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We show that the stability of the electroweak Z-string is greatly improved by the presence of bound states of a complex 
scalar field. This stabilization mechanism could work for other embedded defects and also for unstable solutions such 
as the sphaleron. 

It is now known that vortex solutions [ 1 ] may be 
embedded in almost any field theoretic model that 
exhibits spontaneous symmetry breaking [2 ]. In par- 
ticular, two distinct vortex solutions are known to be 
embedded in the standard electroweak model [2-5]. 
These are called the W-string and the Z-string in the 
literature. The W-string is conjectured to be unsta- 
ble for all values of the parameters while the Z-string 
has been shown to be stable only for sin20w ~ 1. 
The Z-string in the standard electroweak model with 
sin20w = 0.23 is unstable [6,7] and remains so even 
at high temperatures such as would be present in the 
early universe [ 8 ]. 

If the string solutions are indeed unstable under all 
circumstances, their relevance to physical processes 
would probably be negligible. However, in this let- 
ter we shall show that the strings can be stabilized by 
the presence of other scalar (and perhaps fermionic) 
fields in the theory. The idea behind this result is quite 
simple to understand, especially if one is aware of the 
reason that permits the existence of non-topological 
solitons [9]. Suppose that we have a theory in which 
the Higgs mechanism is responsible for generating the 
mass of a certain scalar. Then, after the symmetry 
breaking, the Higgs field gives the scalar a mass but 
the back-reaction of the scalar field on the Higgs field 

is to try and prevent the Higgs field from acquiring 
its vacuum-expectation-value (VEV). In other words, 
the scalar would rather live in a region where the Higgs 
field vanishes since the mass of the scalar field is zero 
wherever the Higgs field is zero. But the center of the 
string is precisely a region where the Higgs field van- 
ishes. Therefore the scalar likes to accumulate on the 
string and tends to maintain the string configuration 
with its region of vanishing Higgs field - that is, the 
scalar adds to the stability of the configuration. Yet 
another way of stating this idea is that the string is 
a "bag" in which the scalar prefers to sit and, hence, 
hold together. 

In what follows, we shall only consider the case 
of a scalar field interacting with the electroweak Z- 
string. To start with, we shall describe the effect of 
scalar bound states on semilocal strings [10] where 
it is fairly clear that the stability improves due to the 
bound state. This in itself shows that the electroweak 
Z-string will become more stable when it has scalar 
bound states since, after all, the Z-string is nothing 
but the semilocal string when sin20w = 1. However, 
we go further and explicitly examine the case of the 
Z-string with a scalar bound state. Our results suggest 
that it may be possible to get stable Z-strings even 
when sin20w = 0.23. 
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This does not immediately imply that stable Z-  
strings occur in the s t a n d a r d  electroweak model since 
there is no extra scalar field in this model. However, 
the standard model does contain leptons and quarks 
which will also have bound states on the string. We 
expect the arguments of  the previous paragraphs to 
apply in this case too since, once again, it is favorable 
for the fermion to sit in the string "bag" and to pre- 
vent the bag from decaying. We note, however, that 
fermions can be expected to be somewhat less effi- 
cient at stabilizing strings due to the exclusion prin- 
ciple. Whether the lepton and quark bound states are 
sufficient to stabilize the Z-string is another story that 
needs detailed investigation. We hope to undertake 
this task in the near future. 

The Lagrangian that yields semilocal string solu- 
tions with an additional complex scalar field is 

l l~ Z l~ ~V Lsl ---- (DU~b)t (Dumb) + ( O U Y ) * ( O u x )  - "~- uv* z 

- v ( ¢ , z ) ,  

where, 

(1) 

V(qS, Z )  = 21(~bt~b - ½r/2) 2 + 221Xl 4 

-1- 2A3(~btgb 4- m 2 ) z * X .  (2) 

The field @ is a global SU (2) doublet carrying a gauged 
U ( 1 ) charge, while X is a single complex field. The 
covariant derivative is defined by 

Du = 0 u + ½ i a Z u .  (3) 

There are two approaches to finding solutions that 
describe a string with a non-trivial X configuration. 
The first is that, for the negative sign in (2) and for 
some values of  the parameters, the string configura- 
tion together with X = 0 is unstable, and the stable 
ground state solution is one that has a non-trivial X 
condensate on the string [11]. It may be speculated 
that the presence of  a condensate #1 might improve 
the stability of  the string. Indeed we have checked that 
there is an improvement in string stability due to a 
condensate but the improvement is only marginal and 

#1 Note the distinction between "condensate" and "bound 
state". A condensate is the ground state configuration 
ofg in the background of the string while a bound state 
requires the presence of X particles. 

