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Rotational anomalies of mesoscopic rings
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The electronic contribution to the moment of inertia of single-channel metal rings is analyzed. In rings threaded by a magnetic
flux, the electron moment /. exhibits a periodic pattern with maxima at @,=hc/e or § P, (modulo &,) depending on the number
of electrons. For slowly rotating rings, I, diverges in the limit of weak disorder. The rotational anomalies rely on the same inter-
ference mechanism responsible for persistent currents and the Aharonov-Bohm effect.

Electrons in small metallic rings exhibit intriguing
coherent phenomena such as persistent currents [1-
10] and the Aharonov-Bohm effect [11-17]. In re-
cent years, the interest in this area has expanded dra-
matically following the theoretical proposal by
Biittiker, Imry and Landauer [1] and major ad-
vances on the experimental front, particularly in the
field of nanofabrication [6,15]. In this Letter, the
rotational behavior of a mesoscopic ring is consid-
ered. The main results are that the electron com-
ponent of the moment of inertia depends strongly on
magnetic flux and that it diverges in the limit of weak
disorder. These anomalies are closely related to other
mesoscopic phenomena based on quantum interfer-
ence [1-17]. Our findings strictly apply to one-di-
mensional rings at temperature 7=0 in the absence
of inelastic scattering, but we argue that, within some
range, real rings should exhibit anomalies as well.

Consider N electrons of mass m confined to a sin-
gle-channel ring of radius r. The system rotates with
constant angular velocity £2 about the axis passing
through the center of the ring and normal to its plane.
There is a uniform magnetic field B acting on the
electrons and a net magnetic flux & through the ring.
The one-particle Hamiltonian in the rotating frame,
Hy=H-Qp, [18], reads

Hg= # (Pp+ V) —imr2Q?
—hQ(P/DBy) + Vi(p) —yB-§ . (1)

Elsevier Science Publishers B.V.

Here, H is the Hamiltonian in the inertial frame,
dy=hc/e is the flux quantum and j, is the angular
momentum operator conjugate to the angle ¢ spec-
ifying the position of the electron; v=®&/d,+
mr2Q2/#, § is the electron spin, y is the gyromagnetic
ratio and V;(p) is the potential due to impurities.
For V;=0, the eigenfunctions of Hy are y,=
exp(ing)/ ﬁ with eigenenergies

2
€, = z_fﬁﬁ [(n+v)?+ (®/Dy)>— v?]

t4iyh|B| . (2)

The lowest-lying one-particle states for the Ahar-
onov-Bohm configuration (B=0, but ®#0) are
shown in fig. 1. Impurity scattering generally re-
moves the degeneracies at v=0 and 4 (modulo 1)
which are analogous to those at @=0 and i@,
(modulo @,) for 2=0 [1-4]. We note that the spec-
trum of fig. 1 is periodic in » for stationary (v=@/
@,) [1-4], but not for rotating rings, i.e., €,(v)=
€,_1(v+1) at 2=0.

In the following, we consider the limit ¥;—0 and
assume that the eigenstates extend throughout the
ring (2= is smaller than the localization length). As
discussed in the context of persistent currents [1-5],
one can apply a gauge transformation and concom-
itant v-dependent boundary conditions to eliminate
v from eq. (1) [19]. It is well known that this trans-
formation affects extended but not localized states
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Fig. 1. One-particle energy levels, ¢, as a function of v (rotating
frame); P is the magnetic flux. Spin splittings are not included.
The moment of inertia is determined by the behavior of states in
the vicinity of v=9@/®,, i.e, 2=0. Coupling to impurities re-
moves degeneracies at =0, +4, + 1, +3, etc. For clarity, this is
shown only for ¥ =0. Dots represent occupied electron states.

[19]. For the latter, the rotational motion leads to
a trivial negative shift of the energies by the amount
EmriQ2+hQ(D/ Dy).

