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We examine a version of  the U = oo Hubbard model for which a 1/N 
expansion can be carried out (N being the orbital degeneracy), in the 
presence of  disorder. We calculate the 1 /N corrections to the partition 
function and single particle decay rate, treating the disorder by 
summing up those ladder diagrams in the impurity potential that are 
known to yield the diffusion pole in conventional disorder theories. 
We find, away from the critical metal-insulator filling, agreement with 
earlier weak interaction theories with a single parameter characterising 
the effective interaction, while close to the critical filling we find novel 
power law corrections whose origin may be traced to the strong 
momentum dependence of  the diffusion pole in the density correlation 
function. 

STRONGLY correlated electron systems are extre- 
mely sensitive to disorder. Heavy fermion systems 
show huge changes in the residual resistivity regard- 
less of  whether the alloy substitution is taking place 
on the normal host or the rare earth sites [1]. In high 
T c systems a small amount of  impurities can drive a 
transition directly from the superconducting to the 
insulating phase [2]. 

Theoretically, most work has started from the 
disordered weakly localized system, and incorporated 
the effects of  switching on electron interactions in the 
diffusive regime [3]. More recently scaling approaches 
have been applied to the problem [4], but from a 
microscopic point of view, the aim has basically been 
to incorporate interaction effects into the very 
thorough field theoretical treatment that describes 
the Anderson transition [5-7]. 

Alternatively, one can start from the strongly 
correlated electron systems and assess the effects of 
including disorder. For  heavy fermion systems a 
number of authors have taken this approach, starting 
with the mean field large-N limit of  the Anderson 
lattice and then either treating the disorder effects 
within the CPA (Coherent Potential Approximation) 
[8] or by a block decimation procedure [9]. One of the 
authors [10] has even examined weak localization 
corrections for the case of impurity scattering of the 
conduction electrons. 

Generally, these works have only included the 
strong correlation effects at the mean field level, 
where in the non-disordered limit the physics is that 

of  a band of non-interacting quasiparticles. It is well 
known that to study quasiparticle interactions one 
has to examine Gaussian fluctuations around this 
mean-field picture. Such a formulation is necessary if 
one is to obtain either dynamic susceptibilities or self- 
energy lifetime effects. 

In the present paper we instigate such studies for 
a simpler model than the Anderson lattice, namely a 
version of the infinite U Hubbard model for which a 
loop expansion can be carried out. We consider the 
N-fold degenerate infinite U Hubbard model where 
the local electronic charge is scaled with the 
degeneracy [11]. At the mean field level this model 
reduces to a single band whose width is reduced by 
the Gutzwiller factor 1 - n ,  where n is the electron 
filling. The loop expansion is then equivalent to 
including 1/N corrections of the RPA type, involving 
particle-hole excitations, and we shall include the 
effects of  weak disorder on these particle-hole terms 
by summing up those ladder graphs that are known 
to yield diffusive behaviour in the density correlation 
function. 

We expect on the one hand to make contact with 
conventional "weakly interacting" theories [3] if the 
electron filling in the U = ee Hubbard model is not 
too close to l/N, the critical value at which the 
insulating phase takes over. It is known that when 
electron interactions are involved one does not have 
to study transport properties alone in order to see the 
effects of  disorder [3]. Bulk effects of the type 
mentioned earlier show non-Fermi liquid behaviour 
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even when the disorder is only weak. By studying the 
one-loop RPA processes we hope to be able to 
understand how the effects of Gutzwiller projection 
combine with conventional disorder ideas. 

A further reason for investigating this problem 
concerns the behaviour close to 1 / N  filling. In the 
pure system the authors [12] found that the nature of 
the collective mode in the density fluctuation 
spectrum changes as this filling fraction is 
approached. Instead of "zero-sound" dispersion, 
the collective mode has a dispersion functionally 
identical to that of  the bare electron motion in 
the model - if the electron bands are parabolic then 
so is the collective mode. It is found that the bare 
electron mass not the Gutzwiller renormalized mass 
enters this dispersion relation - the electrons can 
move as a whole in this way avoiding the infinite U 
restriction. 

