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This paper presents an estimation algorithm and error analysis
for single linear oriented pattern in images. The estimation is
formulated in terms of minimizing an objective function, using
the Lagrange multiplier rule. No specific noise model is assumed.
The estimation algorithm uses the intensity image of a flow pattern
and directly determines a symbolic description of the pattern. No
preprocessing or enhancement is needed on the intensity image or
any intermediate data. This results in an efficient computational
algorithm. We show that it is feasible to directly compute relative
divergence, curl, and deformation from the intensity image of an
oriented flow pattern. These relative properties are further used
for identification of the type of pattern in the intensity image.
Since an oriented pattern is corrupted by noise and is distorted to
some degree from a linear flow pattern, quality measures of the
estimation are proposed. The sampling mean, sampling variance,
and energy of noise are computed to characterize its distribution.
A closed-form condition number is used to measure the vulnerabil-
ity of an estimated critical point position to noise perturbation.
We show results for several experiments on fluid flow images and
wafer defect patterns. © 1993 Academic Press, Inc.

1. INTRODUCTION

Vector fields appear in many different contexts in com-
puter vision. Texture, optical flow, and fluid flow analysis
are common situations in which an algorithm is developed
to recognize the type of orientation pattern to recover
pertinent information. Zucker [21] has shown that in our
visual system, the orientation field plays a very important
role in inferring the physical structure information from
oriented patterns. The orientation field is a kind of vector
field which has =7 ambiguity [11, 6] in phase angle. Some
electrophysiological {17, (8] studies have yielded evi-
dence that there are some cells (MSTs and FSTs) in the
primate visual system that are selectively sensitive to
expansion, contraction, and rotation or deformation of
the orientation field. Thus, these cells are sensitive to
mathematical properties of an orientation field: curl, di-
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vergence, and deformation. Some psychophysical experi-
ments [19] also show the limited ability of the primate
visual system to extract two different flow fields simulta-
neously.

This paper presents an approach for recognizing the
class of a pattern formed by an orientation field based on
the characteristic parameters. Algorithms to determine
the class and its parameters of an orientation field are
useful in many applications. Texture is one of the most of
important properties of natural objects, rigid or nonrigid.
Analyzing textures [20, 6, 4, 11] and extracting properties
of textures have been important issues for computer vi-
sion researchers. We pick oriented textures [11] as our
study subject, which is useful for fluid flow analysis, wafer
inspection, wood processing, etc.

Recently, fluid flow visualization techniques [3, 1] have
been intensively studied in order to help engineers under-
stand fluidd mechanics. However, most of these studies
concentrate on the representation and display techniques
using known fluid flow equations. The problem of estimat-
ing fluid flow equations from the measured optical fluid
flow images is not addressed. This technique will help
scientists and engineers to measure the complete flow
field and extract important information.

The fluid flow images, acquired from the fluid dynamic
experiments mentioned above or from remotely sensed
cloud or Arctic floe images [9], wood knot images, resist
gel defect images for wafer inspection, etc., are consid-
ered as kinds of oriented textures [11]. The meaning of a
critical point of an oriented texture is different for different
applications. The critical points in images of fluid flow
experiments and remotely sensed clouds represent turbu-
lence; in wood and wafer inspection, they represent
defects.

Algorithms [6, 10] for computing local flow orientations
for oriented textures were developed recently. A two-
dimensional first-order phase portrait model {11, 12] was
proposed to aggregate those local orientation fields. Rao
and Jain [11] first used a nonlinear least-squares algorithm
to estimate the parameters of this model, but the algorithm
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is computationally intensive. Shu, Jain, and Quek [12]
developed a robust isotangent-based algorithm to deal
with outliers. Since this algorithm needs to sample orien-
tation between zero and 7, it does not use all the available
data points. Therefore, an optimal solution is not guaran-
teed. Shu and Jain [15] further developed the weighted
total least-squares estimator, which compensates the sen-
sitivity of a least-squares estimator to noise by inversely
weighing data points which are sensitive to noise. Their
simulated results [15] showed that this estimator is robust
and can tolerate Gaussian noise of zero mean and one
radian variance. The real images were also tested.

