In that study an ab initio potential was found to be in excellent agreement
with a rigid bender model fitted to energy levels going up to 17 500 cm™! in a single
bending mode, and comparisons were made to the analogous HCN/HNC system
(21). The molecule HCP has been the subject of a number of other computational
investigations (22-25), with several of these (22, 23) focusing upon the calculation
of spectroscopic constants. Specifically, results have been reported (22) based on use
of the coupled electron pair approximation (CEPA ) within the self-consistent electron
pair formalism (SCEP). Empirical corrections were introduced both for the reference
geometry and for the quadratic potential energy function terms, the latter to vield a
fit to the observed wavenumbers for the most abundant isotopic species. By contract
our results are not empirically corrected, but consequently are not in as good agreement
with experiment.

METHOD

We illustrate here the application of our method to a linear triatomic molecule
ABC, for which the moment of inertia depends upon two structural variables. We
define a reduced mass matrix M by

(1)

(ma(mb + me) mam. )
M = (1/M)

ML, me(m, + my)

where m,, m,,, and m., are the masses of A, B, and C, respectively, and M is the
molecular mass m, + m, + m.. The moment of inertia / may then be written as

I = RMR, (2)

where R is the column vector with components R,, and Ry., and R is the (row)
transpose of R. The gradient VE, of the rotational energy E. = h2J(J + 1)/21 may
then be written as

VE, = —(2FE//I)MR. (3)

The condition for quasi-equilibrium is that V(E, + E,) = 0, where E,, is the total
electronic energy. Thus

VEq=(2E./I)MR, (4)
giving a ratio

(0E¢1/0Rp) (M1 Rap + M Rye)

- , 5
(6Ee1/ORbc)  (Mi2Rap + My Ryc) ©)
where M, is element ij of M. For H'>C*'P this ratio becomes
(0Ea/dRcn) _ (1.3874Rcy + Rep) (6)

(0Ea/dRcp) (Rcen + 12.9068 Rep) ’

where both the numerator and the denominator of the right-hand side of Eq. (5) have
been divided by m,m. = mymp.
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The computational procedure for finding structures which satisfy Eq. (6) is then as
follows:

(1) Select some value of Ry,c > RY;

{2) Calculate E, and V E,, for this value of R, and for a small range of values of
R., > RY..(Note that the roles of Ric and R, in steps 1 and 2 may be interchanged);

{3) Recalculate the right-hand side of Eq. (6) for each point R (no assumption of
equilibrium values) and find by interpolation the value of R, satisfying Eq. (6) for
the given Ry value;

(4) Use the expression for dF,, /3 R, (or that for dE, /0 Ry ) to calculate J(J + 1)
for this quasi-equilibrium. For example,

J(J + 1) = I*(0Ea/dRan)/ h* (M1 Ry + M>Ry). (7

The total energy £ for this value of J(J + 1) is then given by the sum of the nonrigid
E, = h%*J(J+ 1)/21 and an interpolated value of E,, for the structure R. The entire
process is repeated to obtain as many values as desired for the rotational energy dis-
persion E(J). The accompanying structures R(J) comprise a one-dimensional cen-
trifugal distortion pathway, parametric in J, in the two-dimensional R space.

If desired, one may calculate, as previously outlined (5), an effective J-dependent
quartic constant D(J) defined as the centrifugal stabilization energy AE = E(rigid)
— E(nonrigid) divided by [J(J + 1)]?. The limit of D(J) as J approaches zero may
be taken as the calculated D value for the molecule.

The ab initio calculations were carried out using the GAUSSIAN90 and -92 programs
(26, 27) at the HF/6-31G** and CISD/6-31G** levels. Gradients were obtained
analytically in both cases, while vibrational wavenumbers were obtained analytically
in the HF case and numerically from analytic gradients in the CISD case. As a com-
parison CISD wavenumbers were also obtained numerically from second differences
of the energy (with frozen cores). The wavenumbers are for reference only as they
are not used explicitly in our procedure for calculating rotational energies outlined
above, although their information content enters implicitly via the displacement de-
pendence of the gradients.

The procedure as outlined above may appear to be cumbersome and computationally
intensive. The yield, however, 1s much greater than a calculated quartic spectroscopic
constant, namely one obtains both the dispersion E(J) and the associated pathway
R(J). If desired, a simplified but cruder calculation could be made by replacing R(J)
in Eqgs. (4) and (5) by its (J = 0) equilibrium value R(0).