In this paper we shall investigate the nature of this 
mode when disorder is present - we shall see that the 
usual diffusion pole behaviour is completely over- 
whelmed in the region close to 1/N filling by a q4 
term. We shall see that this leads to a different 
behaviour in the self energy and low temperature 
specific heat compared to the conventional result. We 
should bear in mind, however, that the scaling of  the 
local charge with degeneracy means that the Fermi 
wavevector scales with an inverse power of the 
degeneracy, so that this result may be special to the 
model under consideration. 

Our starting point is the infinite U Hubbard 
model for which the Lagrangian can be written 

L(r )  = y ~ f i , +  m(r ) l (OlOr  - U + iAj(r))6;S 
ij,m 

+tqPiPJ]fJm(r)+ ZiA)( p}+ s Zf)-JmfJm-Q) ' m (1) 

where f/,m denotes a fermion operator at site i and in 
orbital m, # denotes the chemical potential, Ai 
denotes a Lagrange multiplier, originally introduced 
to enforce the infinite U constraint, and p; denotes the 
radial part of the Bose field that labels the empty site 
at site i. The quantity Q is allowed to scale with the 
degeneracy N, and is taken to be unity at the end of  
the calculation. The standard gauge transformation 
[13] has been performed so that the Lagrange 
multiplier is now time dependent. To the above 
Lagrangian we add the following terms in the case of  
site disorder 

Limp (r) : Z V(ri)fim(r)fim(r)' (2) 
ri 

where an electron at site r i experiences a potential 

V(ri) : Z u(ri -- Ra) 
a 

where R a denotes the set of impurity positions. The 
partition function is written in terms of  the above as 

= [ aDfDfDpDAexp  - dr(L(r)  + L~p(r))  , (3) Z 

o 

where the site disorder term is absorbed into the 
constraint term iAj(7")= iAj(r)+ V(rj). Integrating 
over the fermion fields yields the effective action 

L(r)  : Z iAi(p2i -- Q) - N Tr In 
i 

[o/or - u + if y)rij + tijpipj]. (4) 

In the standard 1IN  expansion method we 
separate out from the effective action a mean field 
component in which the Bose fields are replaced by 
their saddle point values, determined by minimization 
of the free energy. This yields the mean field 
equations 

N " 

iA0 = ---ZTrto'Gr(iw),/3 to 'J ~ (5) 

N 
p~ = a - ~ ~-~ TrGr( iw), (6) p %. ,  'J 

where Gij denotes the mean field propagator in the 
presence of  the impurities, and the trace is over lattice 
sites (and the inverse imaginary time derivative can be 
transformed into a frequency sum). The Gaussian 
fluctuation term is written in terms of  the Bose fields 
a s  

1 ~[iAi(w)iAm(w)SAim A + pm(CO)iAi(O: ) LGaus s -~- ~-~ 

+iAm(W)pi(w)S~iPm + pm(w)pi(w)S~Pm], (7) 

where the Gaussian order Bose propagators are given 
by 

Sim (~Oq) = aim(~oa)Gim(~Oa + ~Oq), 

Si  map (Wq) = -~1 ~[Gim(wa)Gmp(~ a + O~q)ptpi "F [i --+ p], 

S :mfO"q) = +  q)t..t,i 
¢o,, 

+ [m -+ ?] + [p - ,  s] + [i -+ s , ?  - ,  4, (8) 

where the square brackets represent similar terms, 
apart from the indicated swapping of indices. So far, 
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the impurity positions are still explicitly specified, and 
the configurational averages have yet to be carried 
out. Formally, the next step is to perform the disorder 
average, which we carry out by performing the 
Gaussian integral over the Bose fields and expanding 
the resulting free energy in a power series in the RPA 
bubbles 

F =  ~ ~ Tr ln[II 0 + II~] 
% 

= ~ T R  [ln II0] + ~_,[[(IIo)-lIIijl"/nl, (9) 
,~q n 

• where the II,y refer to the RPA components of the Bose 
propagators in equation (1). Following the standard 
approach to calculating the free energy in an 
interacting disordered system [3] we replace the 
disorder average of II~'j by (IIij) n in order to extract 
the dominant low energy diffusive corrections to the 
RPA bubbles. The next step is to perform the disorder 
average over the Bose propagators and we carry this 
out by keeping the ladder diagrams in the impurity 
potential (see Fig. 1). The free energy then becomes 