The scheme for classifying flow patterns based on the
two-dimensional first-order phase portrait were studied
first by Rao and Jain [11]. They have defined six elemen-
tary flow patterns: node, saddle, star node, improper
node, center, and spiral, based on the two eigenvalues
and Jordan form. Shu and Jain [13] (see Fig. 1) suggest
using the vector field properties: curl, divergence, and
deformation, to classify flow patterns. This classification
scheme has the same set of flow patterns as the previous
approach, but is computationally efficient. They show
explicit forms for computing the three vector field proper-
ties, whereas the eigenvalue-based approach requires
computation of the Jordan form. In addition to the evi-
dence from psychophysics, the divergence, curl, and de-
formation of a orientation field are strongly associated
with physical meaning. Therefore, the classification
scheme based on these properties does yield useful appli-
cations, such as computational fluid dynamics.

The algorithms used in previous approaches have five
fundamental steps: smoothing intensity image, computing
local arientation field from the smoothed image, smooth-
ing orientation field, estimating phase portrait parame-
ters, and identifying the flow pattern. Our algorithm re-
duces the whole process into three steps: computing
intrinsic properties of an intensity image without using
any filtering, estimating parameters, and identifving the
flow pattern. This results in an efficient computational
algorithm. Furthermore, the new approach removes the
hidden parameters of preprocessing the original intensity
image. In addition to the issue of computational efficiency,
error and sensitivity issues related to previous approaches
have never been addressed.

In this paper, we first examine the intrinsic properties
of intensity images of an oriented pattern. The two-dimen-
sional first-order phase portrait models, their vector field
properties, divergence, curl, and deformation, and the
classification scheme [15] based on these properties are
briefly reviewed. We present the design of a weighted
total least-squares error estimator. The sampling mean,
sampling variance, and energy of noise are computed to
characterize a noise. We use a closed-form condition num-
ber to measure the vulnerability of an estimated critical
point position to noise perturbation. We have conducted
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extensive experiments on intensity images from fluid flow
images and wafer defect patterns. The results are pre-
sented here.

2. INTRINSIC PROPERTIES OF A FLOW
PATTERN IMAGE

Local intensity contrast and orientation angle are the
two features of flow patterns in intensity images that hu-
mans respond to significantly. Humans respond to the
pixels which have higher local intensity contrast and start
to group the orientation information to form a flow pat-
tern. Therefore, local intensity contrast and flow orienta-
tion are the two important intrinsic properties for identi-
fying a flow pattern.

In order to compute these two intrinsic properties of a
flow pattern, we first take the gradient of its intensity
image. The magnitude of this gradient represents the local
intensity contrast of a flow pattern, while the phase of
the gradient represents the direction of the maximum in-
tensity change. To make the flow orientation consistent
with a flow image, we need to add or subtract /2 to or
from the phase angle of gradient.

Suppose that we have a w X h pixel image with only
one flow pattern. We represent this image as I(x, y), where
O=sx=w-—-land0=y=h - 1.

The gradient of the intensity image I(x, y) is calculated
by

Vi(x, y) = (L (x, y), Lix, »)),

where
al(x, v)
I(x,y)= -
NEMY] ox
I.(x,y) olx. y)
A ay

The partial differential operator can be simply imple-
mented by convolving the intensity image /(x, y) with the
mask

For convenience in representation, we introduce two
notations: mag(V) to indicate the magnitude of the V and
phase(V) to indicate the phase of the vector. Thus, for
the gradient VI(x, y), the two parameters of its polar form
can be related to intensity derivatives by

mag(Vi(x, y)) = VI; + I} )
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I(x, y)) 2

hase(VI(x, y)) = tan™! (
p (x, ¥) Loy

The flow orientation which is consistent with humans
perception of a flow is computed by

6(x, y) = phase(VI(x, y)) + 7/2. 3)

Therefore, Eq. (1) represents the intensity contrast
of an image I(x, y), and Eq. (3) gives the flow orienation.
The higher the value of the magnitude Eq. (1) the more
important the flow orientation at the corresponding
pixel.

