Outer Automorphisms of Upper Triangular Matrices ## J. S. MAGINNIS University of Michigan, Ann Arbor, Michigan 48109 Communicated by Walter Feit Received January 3, 1990 The outer automorphism group of the upper triangular matrices over the field of two elements is calculated. A. J. Weir (*Proc. Amer. Math. Soc.* 6 (1955), 454-464) performed a similar calculation for fields of odd characteristic, and we borrow the term extremal automorphism from his work. The results have implications in the study of stable splittings: the classifying space of U_n has three dominant summands when n = 4 and only one dominant summand when $n \ge 5$, in the sense of G. Nishida (Stable homotopy type of classifying spaces of finite groups, preprint (1986)). Let U_n denote the subgroup of upper triangular matrices in $GL_n(\mathbb{F}_2)$. The outer automorphism group of U_n is generated by the obvious symmetry, perhaps called a flip or an anti-transpose, the central automorphisms and the extremal automorphisms. The central automorphisms lie in the kernel of the map $\operatorname{Out}(U_n) \to \operatorname{Out}(U_n/\operatorname{center})$. The extremal automorphisms are described later. The term is borrowed from the work of A. J. Weir [3]. G. Nishida [2] has shown that the idempotents of the semisimple quotient of the group ring $\mathbb{F}_2[\operatorname{Out}(U_n)]$ lift to idempotents in the ring of 2-local stable self-maps of the classifying space BU_n , and correspond to dominant summands, which are those not detected on any proper subgroups. This yields summands of the cohomology ring $H^*(U_n; \mathbb{F}_2)$ as a module over the Steenrod algebra. The results of this paper imply that BU_4 has three dominant summands (although two are isomorphic) and BU_n has only one dominant summand for $n \ge 5$. Explicitly, we have: Theorem. The outer automorphism groups of U_n are - (1) $\operatorname{Out}(U_3) = \operatorname{Out}(D_8) \cong \mathbb{Z}/2$ - (2) $\operatorname{Out}(U_4) \cong \Sigma_3 \times \mathbb{Z}/2$ - (3) Out $(U_n) \cong (\mathbb{Z}/2)^{n-1} \times_T \mathbb{Z}/2$ for $n \geqslant 5$. Remark. In part (3), the notation signifies a semi-direct product. The split $\mathbb{Z}/2$ is the anti-transpose, and the normal subgroup $(\mathbb{Z}/2)^{n-1}$ is generated by n-3 central automorphisms and two extremal automorphisms. COROLLARY. The semisimple quotient of $\mathbb{F}_2[\operatorname{Out}(U_n)]$ is trivial unless n=4, in which case the quotient is $\mathbb{Z}/2 \times M_2(\mathbb{F}_2)$. Thus BU_4 has three dominant summands, and the two corresponding to the Steinberg idempotents of $M_2(\mathbb{F}_2)$ are isomorphic. **Proof** of the Theorem. U_n has n-1 generators, the "off diagonal" matrices $I_n + e_{i,i+1}$. The automorphisms are determined by the action on these generators. There is an important automorphism $\sigma: U_n \to U_n$ which is a flip or anti-transpose $I_n + e_{i,i+1} \to I_n + e_{n-i,n+1-i}$. This is the only non-trivial element of $\operatorname{Out}(D_n)$, and is a split quotient of every $\operatorname{Out}(U_n)$. The center of U_n is a single copy of $\mathbb{Z}/2$, which must be fixed by all automorphisms. Thus we have a map $\operatorname{Out}(U_n) \to \operatorname{Out}(U_n/\text{center})$. Then the center of U_n/center must be preserved as a subgroup, and so on, and we obtain a map $$\operatorname{Out}(U_n) \to \operatorname{Out}((\mathbb{Z}/2)^{n-1}) \cong GL_{n-1}(\mathbb{F}_2).