= ~ T r  ln(II 0 + (1-[ij)) (10) F 

and the Bose propagators have translational invar- 
iance restored and take the form: 

N Spp(q,03q) i A - - ~  tk+qGeX(k, 03a) 

P2 + a~-~ ~-~[12 (q, o/a, 03q) -~- II (q, 030, 03q)2S(q, o/a, 03q)] 
wa 

SA'P(q, 03q) ip[1 N = q - - ~ " ~ I i ( q ,  03a, o/q) 

X [1 d- niu(O)2Io(q, 03a, 03q)S(q, 03a, O/q)] 

Fig. 1. Ladder diagrams in the impurity potential that 
contribute to the RPA components of the Bose 
propagators. The single lines denote the electron 
Green's functions with self energies given by the Born 
approximation in the impurity potential. A similar 
diagram can be drawn for the quantity Lijkt(E,03) 
that enters into the decay rate calculation. 
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N SA;~(q, Wq) = ~ ~ Io(q, 03a, 03q) 

x [1 +niu(O)2Io(q,~,,,o/q)S(q,03a,03q), (11) 

where G ex denotes the exact quasiparticle Green's 
function appearing at the leading order in 1/N, 
averaged over the disorder. The In are given by 

In(q, 03a, 03q) -~" ~-~(tk + tk+k, )nG(kl, 03a) 
k 

x G(k+kl,03a +03q) (12) 

and the quantity S(q, 03a, coq) is defined by 

S(q, 03a, 03q) 

-1 
a(k + q, o. o/q)a(k, 

(131 
The impurity effects are taken into account both 

in the ladder sum entering the above expression and 
in the self energy corrections to the electron Green's 
function; 

i 
G(k, 03,) -I = i03a - p2tk -- ~ sgn (03a), (14) 

where, as in the conventional weak disorder 
approaches, we keep only the lowest order Born 
approximation to the impurity self energy in the 
Green's functions that enter into the ladder sum. The 
density of states at the Fermi level is given by N*(0) 
and the quasiparticle lifetime is given by 
1/(2r) = niu(O)2N*(O). Here u(0) denotes the zero 
wavevector component of the impurity potential. 
Adopting the same Born approximation for the single 
particle Green's functions that enter into the mean 
field equations (5) and (6) leads to these taking the 
form 

k ~  [1 ltan_l(2~.p2tk) ] (15) iA = t k ~ -  

It can be seen from these equations that the Born 
approximation spreads out the Fermi surface dis- 
continuity but otherwise leaves the mean field 
parameters unaffected (i.e. p and iA are still real). It 
is known from Anderson lattice studies [8] that more 
sophisticated ways of performing the disorder 
average, such the CPA make only small quantitative 
changes in the mean field parameters. Within Born 
approximation the mean field equations are, apart 
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from corrections of order N*(0)/~- << 1, identical to 
their values in the absence of disorder. Returning to 
the dynamic effects we evaluate the ladder sum 
contributions to the quantity S(q, wa, Wq) that enters 
the Bose propagators; for small Wq, q we find 

S(q, w~, Wq) 

= O(Wa)O(--03 a -- Odq) -~- Ù(--03a)O(Od a + Wq) (17) 
[ Wq I "r + Dq2"r 

Here D denotes the diffusion constant Ue-c2/d 
where d is the dimensionality and v F the renormalized 
Fermi velocity. In the low wavevector and low energy 
limit I, = 27r'rN*(0)(2t0)". After some manipulation 
we obtain for the Bose propagators 

q2 
SPP(q, Wq) = N~m ~ w~ka G(ka'wa) + (2top)2F(q, Wq), 

S;~P(q, Wq) = p[1 + 2toF(q, Wq)], 

Dq 2 
SAA(q, Wq) = r(q, Wq) = -UN*(O)z l w q + 2Dq2T ' 

(18) 

which defines F(q, Wq). Here to denotes the bare 
kinetic energy at the Fermi surface and we have used 
the mean field results to simplify the first two terms in 
SPC The qZ term [the first term in equation (18)] can 
now be rewritten using the second mean field 
equation (averaged over disorder) in terms of the 
band filling. 