3. TWO-DIMENSIONAL FIRST-ORDER
PHASE PORTRAITS

In this section, we briefly review the two-dimensional
first-order portrait model, its properties, and the classifi-
cation scheme based on its properties. Details can be
found in {15].

3.1. Phase Portrait Model

A two-dimensional first-order phase portrait can be de-
scribed by the following two equations in the Cartesian
coordinate system:

4
(5

vix,y)=cx+dv+f

vy(x, y)=ax + by +e.

Therefore the angle,

R £ 7 S ax+by+€>
6(x, y) = tan (U,r) tan (——('x+dy'+f' (6)

Equations (4) and (5) can be represented in matrix notation
as

V =AX + B, (7

where
¢ d
ol S NS P AL
Uy y a b e
A point at which both v, and v, are zero is said to be

a critical point (x,, y,) of the system. Thus the critical
point position is the solution of

AX + B =0. (8)
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3.2. Vector Field Properties and Oriented
Pattern Classification

An interesting way [7] of looking at a vector field (Eq.
(7)) is by decomposing it into

N

. 1
+ div(V) [0

0
V=T()+ % {curl(V) [l

(l)] + def(V)S(V)}X.
where T(V) is the translational component of the system,
curl(V), curl of V, is the antisymmetric part of the matrix
A, div(V), divergence of V, is the symmetric part of the
matrix A with nonzero trace, def(V), deformation of V,
is the symmetric and traceless part of the matrix A, and
S(V) is a traceless symmetric matrix of determinant —1
and can be diagonalized into the form:

1o
= 0-!
SV)=a [o 4]0.

The translation, curl, divergence, and deformation of
a vector field V can be described in the following explicit

forms:
T(V) = [f]
e
curl(Vy=a—~d 9
div(V) = trace(A) = b + ¢, (10)

def(V) = V(c — b) + (a + d). (1
Figure 1 shows the classification scheme suggested by
Shu and Jain [13]. The divergence, curl, and deformation
can be computed directly from Eqgs. (9), (10), and (11).

4. ESTIMATION OF ORIENTED PATTERN

Intuitively visualizing a vector flow pattern, we can
easily justify that the flow orientation (Eq. (6)) is sufficient
for identifying the type of a vector flow pattern. A theorem
[15] says that the phase information of an orientation field
is sufficient to classify an oriented pattern. This theorem
further supports our intuition.

Given an intensity image /(x, y) of a flow pattern, its
orientation field computed from Eq. (3) can be described
by Eq. (6). In order to simplify the functional form, let
tan # = {. The reorganized form of Eq. (6) becomes

(a—clx+(b—dly+ (e~ f)=0. (12)

We can directly estimate the parameters by using the
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Case Type Name Phase Portrait
(def(v)? > (curl (V)?  ana
. Node
Idiv (V) > ¥/ (def(v))? - (curl(v))?
(def(v))2 > (curl (V)2  and
. Saddle
div(V)l < V(def(v))? - (curl(v))?
(def(v)? = (curl(v))2 =0
- Star Node
and div(V) 20
(def(V)* = (curl(v)? # 0
. Improper Node
and  div(Vv) #0
2 2
(def(V)© < fcurl ) Center /ﬁ;\\\\
and div(V) = 0 W
def(v))? < 1(v))? T
(def(Vv)) (curl (v)) Spiral G,
and  div(V) #0 L\j
FIG. 1. The classification of flow patterns based on vector field properties.

triplet data (x;, y;, {;) and Eq. (12), where (x;, y,) is the
coordinate of a pixel and {; is the tangent of its orientation.
The optimal least square estimator is one that minimizes
the cost function,

n—1

> (ax; + by, — clpx, ~ diy; + e = fL),
i=0

and subject to the constraint: Va? + b2+ 2 + d? = I,
where n is the total number of triplet data used to estimate
the parameter set (a, b, ¢, d, e, f).