is certainly not enough to stabilize the string when 
sinE0w = 0.23. The second approach is to consider 
the string in the presence of  Z panicles - that is, the 
string with X bound states. The X particles carry a 
conserved U ( 1 ) global charge which is derived from 
the conserved current 

j u  = ½i ( z*OUz  _ z O U x  *). (4) 

Hence, we consider a string in the presence of  a defi- 
nite amount of  global U ( 1 ) charge. This, together with 
cylindrical symmetry, leads to the following ansatz for 

X: 

X = ei°~tg/(r), (5) 

where r is the cylindrical radial coordinate. The charge 
per unit length along the z-direction in this configu- 
ration is 

f d r r ~  2 . q = 2~oJj (6) 

We will look at solutions of  the equations of  motion 
following from ( 1 ) that consist of  a semilocal string 
and a fixed amount of  U(1 ) charge. In accordance 
with the usual ansatz for the semilocal string [ 10 ], we 
take 

4) = f (r)eiO , Z u  - --eO.r (7) 

It is now convenient to rescale the fields and coordi- 
nates to make them dimensionless: 

rl ' a q  ~/ '  

R = ~ r.  (8) 

Then the equations of  motion are 

p '  p 
P"  + -~- - (1 - V)2~-~ + fl(1 - P 2 ) p - w 2 p  = O, 

(9) 

V" V' - -~- + 2(1 - V ) P  2 = 0, (10) 

%0 t 
w" + -~- - 2 w  3 - ~ ' ( P 2 -  ~2)w = 0, (11) 
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where primes denote derivatives with respect to R. 
The parameters entering these equations are defined 
by 

821 m 2 22 823 m 2 
# = - ~ T = ' ~ T  , m z  2 = ~ 3 ,  7 -  c~ 2 - m ~ '  

j2 2 (  co 2 ) 
(12) 

Here mn,  mz and rn z denote the masses of  the ~b, Z 
and X particles respectively. In addition to eqs. (9), 
(10) and (11 ), we also have the constraint that the 
rescaled (dimensionless) charge is some fixed non- 
zero constant. Therefore, 

oJ f dRR [w(R)] 2 = constant. (13) 

The boundary conditions on P, V and w are P (0 )  = 
0, P(cc) = I, V(0) = 0, V(cc) -- l,w'(0) = 0 
and w (oo) = 0. 

So far we have been looking at the unperturbed 

string plus bound state solution. Now we turn to the 

stability analysis. 
The stability analysis of the semilocal string [ 12] 

can be reduced to an analysis of the perturbation in 
the upper component of ~b alone. Even in the pres- 
ence of a bound state, this remains true since it is the 
upper component of $ which provides a channel for 
the string to unwind on the vacuum manifold. If the 
upper component of $ was forced to remain zero, the 
semilocal string would be identical to the Nielsen- 
Olescn string which we know to be topologically stable 
even in the presence of other fields. Hence, it is suf- 
ficient to examine perturbations in ~b~ - the rescaled 
upper component of $. Furthermore, it is sufficient 
to consider ~ to be real and a function of the radial 
coordinate alone [ 13,6 ]. 

The energy variation duc to the perturbation ~i is 

,E = f d R R  [gb',2 + M2(R)~b2] , (14) 

where 

V 2 
M2(R)  = ~ + fl(p2 _ 1) + "03 2 . (15) 

It is immediately obvious that the presence of  a bound 
state improves the stability of  the semilocal string 
since the contribution to M 2 coming from w is always 

positive. In the absence of  a bound state, we know 
that the semilocal string is stable only for [13,14] 
0 ~< fl ~< 1. Hence, a bound state on the semilocal 
string will stabilize the string for values of  fl larger 
than 1. A quantitative statement about the stability of  
the "bound semilocal string", however, requires a nu- 
merical analysis since the bound state will also back- 
react on the unperturbed string configuration. Here, 
since we are primarily interested in the electroweak 
string, we simply remark that our numerical analysis 
confirms that the semilocal string can be stabilized 
for fl > 1 if we include a suitable bound state on the 
string. 

The electroweak string will have the same field con- 
figuration as the semilocal string, with all the gauge 
fields except the Z set to zero. To analyze its stability, 
we use the results ofref. [6], where it is shown that the 
stability issue reduces to asking if there are any neg- 
ative eigenvalues (I2) to the Schr6dinger equation: 

1 d 
R dR \-Qd-R] + U(R)( = 12(, (16) 

with 

l .  '2 2 s  1 d 
U(R) - Q p2 + ~ + ~ " ~  ~Q p ]  , (17) 

Q = (1 - 2 c o s  20wV) 2 + 2COS2OwR2p 2 , (18) 

S = -~- - cos 20w 

R d ( V ' l - 2 c ~ s 2 O w V )  
+ 2-d'-R R - -  . (19) 

The boundary conditions on ( are: ( (0)  = 1, ( ' (0 )  = 
0 and ( ( ~ )  = 0. 