Turning to the physical consequences of the above 
we note that the addition of the source field term 
coupled to the electron density allows us to derive in 
standard fashion the charge susceptibility 

x(q,w) = p2 SAa(q,w) (19) 
detS(q, w) 

which has a pole at the frequency ~Oq defined as the 
zero of  detS(q, Wq). On using the small w, small q 
expansion for the Boson propagators given in 
equations (16), the numerator of detS(q, w) reduces, 
after analytic continuation of  the frequency onto 
above the real axis, to a term proportional to 

q4 
iw - ADq 2 - a D ~ ,  (20) 

where A =  l + 2 N l t 0 l N * ( 0 )  and a = ( 3 / 4 ) q  2 
(m*/m) 2, and we have used the mean field results to 
write the q2 term in S pp in terms in terms of the 
Fermion density n and the mass enhancement 
m*/m= ( 1 - n )  -1. At low q and for moderate 
fillings the usual diffusion pole behaviour is 
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obtained, albeit with a modified diffusion constant, 
renormalised by the factor A. This factor plays the 
role of the Landau parameter in the weak interaction 
theories [3] and is reflected in the specific heat 
corrections at low temperatures, as we shall see. 

However, the important feature of  equation (20) 
lies in the behaviour of  this mode at larger q and close 
to 1IN filling, since the q4 term then becomes 
dominant. We note that for fillings close to 1IN 
this q4 term has replaced the usual diffusion pole. 
This type of "super-diffusive" mode has to our 
knowledge no classical analogy, except in elasticity 
theory. It may seem at first sight inconsistent to dwell 
on this q4 term when we have neglected other q4 terms 
in our derivation of the low wavevector, low energy 
behaviour of the Bose propagators in equation (2). 

However, these "conventional" q4 corrections 
arise on an energy scale set by "r - l  and on a 
momentum scale set by the diffusion constant D, 
and by comparing the above derived q4 term with 
these conventional Dq4(vrr) 2 terms we can see that it 
will win out when m*/m >> eFT >> 1. So for extremely 
large mass enhancements the above q4 term will 
dominate over the diffusive q4 terms, and will even 
dominate over the q2 term for q/k F > m/m*= p2. 
Hence asymptotically close to 1IN filling the q4 
behaviour will take over from the usual q2 form. 

Particularly interesting consequences of the pre- 
sent theory concern the low temperature specific heat, 
which in the weakly interacting disorder theories is 
expected to show novel temperature dependences, 
depending on the dimensionality [3]. In contrast non- 
interacting system show localization effects only in 
their transport properties. 

The free energy at Gaussian 1/N order can then 
be written 

-1  
F = 1__ Z In detS(q, w) = ~ E I d(w)n(w) 

2fl ~ q 

[ tan- ' (ADq2+WaDq4/k2)- tan- ' ( -~q2)l ,  (21) 

where we have replaced the sum by an integral over 
the Bose function n(w). For the case of moderate 
mass enhancements we obtain 

Cv z-p3[1-  A-3/2](T)  3/2 (22) 

in three dimensions and 

_ 1  T 

in two dimensions. Here the constants are given by 
Pz = (1/47r2) a (2), P3 = (1/21r2) a (5/2) b (0, 4). These 
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terms agree with the power law behaviour obtained in 
weakly interacting theories [3] with the difference that 
A enters instead of the usual Landau parameters. The 
functional agreement with earlier works in the small 
filling, moderate mass enhancement regime is gratify- 
ing and to be expected. 