In order to reliably identify an oriented pattern, we use
the magnitude of the gradient of an intensity image and
the sensitivity of its phase to noise to weigh data points.
Since a tangent function is not uniformly sensitive to
noise, we weight each observed data by the inverse of
the derivative of the tangent function. Further, because
higher contrast data points are usually perceived stronger
by human visual system, we give importance to a data
point based on the magnitude of intensity gradient. There-
fore, we formuilate the following weighted total least
square error estimator:

n—1

Z W::(axi + by, —cliy, —d{yte 'fCi)z,

i=0

(13)

where

mag(VI(x,, y,))
255 x V2

wilx;, y) = cos(phase(Vl(x. V) + g) ,

Lilx, y) = tan(phase(Vl(xi, yn + g)

and subject to the constraint Va’+ b2+ 2+ & = 1,
where n is the total number of triplet data and 255 x
V2 is the maximum gradient magnitude.

We can solve the previous constrained optimization as
minimizing the cost function

(6 = (Q4L4 + Q:L:)T(Q4L4 + Q:Lz) + )‘(LILt‘ - 1),

where
a Wy —Lowy
b 4 L —Lyw,
L4 = N L‘) = N Qz = . ,
c f
d wn—l _—€n~l Waoi
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XoWo Yoto —LoXowy —LoYouy
X wy YWy —Lxw —Linw
0, = . . . .
XpaWan—t Yn-1Waa —{an‘lxnﬂwlrl —gl—lylrlwn—l

Differentiating ‘¢ with respect to L,, L,, and A, and
setting the derivatives to zero, we obtain.
8(6 — T T —
— =201, L, + 2Q]Q,L, + 2AL, =0
oL,
9 2TO,L, + 20T0,L, = 0
oL,
36
=L -1=0

which yields

LIL,=1 (14)
L, = —(@lQ,)'0l0,L, (15)
WL, = AL,. (16)

where

V= -0, + 00,070, (QI0,). (17)
L, is an eigenvector of the symmetric matrix ¥ and A is
its eigenvalue. From the Eqgs. (14), (15), and (16), the
minimal cost:
€ min = Min(A,). (18)
Therefore, the eigenvector with the smallest absolute
eigenvalue gives the best estimation of L,. We can further
compute L, by using Eq. (15) and the average minimal
cost for each data point by using
Cavg = Cmin/n. 19y
This value usually gives some vague sense of noise
level.

5. ERROR ANALYSIS

In this section, we propose a condition number to mea-
sure the vulnerability of the estimated critical point posi-
tion to noise perturbations. The sampling mean, sampling
variance, and energy of the error distribution obtained by
comparing the reconstructed orientation field with the
original flow fields computed from the intensity image of
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a flow pattern are used to characterize a noise. The noise
appearing in a test image is considered as a perturbation
of the best estimated parameters. It affects the location
of a critical point position. A larger sampling variance,
sampling mean, or energy does not mean that the esti-
mated parameter set is worse. It only means that more
noise appears in the data. If an estimated parameter set
has a high condition number, and the sampling mean,
sampling variance, and energy are large, it means that the
estimated critical point position is not refiable at all.

5.1. Sensitivity Analysis for the Location of a
Critical Point Position
5.1.1. Definition and Computation of a

Condition Number

From Eq. (8), critical point position can be computed
by

X=-A"'B. (20

A condition number of the matrix A is defined [16] as

c = A[lllA~"], (20

where [|A|l denotes the norm of a matrix A and

IAX
]

A~}
x|

Al = max .,

A~ = maxy.,

A theorem from [16] says that the norm of a matrix,
say A, is the square root of the largest eigenvalue of ATA,
which is a symmetric and positive definite matrix. The
vector that gives the largest error is the corresponding
eigenvector of the largest eigenvalue of the A'A, because
of the Rayleigh quotient. This theorem provides the com-
putational basis for computing the norm of a matrix, and
thus a condition number.

Since ATA and (A)TA™! are two by two matrices,
which are also positive definite and symmetric; therefore
a closed-form for computing their condition numbers can
be obtained by the following derivations.

The two eigenvalues of ATA are

N T Vi@ + b + ¢ + d*) — dad — by
27 ) .

That ATA is a positive definite matrix implies that A, and
A, are both positive. Suppose A = A,. With the constraint:
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a® + b* + ¢* + d* = 1, the largest eigenvalue (\;) can be
obtained by

1+ V1~ d(ad — bcy
Az: 2 .