RESULTS

We first consider H'2CP, with Fig. 1 displaying the bond length changes ARcp and
ARcy as a function of J. The former is 4 to 5 times larger than the latter, indicating
that the light H atom “‘rides™ along as the C-P bond stretches. The ARcp values are
larger at the CISD/6-31G** level than at the HF/6-31G** level for a given value of
J, reflecting the smaller force constant and hence smaller vibrational wavenumber
for the C-P stretch ( Table 1) at the former level.

From the interpolated solutions of Eq. (6) for a number of ARcp values we obtain
the effective quartic constants shown as a function of J in Fig. 2. The extrapolation
of these values to J = 0 gives the calculated quartic constants D listed in Table I. The
extrapolation was made by assuming the linearity of AE/[J(J + 1)]? vs J(J + 1) for
small J. The intercept yields the D value, while the negative of the slope, equivalent
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FIG. 1. Centrifugal displacements ARcy and ARcp in A for H'*CP as a function of the angular momentum
quantum number J as obtained at the HF/6-31G** (open circles) and CISD/6-31G** (closed circles)
levels.

to the negative of the curvature of AE/[J(J + 1)]? vs J, yields the sextic constant H.
The CISD value of H (Table 1) is approximately 9.6 X 107 cm™', about 0.6 of the
HF value and with a sign corresponding to a positive contribution to the rotational
energy dispersion E(J).

Our CISD value of D, namely 6.24 X 10~7 cm™', while larger than our HF value
of 5.94 X 1077, is still somewhat smaller than the observed value (13) of 7.025(17)
X 1077 cm™!, because our computed gradients rise too steeply with the displacements,
equivalent to having (implicit) vibrational wavenumbers which are somewhat too
large. The reported SCEP computed value (22) of 7.01 X 107 cm™! is closer to the
observed value as it is based on empirically adjusted quadratic potential energy function
terms. Our CISD sextic coefficient H of 9.6 X 107'* cm™' is close to the SCEP value

TABLE ]

Bond Lengths and Spectroscopic Constants for H '2CP

Constant* HF/6-31G** CISD/6-31G** Observed

R(C-H) 1.063 1.066 1.0667(5)°

R(C-P) 1.515 1.536 1.5421(5)°

B 0.690 0.672 0.6632742(16)°

D 5.94 x 107 6.24 x 107 7.025(17) x 107 ¢
H 1.6 x 10 9.6 x 10" e

v 3578 3483 (3479)° 3216.89153(72)°
v, 830 749 (735)° 674.69914(45)

vy 1472 1380 (1374)* 1278.2798(13)

a) Bond lengths in A, spectroscopic et and wa bers in cm.

b) Ref. (7).

c) Ref. (13).

d) CISD wavenumbers computed from first differences of analytic gradients (values in

parentheses computed from second differences of CISD energies).

e) Ref. (12); from ref. (13) the harmonic wavenumber w, = 687.867(3) cm™.
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FIG. 2. Effective quartic constants D(J) (centrifugal stabilization energies AE divided by [J(J + 1)]?in
10"7 cm™! for H'?CP as a function of the angular momentum quantum number J as obtained at the HF/
6-31G** (open circles) and CISD/6-31G** (closed circles) levels. The points for J = 0 were obtained by
linear extrapolation of the effective constants as a function of J(J + 1).

of 1.001 X 107'* cm™', but being based on the slope of the centrifugal stabilization
energy vs J(J + 1), is not very precisely determined.

To illustrate the contributions to the energy consider the CISD results for ARqp =
0.05 A, for which J is approximately 178 (Fig. 1). This and other data points are
admittedly for very high J as necessitated by the selection of displacements sufficiently
large as to yield numerically significant gradients. The total energy for J of 178 is
20 666 cm™!, less by 624 cm™! than the computed rigid rotor energy of 21 290 cm™
for the same J value. This total energy consists of 20 044 cm™ as “rotational energy”
BJ(J + 1), where B is the effective rotational constant calculated at the quasi-equi-
librium structure for the given J value, and 622 cm™! as “electronic energy” defined
as the change in the CISD energy accompanying the distortion. Stated differently, the
centrifugal stabilization energy of 624 cm™' arises from a 1246 cm™' drop in the
rotational energy balanced against the 622 cm™! increase in electronic energy. The
ratio of the magnitudes of these contributions to the stabilization energy is 2.003; in
our study (6) of analytic classical rotational energy expressions for diatomic molecules
we showed that this ratio for a harmonic oscillator ( HO) is rigorously (1 + x)(2 +
x), where x is the reduced displacement (r — r.)/r., with r. being the equilibrium
separation. Similarly for a Morse oscillator (MO) this ratio is bx(1 + x)(2 +
x)exp(—bx)/(1 — exp(—bx)), where x again is the reduced displacement and b is
the dimensionless parameter 8r. = (k/2D.)!/?r.. To order x the MO ratio equals 2
+ (3 — b)x, which typically is much closer to 2 than is the HO ratio which to the
same order is 2 + 3x.