$$ For $n \ge 5$, the image of this map is just a $\mathbb{Z}/2$ generated by the flip σ , but for n = 4 the map $\operatorname{Out}(U_4) \to GL_3(\mathbb{F}_2)$ has image isomorphic to $GL_2(\mathbb{F}_2) \cong \mathcal{L}_3$. In U_4 , the normalizer of the $\mathbb{Z}/2$ subgroup generated by either $I_4 + e_{1, 2}$ or $I_4 + e_{3, 4}$ is isomorphic to $D_8 \times \mathbb{Z}/2$, but the normalizer of the subgroup $\langle I_4 + e_{2, 3} \rangle$ is $(\mathbb{Z}/2)^4$. Perhaps the best interpretation of this image $GL_2(\mathbb{F}_2)$ is as linear maps of the $\mathbb{Z}/2 \times \mathbb{Z}/2$ subgroup of $H^2((\mathbb{Z}/2)^3; \mathbb{F}_2)$ generated by the two K-invariants for the central extension: $$1 \to \mathbb{Z}/2 \times \mathbb{Z}/2 \to U_4/\text{center} \to \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \to 1.$$ The elements in the kernel of the map $Out(U_n) \rightarrow Out(U_n/center)$ are referred to as central automorphisms, which constitute an elementary abelian subgroup $(\mathbb{Z}/2)^{n-3}$. The generators are automorphisms φ_i that twist with the central element $$\varphi_i(I_n + e_{i,i+1}) = I_n + e_{i,i+1} + e_{n-1,n}$$ and $$\varphi_i(I_n + e_{j, j+1}) = I_n + e_{j, j+1}$$ for $i \neq j$. Note that for i = 1 or i = n - 1 the automorphisms φ_1 and φ_{n-1} are inner; for example φ_1 is conjugation by $I_n + e_{2,n}$. Let $\varphi: U_n \to U_n$ be any automorphism, and let us consider the image of the element $I_n + e_{1,2}$. Note that the commutator $[I_n + e_{1,2}, I_n + e_{2,n}] = I_n + e_{1,n}$ is nontrivial, and also the $(\mathbb{Z}/2)^3$ subgroup $\langle I_n + e_{1,n-1}, I_n + e_{2,n}, I_n + e_{1,n} \rangle$ is preserved. This implies that either $\varphi(I_n + e_{1,2}) = (I_n + e_{1,2}) \cdot \varepsilon$ or that $\varphi(I_n + e_{1,2}) = (I_n + e_{n-1,n}) \cdot \varepsilon'$. In the latter situation, $\sigma \circ \varphi(I_n + e_{1,2}) = (I_n + e_{1,2}) \cdot \varepsilon$. By composing with an inner automorphism we can assume that $\varepsilon \in U_{n-1}$, that is, the expression or "word" ε contains no elements or "letters" of the first row of U_n . In fact, since $I_n + e_{1,2}$ is of order 2, it is clear that ε contains no elements of the second row, so $\varepsilon \in U_{n-2}$. Assume momentarily that $\varepsilon \in U_{n-3}$ (no elements from the third row). Note that the subgroup consisting of the first row of U_n has several properties: it is elementary abelian, normal, and equals the closure under inner automorphisms of the first element $I_n + e_{1,2}$. These properties will be preserved by any automorphism φ . Consider the conjugation of $(I_n + e_{1,2}) \cdot \varepsilon$ given by $$(I_n + e_{2,3})(I_n + e_{1,2})(\varepsilon)(I_n + e_{2,3}) = (I_n + e_{1,3})(I_n + e_{1,2}) \cdot \varepsilon.