Therefore, the norm of matrix A,

IA) = \/1 + V1 - 4(ad — bc)/2.

Using the same derivations as the matrix A, we obtain
the norm of matrix A~':

A~ =

I—[-)C_—l‘-amx\/l+ Vl"4(dd"b(')2/2.

Therefore, the closed-form for computing the condition
number of matrix A is

_ 1 1+ V= dad—b?
|bc — ad| 2 ’

[~

5.1.2. Sensitivity Analysis of a Critical Point Position

If we perturb the B in Eq. (20) by 8B, as —B = AX
and —6X = A~'8B, from the definition of the norm of a
matrix, we conclude that

IBJ| = lA[ X
X[ = A~ ||sBY.

By multiplying the previous two equations, the relative
error of perturbing B satisfies

3B
C X ——,
B

lox) _

Xl @

What is interesting is that the same condition number
appears in Eq. (22), when we only perturb matrix A. If
we perturb the matrix A by 6A, and AX = —B, we obtain

58X = ~A1BAXX + 8X).
From the definition of the norm of a matrix,
[8X]| = A B A[ X + 8X|]

or

18Xy s pr o o 10A
A~ oAl = e x o

XToX| @)
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From Egs. (22) and (23), we see that the condition
number is a good measure of the sensitivity of critical
point position to noise perturbation. The larger the condi-
tion number, the more singular the matrix A, and thus,
the more sensitive the solution X to a perturbation in the
estimated parameter set [16]. Therefore, the location of
a critical point is sensitive to noise if its condition number
is large.

5.2. Error Distribution

Given two windows of orientation fields 6,(x, y) and
#,(x, y) with the same size w X h, and 0 < 6,(x, ¥), B(x,
v) < m, we define the phase difference at a pixel (i, j) as

86(i, j) = normalize,_ ./, ,((0:(i,j) — 6,(i, j)),

where normalize|_,, ./, is an operator which normalizes
angles between —=/2 and n/2, by adding either w or —.
The reason we normalize the difference to this range is
because the maximum difference between two orientation
angles is =#/2.

Three statistical properties are useful to measure this
distribution: sampling mean (i), sampling variance (¥),
and noise energy (€), where

w1

i=0 ZJ[':()l (387, j))

"= w X h

w—1 h-1 . .
~” =0 tho (60(11.]) - m)“
v wx h—1

w1

h-1 .« aay?
i=0 Zj:() (2607, j))°
w X h X (7/2)*

[4-}3
I

Because 86 is between —#/2 and #/2, the noise energy &
is always between zero and one.

Even though we do not know exactly what the noise
model is, the mean tells us where its density function is
located. The variance, the square of the standard devia-
tion, tells us the spread of data about the mean. The noise
energy tells us the energy of a distribution.

Applying our estimator to an intensity image, we obtain
a set of parameters (d, b, ¢, d) and a critical point position
(%5, $5). Then the estimated phase at location (x, y) is
given by

B(x, y) = tan’(

dlx — %) + 5()’ - )A’())) _ (24)

Ax — £g) + d(y — o)

Comparing the difference between the orientation field
(Eq. (3)) computed from intensity image with the recon-
structed flow field & from Eq. (24), we obtain an error
distribution. The parameter estimator of the Eq. (13) gives
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FIG. 2. Three image sets for experiments.

both the best estimate of parameters and a minimal cost.
The average minimal cost from Eq. (19) is an approximate
indicator of the noise level, if the noise is zero mean.
However, as we are not assuming any specific noise
model, this number is not sufficient to characterize any
noise model. Therefore, we use the sampling mean, sam-
pling variance, and normalized energy of the error distri-
bution to characterize any noise distribution.

6. EXPERIMENTS

We conducted experiments on three set of images (see
Fig. 2). The left image, taken from [2], in Fig. 2 is a
secondary streaming induced by an oscillated cylinder;
the middle image, taken from [3], in Fig. 2 is a wafer
defect called a resist gel defect; the right image, taken
from [2], in Fig. 2 is a surface-tension-driven convection.
We use the linear part of these images to study the perfor-
mance of our estimation algorithm working on real data.
From observation, we found that seven linear flow pat-
terns appear in the left image, which includes four centers

and three saddles. We sample these seven flow patterns
to demonstrate that our estimator is working properly for
the same kind of flow pattern with different flow pattern
orientations. The middle image in Fig. 2 shows a case
where data points are localized to some parts of the image
and other areas do not have any flow information. For
this pattern, our estimator is still working properly. The
right image is for demonstrating our capability to identify a
star node uniformly corrupted with high amount of noise.