The situation changes as we approach the 1IN 
fractional filling limit. This time the q2 terms may 
be neglected and the total specific heat results are 
instead 

{ T ~ 3/4 ( T )  3/2 
Cv : q3 ~ - ~ )  -P3 (24) 

in three dimensions where q3 = 0.41 and 

Cv = - q 2 ( T / a D )  t/2 - p2T In(T/D) (25) 

in two dimensions where q2 = 0.78. Thus at suffi- 
ciently low temperatures, near the critical metal-  
insulator filling, the specific heat develops an 
additional sublinear fractional power law depen- 
dence, demonstrating an even stronger dominance 
of the disorder contributions over the conventional 
linear temperature dependence, even for weak 
disorder. 

Turning now to the quasiparticle decay rate we 
first have to resolve a question as to its definition. 
Within the k-state description it is not possible to 
refer to quasiparticles when the Born self-energy 
already has such an elastic contribution, a s  in 
equation (14). The way out, as shown by Abrahams 
et al. [14] (see also [3]) is to start with the correct 
eigenstates of the non-interacting disordered quasi- 
particle problem-in our case these are the eigenstates 
of the disordered mean field problem, which we shall 
denote by ~ ( i ) .  The original Fermion states can be 
expressed in terms of these states and their creation 
operators + %,m, as follows 

I,, +. Z + . .  = aa,mffJa(t ). 

Performing the trace 
operators leads only to 
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(26) 

over the new Fermion 
a modification of the 

and the fluctuations are obtained from 

X~,~(a,b) 

= E ff~*(i)[iAi(Wa -- tOb)6i,J at- ti'JP[(Pi(Wa -- wb) 
l,] 

effective Fermion propagator [the argument of the 
logarithm in equation (4)] which in the new 
representation becomes 

Aa,#(iwa, iWb) = Ao,¢(iWa, iWb) + X~,fl(a, b) (27) 

where the now diagonal mean field propagator is 
given by the inverse of 

A~,fl(iwa) = Z ~*(i)[(iWa - # + i~j)6i,j + ti,jp2]fflfl(J) 
i , j  

(28) 

825 

+ pj(~.  - ~b)] 

+ l i , j~EPi (O)  a --¢db--Ogq)pj(Odq)~j(j). (29) 
- -  tOq 

The fact that the mean field propagator is now 
diagonal in the new representation means that we can 
extract a contribution to the Green's function from 
the Gaussian fluctuations which takes the form of a 
self energy 

~'(iWa) = I DpDAe(- ~ arL(r)T 

0-1 

× E~.ce, 6(a, c)A~ (c)X~.~(c,a), (30) 

although we are in fact only really interested in the 
impurity averaged version of this 

~ E ( i W ) - N I ( o ) ~ ( 6 ( E - E ~ ) ~ ( i w ) ) .  (31) 

We now follow Abrahams et al. [14] and perform the 
disorder average separately in (a) the exponential 
part, which give rise to the Gaussian Bose propaga- 
tors discussed earlier, and (b) the non-exponential 
component of equation (30). The latter is simply 
evaluated using the fact that equation (28) contains a 
combination of four eigenstates, one inverse propa- 
gator and a delta function. This combination may be 
related to the quantity 

Lijkt(E, wc) = 2@~([G~(E) - Gi~(E)]Gkj(Wc)), (32) 

where R(A) refers to the retarded (advanced) part of 
the leading order Green's function. The impurity 
average over the exponential gives a translationally 
invariant Gaussian functional form to the exponen- 
tial, so that the self energy becomes 

1 
EE(iwa) = 73 ~ Dp DA{Li~k(E, Wc)iA,(a- c)iAk(C -- a) 

+ [(Lijkt(E, We) + (i ~ j)]tijppi(a - c)iAk(C -- a) 

+ [Liikl(E , We) + (1 ~ k)]tklPiAi(a -- c)pk(c -- a) 

+ [Lij, t(E, ~c) + (i ~ j )  + ( j  --, k , k  ~ t , l  ~ k) 

+ (i ~ k , j  ~ i, k ~ l, l---. k)] 

x t q t k l p 2 p i ( a - - c ) p k ( c - - a ) } e x p ( - - J d r L ( r ) ) Z .  

