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The outer automorphism group of the upper triangular matrices over the field of
two clements is calculated. A. J. Weir (Proc. Amer. Math. Soc. 6 (1955), 454-464)
performed a similar calculation for fields of odd characteristic, and we borrow the
term extremal automorphism from his work. The results have implications in the
study of stable splittings: the classifying space of U, has three dominant summands
when n = 4 and only one dominant summand when n>S5, in the sense of
G. Nishida (Stable homotopy type of classifying spaces of finite groups, preprint
(1986)). € 1993 Academic Press, Inc.

Let U, denote the subgroup of upper triangular matrices in GL,(F,). The
outer automorphism group of U, is generated by the obvious symmetry,
perhaps called a flip or an anti-transpose, the central automorphisms and
the extremal automorphisms. The central automorphisms lie in the kernel
of the map Out(U,) — Out(U, /center). The extremal automorphisms are
described later. The term is borrowed from the work of A. J. Weir [3].

G. Nishida [2] has shown that the idempotents of the semisimple
quotient of the group ring F,[Out(U,)] lift to idempotents in the ring of
2-local stable self-maps of the classifying space BU,, and correspond to
dominant summands, which are those not detected on any proper sub-
groups. This yields summands of the cohomology ring H*(U,; F,) as a
module over the Steenrod algebra. The results of this paper imply that BU,
has three dominant summands (although two are isomorphic) and BU,, has
only one dominant summand for n > 5.

Explicitly, we have:

THEOREM. The outer automorphism groups of U, are
(1) Out(U;)=O0ut(Dy)=2Z/2
(2) Ou(U,)=Z,xZ/2
(3) Out(U,)=(Z/2)"" 'x,2/2 for n=5.
Remark. In part (3), the notation signifies a semi-direct product.
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The split Z/2 is the anti-transpose, and the normal subgroup (Z/2)" !
is generated by »n—3 central automorphisms and two extremal
automorphisms.

COROLLARY. The semisimple quotient of F,[Out(U,)] is trivial unless
n=4, in which case the quotient is Z;2 x M(F,). Thus BU, has three domi-
nant summands, and the two corresponding to the Steinberg idempotents of
M,(F,) are isomorphic.

Proof of the Theorem. U, has n—1 generators, the “off diagonal”
matrices I, + e, ;,,. The automorphisms are determined by the action on
these generators. There i1s an important automorphism ¢: U, — U, which
is a flip or anti-transpose /,+e,,,,—>{,+e, ;,,1.; This is the only
non-trivial element of Out(Dy), and is a split quotient of every Out(U ).

The center of U, is a single copy of Z/2, which must be fixed by all
automorphisms. Thus we have a map Out(U,) — Out(U,, /center). Then the
center of U, /center must be preserved as a subgroup, and so on, and we
obtain a map

Out(U,)— Out((Z/2)" ')=GL,_,(F,).

For n>=5, the image of this map is just a Z/2 generated by the flip g, but
for n =4 the map Out(U,) — GL,(F,) has image isomorphic to GL,(F,) =
Z25. In Uy, the normalizer of the Z/2 subgroup generated by either I, + ¢, ,
or I,+e; 4 is isomorphic to Dgx Z/2, but the normalizer of the subgroup
{I4+e, 3 is (Z/2)*. Perhaps the best interpretation of this image GL,(F,)
is as linear maps of the Z/2 x Z/2 subgroup of H*((Z/2)*; F,) generated by
the two K-invariants for the central extension:

1 > 2Z/2x 22— U, Jcenter — Z/2 x Z/2 x Z/2 - 1.