For the reader’s convenience, we give names to each
of these patterns. The four elliptic centers in the left image
from left to right and top to down are called ellipse.120 x
120.1, ellipse.120- x 120.2, ellipse.120 x 120.3, and el-
lipse.120 x 120.4. The 120 X 120 means that the size is
120 by 120 pixels. The saddles in this image following the
same naming rule are called saddle.60 x 60.1, saddle.60 x
60.2, and saddle.60 x 60.3. The middle image is called
center.120 x 120. The only star node in the right image
is called star.120 x 120.

Since we are using only the linear parts of these images,
the whole subimage of each of these linear parts has the

FIG. 3.

Left, ellipse.120 x 120.3; middle, contrast image; right, orientation field.
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FIG. 4. Left, saddle.60 x 60.1; middle, contrast image; right, orientation field.

FIG. 5. Left, center.120 x 120; middle, contrast image; right, orientation fieid.

FIG. 6. Left, star.120 x 120; middle, contrast image; right, orientation field.
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same set of parameters, which implies the same vector
field properties: divergence, curl, and deformation, at ev-
ery pixel in the sampled flow patterns.

In order to identify some of the flow patterns (see Fig.
1), we need to detect whether a number is zero or not.
This is quite hard if there is noise and quantization errors.
Therefore, a threshold (0.05) is preset for determining
whether a number is equivalent to zero. If the square of
a number is smaller than this threshold, we say it is zero.

6.1.

In this section, we show the intensity contrast image
and flow orientation images of four single flow patterns
sampled from Fig. 2. The left side images of Figs. 3, 4,
5, and 6 show these sample flow patterns: ellipse.120 x
120.3, saddle.60 x 60.1, center.120 x 120, and star.120 x
120, respectively. The middle images computed by Eq.
(1) show the intensity contrast image, and the right images
computed from Eq. (3) show the flow orientation field.
No filtering has been used up to this stage. Therefore
considerable amounts of noise are present in these intrin-
sic images, particularly star.120 x 120. Three pixels
around the image border of each intensity contrast image
are set to zero to remove the image border problem from
the computing gradient of the images.

Intrinsic Property Images of an Oriented Pattern

6.2. Experimental Results of the Estimation Algorithm

Tables 1-9 shows the results of estimating
ellipse.120 x 120.1, ellipse.120 x 120.2, ellipse.120 X
120.3, ellipse.120 x 120.4, saddle.60 x 60.1, saddle.60 x
60.2, saddle.60 x 60.3, center.120 x 120, and star.120 X
120, respectively. The output information in these tables
includes image name, image size, identified flow pattern,
parameter ratio a - b : ¢ : d, critical point position, relative
properties: curl, divergence, and deformation, average
minimal cost, a condition number, sampling mean, stan-
dard deviation, and noise energy. The reconstructed ori-
ented field (by Eq. (24)) and the noise distribution of those
images are shown in Figs. 7-15. We make the following
observations regarding our experimental results:
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TABLE 2
Image name ellipse.120 x 120.2
Image size 120 by 120
Identified pattern type CENTER
a:b:c:d —0.6739: ~0.3772:0.3060: 0.5567
Critical point (47.989861, 72.131528)

Curl : divergence : deformation
Average minimal cost

—1.230611: —-0.071131:0.693208
2.054279

Condition number 3.570028
Mean (radians) 0.123765
Std. deviation (radians) 0.561966
Noise energy (between 0 and 1)  0.134190
TABLE 3
Image name ellipse.120 x 120.3
Image size 120 by 120
Identified pattern type CENTER
a:b:e:d —0.6524: -0.3268:0.2970: 0.6159