(33) 
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The terms in braces refer to appropriate permutations 
of the suffices of  Lijkt(E, wc), and the functional 
integral over the Bose fields still has to be carried out. 
The crucial aspect of  this calculation lies in the fact 
that Lijkl(E,w) is itself related to a density-density 
correlation function, via the ensemble average of two 
Green's functions. This results, upon performing the 
disorder average over these two Green's functions, in 
a ladder-type summation leading again to a diffusion 
pole result for Lijkl(z,wc). The final result is that the self 
energy takes the form 

Ee(/w~) = 1 Z 27rN* (O)7"disczS(q, Z, Wa - Wq) 
Zp q,OJq 

× [SA 1 (q, Wq) + 4toSG 1 (q, Wq) + (2top)2S~A 1 (q, Wq)]. 

DISORDERED INTERACTING ELECTRON SYSTEM 

where 

(34) 

where 

1 
disczf(Z) = ~ [f(e  + i6) - f (e - i6)] 

Using the low w, q form of  the Bose propagators leads 
to the following form for the self energy 

~e(iwa) = 

-2iTto(q)N*(O)lwq + Dq2[ 
Z [Wq "~- A(q)Dq 2] [w a -- O.)q -]- iE + Dq 2 sgn (03 a - -  t, d q ) ]  ' q, wq 

(35) 

where A(q) = l + 2N*(O)Nlto(q)l, with to(q)= to-  
nfq2/8mp 2. Note the appearance of  two diffusion 
like terms in the denominator. The sum over 
frequency may now be converted into an integral 
over Bose functions and the zero temperature limit 
can be taken with the result that on the mass-shell 
(E - -w) ,  where we have analytically continued wa 
onto the real axis, we obtain for the imaginary part of  
the self energy 

Imago(w) - N*(0) t°(q) In 1 + 
27r Z 1 + A(q) (ADq2) 2 q 

- In 1 . + ~  (36) 

and we proceed to analyse this expression in the limits 
of moderate fillings and close to the metal-insulator 
transition. For  moderate fillings we may replace to 
and A by their low wavevector limits, and perform 
the simple integral to obtain 

I m ~ ( w + i 6 ) =  ad [ 1 ] A~o (37) ~ - 1  w a/2 2 _  A~, 
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a = 4 ~ S d  d2(d-2)/2 

and Sd is the solid angle, for d := 2 or 3. This form is 
identical to that in weak interaction theories [15] 
except that we have a first principles calculation of  
the micropic parameter 

2NN*(O) ] to ] 
A~ = 1 + 2NN*(O) [ to ]" 

On the other hand, close to the critical metal- 
insulator filling the q2 components of  t0(q), A(q) 
dominate, and we obtain 

ImP~(w+i6) = ~ f (d,  8) - f ( d , 4 )  -~--- , 

(38) 
where/ )  = aD/k2F, with a defined after equation (18), 
and we have introduced the constants 

f (d,n)  = i dqqd-qn[1 + q-n]. 
0 

Thus, in addition to the expected w d/2 behaviour we 
also obtain a ~t; d/4 component at low energies. 

In conclusion, we have studied the effects of  weak 
disorder on the U = 00 Hubbard model, using the 
1/N expansion to treat the strong correlation effects, 
and summing ladder graphs in the impurity potential. 
For  fillings away from the critical value, the usual 
diffusion pole behaviour is found in the density 
correlation function, with the infinite U effects 
reflected in a Gutzwiller type mass enhancement. 
The 1/N contributions to the decay rate and the 
specific heat show the same temperature dependence 
as found in previous weak interaction approaches. 
However, as the filling approaches its critical value, 
the diffusion pole behaviour is modified, the q2 term 
being replaced by a q4 contribution. The specific heat 
at the 1/N level now shows sublinear temperature 
dependences (T 3/4 and T 1/2 in 3D and 2D) while the 
decay rate acquires a w d/4 component. 

Thus, we have shown, using a combination of 
standard weak disorder techniques, combined with 
recently developed approaches to the strong correla- 
tion problem, that novel non Fermi liquid corrections 
can be found to the decay rate and specific heat in 
disordered strongly interacting electron systems. 
Extensions of the present work to the t -J  model 
and Anderson lattice are planned. 
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