$$ Then the image of the first row subgroup contains the elements $I_n + e_{1,3}$, and thus by continued conjugation, the rest of the row $I_n + e_{1,k}$ with k > 2. This image should be an abelian group, so ε must commute with $I_n + e_{1,k}$ for k > 2. But then $\varepsilon = 1$ and so φ (or perhaps $f_{\text{inner}} \circ \sigma \circ \varphi$) fixes the matrix $I_n + e_{1,2}$. Now assume that $\varphi(I_n + e_{1,2}) = (I_n + e_{1,2}) \cdot \varepsilon$ with $\varepsilon \in U_{n-2}$, and let $I_n + e_{3,k}$ be the first element of the third row of U_n that appears in the expression for ε . Write $\varepsilon = (I_n + e_{3,k}) \cdot \varepsilon'$, and again consider the conjugation by $I_n + e_{2,3}$: $$(I_n + e_{2,3})(I_n + e_{1,2}) \varepsilon(I_n + e_{2,3})$$ $$= (I_n + e_{1,2})(I_n + e_{1,3})(I_n + e_{2,k})(I_n + e_{3,k})(I_n + e_{2,3}) \varepsilon'(I_n + e_{2,3})$$ $$= (I_n + e_{1,2})(I_n + e_{3,k}) \varepsilon'(I_n + e_{1,3})(I_n + e_{2,k})(I_n + e_{1,k}) \cdot \lambda,$$ where λ is an element of the abelian subgroup generated by $I_n + e_{ij}$ and $I_n + e_{2,j}$ for j > k. Now conjugate $\varphi(I_n + e_{1,2})$ by $I_n + e_{k,n}$; if k < n $$(I_n + e_{k,n})(I_n + e_{1,2})(I_n + e_{3,k}) \, \varepsilon'(I_n + e_{k,n})$$ = $(I_n + e_{1,2})(I_n + e_{3,k})(I_n + e_{3,n}) \, \varepsilon' \lambda',$ where λ' is in the subgroup of the last column of U_n generated by $I_n + e_{j,n}$ for $4 \le j \le k-1$. Thus the image under φ of the first row subgroup contains both $(I_n + e_{1,n})(I_n + e_{2,k})(I_n + e_{1,k})\lambda$ and $(I_n + e_{3,n})\lambda'$. But the commutator of these two elements is $I_n + e_{1,n}$, which contradicts the fact that this subgroup should be abelian. Unless k = n, we see that $\varepsilon = 1$ and $I_n + e_{1,2}$ is fixed by φ . When k = n, we find a type of automorphism referred to as an extremal automorphism (for a similar definition, see [3]): $$\varphi_e(I_n + e_{1,2}) = (I_n + e_{1,2})(I_n + e_{3,n})$$ $$\varphi_e(I_n + e_{1,3}) = (I_n + e_{1,3})(I_n + e_{2,n})(I_n + e_{1,n})$$ $$\varphi_e(I_n + e_{i,j}) = I_n + e_{i,j} \quad \text{otherwise,}$$ There are only two extremal automorphisms, the φ_e above and $\sigma \varphi_e \sigma$. These generate a $\mathbb{Z}/2 \times \mathbb{Z}/2$ subgroup of $\mathrm{Out}(U_n)$. So, if necessary by composing with an extremal automorphism, we can assume our transformed automorphism φ fixes $I_n + e_{1,2}$. Then the first row is preserved as a group, and by composing with further inner automorphisms, we can obtain a map φ fixing the top row element-wise. The set of those automorphisms which fix both the top row and the quotient U_{n-1} can be shown to be the cohomology group $H^1(U_{n-1}; (\mathbb{Z}/2)^{n-1})$ with twisted coefficients [1]. This yields $(\mathbb{Z}/2)^{n-2} \subset \operatorname{Out}(U_n)$ generated by the central automorphisms and the extremal automorphisms $\sigma \varphi_n \sigma$. Now I claim that any automorphism of U_n which acts as the identify on the first row will also act as the identify on the quotient U_{n-1} . We may inductively assume that $\operatorname{Out}(U_{n-1}) \simeq (\mathbb{Z}/2)^{n-2} \times_T \mathbb{Z}/2$, generated by n-4 central automorphisms, two extremal automorphisms, and the flip σ . Showing that none of these extends to an automorphism of U_n fixing the top row element-wise follows from simple commutativity relations with $I_n + e_{1,2}$ and $I_n + e_{1,n-2}$. This completes the proof. ## REFERENCES - K. GRUENBERG, "Cohomological Topics in Group Theory," Lecture Notes in Math., Vol. 143, Springer-Verlag, New York-Berlin, 1970. - 2. G. Nishida, Stable homotopy type of classifying spaces of finite groups, preprint 1986. - A. J. Weir, Sylow p-subgroups of the general linear group over finite fields of characteristic p, Proc. Amer. Math. Soc. 6 (1955), 454-464.