We have first found the unperturbed configuration 
using (9), (10) and (11) subject to the constraint 
(13) by using numerical relaxation techniques. Then 
we have solved (16) by a numerical shooting method 
which allows us to check if ~ is positive or negative. 
In all our numerical work we have taken fl = 0.40 
(mn = 58 GeV) - this satisfies the experimental con- 
straint fl > 0.38 obtained by LEP. In fig. 1 we show 
the minimum value of  sin20w that is required for a 
string with a certain amount of  charge to be stable in 
the case when ;t = 0, y = 1 and m = 0, 2. The plot 
is not very sensitive to the value of  7 and the value of  
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Fig. 1. The value of sin20w above which strings with a 
certain amount of charge ~ are stable plotted versus ~ when 
fl = 0 . 4 , 2 =  0,7 = 1 andre = 0and2 .  

that o f  a uniformly charged string with charge per unit 
length Q (z).  Then, the change in energy due to the 
perturbation at z can be approximated by 

~ 0 1 d2E B E ( z )  ,~ dE 8 c o s k z  + ~ - - ~  082cos2kz,  

where we have kept terms to second order in 8. Av- 
eraged over one wavelength of  the perturbation, this 
gives 

82 d2E 
<Be/~ ~ - T ~  0' 

so that the energy of  the string is lowered by the per- 
turbation if 

dO2 0 < 0. 

sin20w for large t] depends only weakly on m. This plot 
shows that the stability of  the electroweak Z-string 
greatly improves in the presence of  bound states and 
stability at lower values of  sin20w may be achieved 
by putting enough charge on the string. However, our 
numerical analysis was not able to find a stable solu- 
tion for the physical case sinEOw = 0.23. We do not 
know if a more extensive exploration of  parameter 
space or the addition of  more charge would result in 
a stable solution in this case also or if there is some 
hard lower bound on sin20w which cannot be crossed. 

The reader may wonder if  the introduction of  the 
field X could have introduced some new instability in 
the configuration. As was shown in ref. [ 15 ] in the 
case of  cylindrical non-topological solitons, there is a 
possible instability in the distribution of  charge along 
the s t r ing-  the linear distribution of  scalar charge may 
be unstable to clumping up in spherical regions. It is 
easy to see how this instability can arise. Consider the 
energy per unit length of  a z-independent string con- 
figuration as a function of  its charge per unit length 
E (Q). Now, imagine that we modulate the charge dis- 
tribution on the string Q ( z )  = Qo + 8 c o s k z ,  where 
8 < <  Q0. I f  we take k to be large enough, then gra- 
dient energy from the z-modulation can be ignored, 
and at a given z the string configuration resembles 

This condition is generally satisfied for the model we 
have studied above so that our strings are unstable to 
z perturbations for large enough k. 

An important feature of  the instability is that it is 
an instability towards the growth of  long wavelength 
modes in the charge distribution along the string. 
Hence it is irrelevant for loops or open segments that 
are smaller than the smallest wavelength of  instabil- 
ity #2. The critical wavelength of  instability decreases 
with increasing charge, but for m = 2, and for the 
maximum value of  charge that we have considered, 
the wavelength is always larger than several string 
widths. For still larger values o f  m, or for smaller 
values of  the charge, the critical wavelength increases 
further and the clumping instability becomes less rel- 
evant. The addition of  a repulsive force between the 
charges can also lead to reduced instability. An ex- 
treme case of  this is when the force between charges 
is also mediated by gauge fields (spin 1 ). Here it 
can be shown that the resulting long range repulsive 
force can cause d 2 E / d Q  2 to become positive for 

t¢2 In the cosmological electroweak phase transition, one 
expects the length distribution of loops and segments to 
be exponentially suppressed and so only small loops and 
segments are relevant. 
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large enough charge so that the clumping instability 
is absent altogether #3, #4 

The most pertinent question at this juncture is if the 
standard electroweak model also admits stable bound 
electroweak strings. In this case one needs to look at 
fermionic and vector boson bound states with the ex- 
perimentally determined parameters. The physical ar- 
gument - in which we view the string as a bag - applies 
to fermions also and so fermionic bound states will 
also improve the stability of  electroweak strings. One 
difference with the bosonic case is that fermions obey 
the Pauli exclusion principle and so every additional 
fermion that we put in the string bag must occupy a 
different quantum state. This makes it somewhat less 
energy efficient to pack fermions onto the string .5 . 

There are some additional (technical) difficulties 
in investigating the bound Z-string in a realistic set- 
ting. The first such difficulty is that the quarks and 
leptons carry electromagnetic charge and the electro- 
magnetic field of  the bound state must also be taken 
into account in the stability analysis. A second dif- 
ficulty is that the stability analysis must necessarily 
include more than one fermion since the left-handed 
fermions occur in SU(2) doublets. Both these diffi- 
culties promise to make the realistic stability analysis 
an Herculean task. 