In Table Il we present our CISD/6-31G** values for the quartic coefficient D and
for the vibrational wavenumbers of the isotopic variants D'*CP, H '3CP, and D'*CP.
The agreement with experiment (where available ) and with the SCEP computed value
(22) of D is comparable to that for H'>CP, namely both the computed D values and
the wavenumbers are approximately 10% too large. Again it should be noted that the
SCEP values are based in part on empirically adjusted force constants. The ratios of
our computed D and wavenumber values for the isotopic variants to the values for
H'2CP are in excellent agreement both with the SCEP and with the experimental
ratios. A minor exception is the ratio of D values H'*CP/H '2CP; both our CISD and
the SCEP values are a few percent higher than the observed ratio which is, we note,
based on a fairly imprecise value of 6.33(21) X 10~7 ¢cm™' for H"*CP.



CENTRIFUGAL DISTORTION (AB INITIO) 305

TABLE II

Spectroscopic Constants for HCP Isotopomers

Constant* D’CP H"CP D*CP D"CP/H"CP H“CP/H"’CP D"CP/H"CP
D(10*7%)
This work  4.23 5.77 3.91 0.678 0.925 0.627
SCEP* 4.74 647 - 0.676 0923 0
Obs. 4.76078° 6.33 0.678 0% 0 -
vi{o)
This work 2604 3469 2581 0.748 0.996 0.741
Obs. 2419.42515° 3205 - 0.752 096 00000 -
yo(m)
This work 582 744 574 0.777 0.993 0.766
Obs. §25.220421¢ ---- e 0778 e e
(o)
This work 1321 1346 1294 0.957 0.975 0.938
Obs. 1231.40260¢ ----- - 0963 0 e e

* All values in cm™'; our calculated values are at the CISD/6-31G** level.
b Ref. (22): the similarly computed value for H'>)CP is 7.01 X 1077 em™'. “Ref. (17). *Ref. (12). “Ref.
(15).

SUMMARY

In summary we have extended our theoretical method of employing analytic quan-
tum chemical gradients for the calculation of the geometries and energies of centrif-
ugally distorted molecules to the description of noncentrosymmetric linear triatomic
molecules. The extension is illustrated by its application to the molecule HCP. In
addition to obtaining quartic and sextic spectroscopic constants, we have obtained a
centrifugal distortion pathway. This pathway may be described by the ratio ARcy/
ARcp of displacements; at the CISD/6-31G** level this ratio is approximately 0.23
for low J values, but decreases as J increases, indicating that the light H atom to a
first approximation “rides” along as the C-P bond stretches. Thus the centrifugal
displacement mode is dominated by the contribution from the C-P stretching mode,
with a calculated wavenumber »3 of 1380 cm ™! (Table I) at the CISD/6-31G** level:
the observed value (/2) is somewhat smaller, namely 1278.2798 cm ™', This funda-
mental is associated with a computed ratio AR/ ARcp of 0.17, while the ratio for
the higher wavenumber », mode (3483 cm ™' at the CISD/6-31G** level) is quite
different, namely —8.7 (note the sign ). More specifically, the centrifugal displacement
mode has an approximately 50% greater ratio ARcy/ARcp than does the vy nor-
mal mode.

The key results of this investigation are the following: first, a presentation of the
detailed equations whose simultaneous solutions define the centrifugal distortion
pathways for arbitrary linear molecules ABC; second, the application of these equations
at the HF/6-31G** and CISD/6-31G** levels of electronic structure theory to the
molecule HCP with a focus on the bond length changes and with a demonstration
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that the light H atom to first approximation rides along with the heavier C atom; and
third, extraction of quartic spectroscopic constants from the rotational energy disper-
stons for four isotopic variants of HCP.
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