The elements in the kernel of the map Out(U,) — Out(U, /center) are
referred to as central automorphisms, which constitute an elementary
abelian subgroup (Z/2)" 3. The generators are automorphisms ¢, that
twist with the central element

ol +e;, o )=I,+e i te, .
and
(pi(ln+€j_j+])=I,1+e,'v_j+1 for l?éj

Note that for i=1 or i=n—1 the automorphisms ¢, and ¢, ., are inner;
for example ¢, is conjugation by 7, +e, ,.
Let ¢:U,— U, be any automorphism, and let us consider the image
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of the element /,+ e, ;. Note that the commutator [/, +e, ./, +e;,1=
I, +e, , is nontrivial, and also the (Z/2)" subgroup {I,+e, ,_, I, + €3,
I, + e, ,> is preserved. This implies that either o(/, + ¢, 1) =
(I,+e,,) ¢ or that o(I,+e,,)=(,+e,_, ,)-¢. In the latter situation,
oop(,+e, ;)=(1,+e, ,) ¢ By composing with an inner automorphism
we can assume that ¢e U, |, that is, the expression or “word” ¢ contains
no elements or “letters” of the first row of U,. In fact, since I, + €, , is of
order 2, it is clear that ¢ contains no elements of the second row, so
ee U, . ,.

Assume momentarily that ec U, _, (no elements from the third row).
Note that the subgroup consisting of the first row of U, has several prop-
erties: it is eclementary abelian, normal, and equals the closure under
inner automorphisms of the first element 7, + e, ,. These properties will
be preserved by any automorphism ¢. Consider the conjugation of
(1,+e, ) & given by

(I, + e, +e N e)d,+e, )=, +e ), +e 1) ¢

Then the image of the first row subgroup contains the elements 7, + e, 3,
and thus by continued conjugation, the rest of the row 7, + ¢, , with k> 2.
This image should be an abelian group, so ¢ must commute with I, +e,
for k> 2. But then ¢ =1 and so ¢ (or perhaps fi... >0 ¢ @) fixes the matrix
I,+e, 5.

Now assume that ¢(/,+e, ,)=(],+e,,)-¢ with eeU,_,, and let
I,+e5, be the first element of the third row of U, that appears in
the expression for & Write ¢ = ([, + e; ,)-¢', and again consider the
conjugation by /,+e, 4:

(I,+e, )1, +e;)ell, +e,3)
=, +e, N, +e ), +e, N, +e;s N, +e,s)e(l,+e,s)
= (1n+el.2)(In+elk)€,(1n+el.})(1n+ez,k)([n+el,k)'}‘”

where 4 is an element of the abelian subgroup generated by /,+e; and
I,+e,  forj>k
Now conjugate @(/,+e, ;) by I, +e, s ifk<n
(In + ek‘ n)(ln + el, 2)(1n + e3,k) 8’(171 + ek. n)
=, +e ), +es M, +es,) el
where 1’ is in the subgroup of the last column of U, generated by /,+¢; ,

for 4<j<k—1. Thus the image under ¢ of the first row subgroup
contains both (f,+e, )1, +ey )/, +e )4 and (I,+es,) A" But the
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commutator of these two elements is I, + e, ,, which contradicts the fact
that this subgroup should be abelian.

Unless k =n, we see that e=1 and 7,4+ ¢, , is fixed by ¢. When k=n,
we find a type of automorphism referred to as an extremal automorphism
(for a similar definition, see [3]):

’

(P‘,(I,, + el, 2) = (In + el. 2)(1n + ?3.")
(py(ln + el, 3) = (In + elv 3)(In + el. n)(ln + el. n)
o, +e; )=1,+e,, otherwise,

There are only two extremal automorphisms, the ¢, above and o¢.0.
These generate a Z/2 x Z/2 subgroup of Out(U,).

So, if necessary by composing with an extremal automorphism, we can
assume our transformed automorphism ¢ fixes /,+e, . Then the first
row is preserved as a group, and by composing with further inner
automorphisms, we can obtain a map ¢ fixing the top row element-wise.

The set of those automorphisms which fix both the top row and
the quotient U, , can be shown to be the cohomology group
HYU, ,;(Z/2)" ") with twisted coefficients [1]. This yields (Z/2)" %<
Out(U,) generated by the central automorphisms and the extremal
automorphisms a¢, 0.

Now I claim that any automorphism of U, which acts as the identify on
the first row will also act as the identify on the quotient U,_,. We may
inductively assume that Out(U, )~ (Z/2)" ~? x; Z/2, generated by n—4
central automorphisms, two extremal automorphisms, and the flip o.
Showing that none of these extends to an automorphism of U, fixing the
top row element-wise follows from simple commutativity relations with
I,+e, ,and I, +e,, ,. This completes the proof.
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