The above analysis of  the Z-string is a particular 
case of  a very general prescription for finding possi- 
ble stable solutions in any field theory. The first step 
in this prescription is to find embedded defect solu- 
tions .6 following the scheme in ref. [2] and the sec- 
ond step is to put charge on the defect and to see 
if it can be stabilized. In particular, one may ask if 
bound states can stabilize the electroweak W-string. 
It would also be of  some interest to study the effects 
of  bound states on embedded monopole configura- 

n3 Gauged non-topological solitons have been studied in 
ref. [16]. 

~4 In fact, this is effectively what happens when we increase 
m. A larger m means that the attractive Yukawa poten- 
tial between X charges is of shorter range and hence, the 
attraction between Y charges is reduced. 

~5 In both the bosonic and fermionic cases, the addition of 
more charge is expected to lead to diminishing returns 
in improved stability. This is because the string "swells" 
as we increase the charge and this costs energy. 

~6 The simplest example of an embedded defect is a domain 
wall in a global U ( 1 ) model. 

tions [2]. Given the rather general stability analyses 
of  monopoles [ 17,18 ], it would be worthwhile to see 
how bound states can fail to stabilize the embedded 
monopole. Another unstable configuration that might 
be stabilized by the presence of  bound states is the 
sphaleron [ 5 ]. 

During a phase transition in the early universe, we 
expect embedded string configurations to form. If  the 
strings existed in a vacuum, they would be unstable 
towards spreading out radially and unwinding. How- 
ever, we know that the strings at the phase transi- 
tion are immersed in a thermal background and the 
dynamics is likely to be completely different from 
that in vacuum. If  we consider a string of  length L, 
the number of  charged particles on the string will be 
proportional to L while the net charge on the string 
will be proportional to x/L. At temperatures close to 
the phase transition, particles will enter and leave the 
string but, on average, the number density of  bound 
particles will go like L/L = 1 and the charge density 
will go like v'-L/L = 1/x/L. The stabilization of  the 
string at such high temperatures will be related to the 
number density of  particles - and not the charge den- 
sity - on the string. (This is because there is a certain 
amount of  energy that is saved for every particle that 
lives on the string, whether it be positively or neg- 
atively charged.) The number density of  charges on 
the string around the time of  the phase transition is 
quite high due to the large density of  particles in the 
bath and the fact that the string acts like a potential 
well for the charges. Thus stabilization at these early 
times may be achievable. 

What is the cosmological evolution of  such strings? 
The evolution of  the strings is necessarily tied to the 
evolution of  the gas of  particles bound to the string. 
As time goes on, the strings will try to shorten and 
straighten out. This exerts a pressure on the gas of  
particles bound to the string and would tend to raise 
the temperature of  the gas. At the same time, the gas 
on the string can radiatively cool, leading to the anni- 
hilation of  plus and minus charges and reducing the 
stability of  the string. However, as the string length 
decreases the net charge density should become more 
concentrated on the string. We can envision two pos- 
sible outcomes of  this evolution: the charge density 
on the string could fall below the critical value re- 
quired for stability, leading to the ultimate decay of  
the string; or else, a critical charge density could be 
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maintained throughout the evolution and the string 
would either collapse or eventually reach a stable con- 
figuration (see below). The evolution will depend on 
the various parameters of  the theory and it is not pos- 
sible for us to be able to predict an outcome at this 
time. Note that this cosmological problem is quite 
similar to the problem of  forming vortons [ 19 ] and 
non-topological solitons [20] in the early universe. 

Finally we would like to make one more com- 
ment that is relevant for cosmology and the obser- 
vational prospects for electroweak defects. A loop 
of  electroweak string has two distinct instabilities: 
the first is the field-theoretic instability that we have 
discussed above and the second is a dynamical insta- 
bility against collapse. In this letter we have argued 
that the presence of  bound states on the string can 
protect the string against the field-theoretic instabil- 
ity. These bound states also add to the energy density 
of  the string without correspondingly adding to the 
pressure. This implies that the dynamics of  bound 
strings should be similar to that of  wiggly strings [21 ] 
or to current carrying superconducting strings - de- 
pending on the nature of  the charge on the string. It 
is also known from previous work that currents [ 11 ] 
on the string can protect the loop against dynamical 
collapse [22,19,23,24]. These facts together suggest 
the possibility that there are stable, static ring con- 
figurations (also, vortons [19] ) in the standard elec- 
troweak model. I f  the sphaleron is also stabilized by 
bound states, it would imply additional particle-like 
solutions in the model. 
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