The results in fig. 1 provide the basis for under-
standing mechanical anomalies. Let Ex (@, 2) be the
ground state energy of the non-interacting N-elec-
tron system. The total angular momentum at 7=0
is L= —9dEg /3R [18] and, thus, the electronic com-
ponent of the moment of inertia is

oL 3%,
L(P)= (aTz),,z():‘ ;(652)9_0. (3)

The sum is for €,< ez where ¢ is the Fermi energy
(I. should be distinguished from the differential mo-
ment of inertia £ =0L/dQ applying to 2#0). Like
Egat 2=0 [1-5], the moment is a periodic function
of @ with period @,. I, is, of course, always positive
(the second-order correction to the ground state en-
ergy is always negative) and it can be shown to sat-
isfy the sum rule

J I.dD=mr’Ng@, ,
where the integral is over a period. Not unexpect-
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edly, the contribution of localized states to I, is mr?
per state irrespective of @.

For a sufficiently weak impurity potential, the
electrons decouple from the ions (82%,/0Q%=
d%¢,/dv*~0 and, thus, I,~0) except in the imme-
diate vicinity of ¥=0 and § (modulo 1) where levels
mix. At small coupling, these crossings determine the
¥ dependence of the eigenenergies and, therefore, of
I.. In particular, the changes of sign of d¢,/dv (at
v~0, +1, etc.) account for the sum rule requiring
that, for some @, I.— oo as V;-0. Parenthetically, we
note that the differential moment .% exhibits asso-
ciated divergencies at mr2Q/h==14, *1, etc. for
@=0. Since terms of eq. (3) due to occupied cou-
pled states (hereafter referred to as pairs) cancel in
lowest order, the moment of inertia is determined by
those few unpaired electrons at or just below ¢g. Near
crossings, standard degenerate perturbation theory
gives

L= 4N VO (VD 242 (4)

Here, A4=38¢(#*N/4mr?*) with S¢=P/Py—1 or
@/dy—4 (modulo 1) depending on whether the
crossing is at @=®, or 1P,. |V IF | («A2N/mr?)
is the matrix element of V; associated with the un-
paired states at ¢z. Reflecting the discontinuity of
(0€,/0v),_o at V;=0 (fig. 1), it is clear that I,(0)
becomes arbitrarily large with decreasing impurity
scattering. For B=0 and {N even (0dd), the non-zero
contributions to I, originate from two opposite-spin
unpaired states diverging at @~ 0 ({ ®,). If Nis odd,
the relevant term operating at both @~ 0 and 1, is
due to a single electron. Assuming that characteristic
energies associated with ¥} are large compared with
yh | B|, these considerations apply also to cases where
B+#0.

An alternative picture of the rotational anomalies
is shown in fig. 2. Here, the inertial-frame ground
state energy E=Eg+QL [18] is plotted as a func-
tionof v. Interms of E, I,= [0E/3(482%) ] qo- Rem-
iniscent of a superfluid [20], the steps in the ;=0
data correspond to thresholds for which the rota-
tional energy matches particular excitations of the
(2=0) ground state. Level-mixing due to disorder
smooths out the ladder. At =0 and {®, (modulo
@Dy), it also produces the dip associated with the
7,0 divergency. We notice that, as the states lo-
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Fig. 2. Ground state energy in the inertial frame, E, as a function
of v. Values of @/ P, are denoted by arrows. Dashed and full lines
correspond, respectively, to P;=0 and ¥;#0 (schematic). The
main figure, with @/ ®,=2, illustrates the case where coupling of
electrons to the impurities is largest and I, is enhanced. In the
inset (®/®P,=1.7), the interaction at 2=0 is negligible.

calize, the ladder turns into the continuous parabola
E=const+mrNQ2,

To conclude, we briefly address the problem of a
real ring bearing on the experimental significance of
our analysis. Although we do not have a definitive
answer for this matter, there are compelling argu-
ments suggesting that the @ dependence of 7. should
fall in an experimentally meaningful range. This is
based primarily on the realization that the under-
lying mechanism of rotational anomalies is very sim-
ilar to that of persistent currents [1-10]. In partic-
ular, the rotational effect also vanishes if the length
of the ring is larger than the localization or the phase
coherence length [2-5]. Moreover, it is apparent that
the moment of inertia I,=dE/d(4£2?) and the cur-
rent j=—0E/d® are but different response func-
tions of the same state. Based on the fact that me-
soscopic persistent currents have been found in
experiments [6], the analogy suggests that similar
rings should exhibit rotational anomalies as well. It
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remains to be seen whether current processing tech-
niques can successfully overcome the obvious fab-
rication problems posed by a rotating geometry.

This work was supported by the US Army Re-
search Office under contract no. DAAL-03-92-G-
0233.
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