Critical point
Curl : divergence : deformation

(77.870953, 52.985933)
—1.268321: -0.029865: 0.624877

Average minimal cost 2.361306
Condition number 2.941228
Mean (radians) 0.107289
Std. deviation (radians) 0.573182
Noise energy (between 0 and 1) 0.137807
TABLE 4
Image name ellipse.120 x 120.4
Image size 120 by 120
Identified pattern type CENTER
a:b:c:d —0.6307:0.3381: —0.2883:0.6362
Critical point (90.614436. 91.778658)

Curl : divergence : deformation

—1.266902 : 0.049832: 0.626479

TABLE 1
Image name ellipse.120 x 120.1
Image size 120 by 120
Identified pattern type CENTER
a:b:c:d —0.6579:0.3337: —0.2895:0.6100

(40.033625, 51.226126)
—1.267867:0.044210: 0.624927

Critical point
Curl : divergence : deformation

Average minimal cost 2.247851
Condition number 2.941765
Mean (radians) ~0.048040
Std. deviation (radians) 0.555962
Noise energy (between 0 and 1) 0.126198

Average minimal cost 2.147261
Condition number 2.953464
Mean (radians) 0.000640
Std. deviation (radians) 0.553864
Noise energy (between 0 and 1) 0.124319
TABLE 5
Image name saddle.60 X 60.1
Image size 60 by 60
Identified pattern type SADDLE
a:b:c:d 0.0544: —0.8215:0.5677: —0.0027
Critical point (30.092088, 44.230616)

Curl: divergence : deformation
Average minimal cost
Condition number

Mean (radians)

Std. deviation (radians)

Noise energy (between 0 and 1)

0.057106 : —0.253812: 1.390079
0.965492
1.460487
0.036125
0.558225
0.126787
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TABLE 6
Image name saddle.60 x 60.2
Image size 60 by 60
Identified pattern type SADDLE
azb:e:d 0.2190:0.9402 : —0.2607 : —0.0002

(28.918000, 16.411742)
0.219170:0.679512: 1.220749

Critical point
Curl : divergence : deformation

Average minimal cost 1.304475
Condition number 3.817806
Mean (radians) 0.159483
Std. deviation (radians) 0.647978
Noise energy (between 0 and 1) 0.180430
TABLE 7
Image name saddle.60 x 60.3
Image size 60 by 60
Identified pattern type SADDLE
ab:c:d —0.0798: —0.4771 : 0.8710: 0.0860

(9.331494, 33.138916)
—0.165870:0.393827 : 1.348105

Critical point
Curl : divergence : deformation

Average minimal cost 1.278400
Condition number 1.928203
Mean (radians) 0.088277
Std. deviation (radians) 0.513576
Noise energy (between 0 and 1) 0.110027
TABLE 8
Image name center.120 x 120
Image size 120 by 120
Identified pattern type CENTER
a:b:c:d —0.7141:0.0000:0.0011:0.7001

(61.183577, 75.652236)
—1.414143:0.001124:0.014061

Critical point
Curl : divergence : deformation

Average minimal cost 2.059690
Condition number 1.020086
Mean (radians) 0.035038
Std. deviation (radians) 0.694068
Noise energy (between 0 and 1) 0.195722
TABLE 9
Image name star.120 x 120
Image size 120 by 120
Identified pattern type NODE
a:b:re:d ~0.1208: —0.6376: —0.7424 . —0.1663

(62.847257, 56.850841)
0.045489: —1.380038 : 0.305654

Critical point
Curl : divergence : deformation

Average minimal cost 3.675517
Condition number 1.568589
Mean (radians) —(0.066645
Std. deviation (radians) 0.814370
Noise energy (between 0 0.270566

and 1)

» From observing the left images of Figs. 7-15, the
reconstructed orientation fields are consistent with the
flow patterns underlying it.

* Most of the noise distributions are like Gaussian dis-
tributions, except saddle.60 x 60.2 and star.120 x 120.
The error distribution of saddle.60 x 60.2 is a sort of
bimodal distribution, because some portion of its image
has very little flow information and is distorted. The condi-
tion number (3.817806) is one of the highest values among
our test patterns. This makes it one of the patterns which
is most vulnerable to noise. Fortunately, the noise level
of this image is low enough. Therefore, we can see that
the reconstructed flow fields are quite consistent with the
original flow pattern. The noise distribution of star.120 x
120 is a sort of corrupted Gaussian with a significant
amount of noise. This can be observed from its standard
deviation (0.814370) and noise energy (0.270566), or by
observing the orientation field of Fig. 6. However, its
condition number (1.568589) is low enough to tolerate this
amount of noise. Therefore the result is quite good for
this case. One of the most stable critical point positions
is center.120 x 120, which has the smallest condition
number 1.020086 compared with the others.

» Comparing the curl, divergence, and deformation of
the flow patterns ellipse.120 x 120.1, ellipse.120 x 120.2,
ellipse.120 x 120.3, and ellipse.120 x 120.4 with those
of center.120x120, we found that although they are all
classified as CENTER, the elliptic shape of a flow pattern
is contributed by the deformation property. Therefore,
center.120 x 120 has very small deformation (0.014061),
while the others have larger values (0.624947, 0.693208,
0.624877, 0.626479).

» The star.120 x 120 was classified as a NODE. If we
compare the reconstructed orientation field in Fig. 15 with
its underlying flow pattern, they are quite consistent.
From this example, we can see that STAR and NODE
are quite similar to each other. Usually, STAR node is
harder to obtain. For detecting a STAR, we need to detect
whether deformation and curl are zero. Therefore, the
classification problem is highly dependent on how we set
the threshold value to determine whether a number is
equivalent to zero. This threshold actually provides flexi-
bility for a designer to partition parameter space according
to his/her perception of a pattern type. Thus we are not
rigidly constrained by a mathematical definition.

« The computation time starting from intensity image
is less than one second for 120 by 120 images running on
SUN SPARC Il workstations.

7. CONCLUSION
In this paper, we first examine the intrinsic properties

of intensity images of oriented patterns. We briefly review
the two-dimensional first-order phase portrait model, its
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FIG. 7. Left, ellipse.120 x 120.1 with reconstructed flow field; right, error distribution.
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FIG. 9. Left, ellipse.120 x 120.3 with reconstructed flow field; right, error distribution.
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FIG. 10. Left, ellipse.120 x 120.4 with reconstructed flow field; right, error distribution.
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FIG. 11. Left, saddle.60 X 60.1 with reconstructed flow field; right, error distribution.
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FIG. 12. Left, saddle.60 x 60.2 with reconstructed flow field; right, error distribution.
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FIG. 13. Left, saddle.60 x 60.3 with reconstructed flow field; right, error distribution.
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FIG. 14. Left, star.120 x 120 with reconstructed flow field; right, error distribution.
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vector field properties: divergence, curl, and deformation,
and the classification scheme [15] based on these proper-
ties. We minimize an objective function to estimate pa-
rameter set from the intensity image of a linear single
oriented pattern, by applying the Lagrange multiplier rule.
Therefore no specific noise model is assumed. The relative
vector field properties are computed explicitly from the
estimated parameters. These properties are further used
to yield symbolic descriptions. Since an oriented pattern
is corrupted by noise and is distorted to some degree from
a linear flow pattern, quality measures of an estimation
are proposed. The sampling mean, sampling variance,
and energy of noise are computed to characterize a noise
distribution. We use the condition number to measure the
vulnerability of an estimated critical point position to the
noise perturbation. Our experiment shows promising re-
sults. The generalization to higher order estimation is
straightforward. The measured condition number and
noise properties can be further used to adaptively change
the window size of estimation for multiple critical point
segmentation.

Vector fields appear in many different contexts in com-
puter vision. Texture, optical flow, and fluid flow analysis
are common situations in which an algorithm is developed
to recognize the type of orientation pattern to recover the
pertinent information. The paradigms developed in this
paper are applicable to those computer vision areas which
are using vector field analysis. Since the capability of our
technique to tolerate a considerable amount of noise, in
our laboratory, we have been using the technigue devel-
oped in this paper for motion analysis from image se-
quences. The results are quite encouraging.
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Left, star.120 x 120 with reconstructed flow field: right, error distribution.
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