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Abstract-A new notion, dynamically equivalent outputs, is developed to aid in controller synthesis for 
nonlinear systems. A dynamically equivalent output simplifies the controller design problem and, when 
controlled to its set point, guarantees that the system’s primary output is also controlled to its set point. The 
use of this notion is demonstrated for three classes of systems. For systems with linear state equations but 
a nonlinear state/output map, conditions are derived for the existence of a linear dynamically equivalent 
output. Analogous conditions are derived for nonlinear systems for which the state equations can be made 
linear by means of a coordinate transformation and state feedback. Design of a controller in terms of the 
new output is straightforward, leading to a response which is nonlinear in the primary output. Simulations 
for a chemical reactor system using a coordinate transformation, state feedback, and a dynamically 
equivalent linear output are given. Finally, for general nonlinear systems, the use of input/output linearizing 
feedback in terms of a dynamically equivalent output is explored. Another chemical reactor system is 
simulated to demonstrate this approach. 

1. INTRODUCTION 

The key idea in a linear inferential control structure is 
to design a controller, not for the measured output, 
but for an auxiliary output that must be inferred 
on-line. This is necessary when it is not practical or 
physically possible to continuously measure the de- 
sired output. In this work, a similar control structure 
will be used for nonlinear systems. However, the un- 
derlying motivation will be to define auxiliary outputs 
that simplify or in some way aid in the design of the 
controller. 

It is most natural, from a control point of view, to 
define auxiliary outputs that are “equivalent” in some 
sense. Loosely speaking, the term equivalent output 
will be used to refer to an output for a system, other 
than the primary controlled output of the system, that 
goes to its set point if and only if the primary output 
goes to its set point. It is well known from systems 
theory that by changing the output, both the process 
zeros (or zero dynamics) and the static gain can be 
affected. Therefore, it is natural to consider two cases: 

(1) Require the equivalent output to have the same 
static gain as the primary output, but with pos- 
sibly different zero dynamics (statically equiva- 
lent outputs). 

(2) Require the equivalent output to have the same 
zero dynamics as the primary output, but with 
possibly different static gain (dynamically 
equivalent outputs). 

The general control structure which will be developed 
for use with either type of equivalent output is shown 
in Fig. 1. 

t Present address: Dow Chemical Co., 1400 Building, Mid- 
land, MI 48667, U.S.A. 

Statically equivalent outputs were defined and their 
use for nonminimum phase compensation for nonlin- 
ear processes was detailed in Wright and Kravaris 
(1992). The notion of statically equivalent outputs was 
also useful for deadtime compensation for nonlinear 
processes (Wright, 1990). 

This paper defines the notion of dynamically equiv- 
alent outputs. The first, and simpIest class of systems 
for which this type of equivalent output is useful is 
nonlinear processes in which the only nonlinearity is 
the static gain of the process, e.g. pH processes. These 
notions are applied theoretically to pH processes in 
Wright and Kravaris (1991), and experimental results 
are given for a laboratory-scale pH system in Wright 
et al. (1991). The second class of systems for which 
dynamically equivalent outputs are useful are ones 
where the nonlinear process dynamics meet the 
Su-Hunt-Meyer (SHM) involutivity conditions. The 
dynamics of the processes can be made linear via state 
feedback. However, the process output is typically 
a nonlinear function of the states in the new coordi- 
nate system. Dynamically equivalent outputs will also 
be applied to a third class of systems where the dy- 
namics are nonlinear, the state/primary output map is 
nonlinear, and the state/dynamically equivalent out- 
put map is also nonlinear. For such systems, where it 
is assumed that controlling the dynamically equiva- 
lent output is physically more meaningful than con- 
trolling the primary output, the globally linearizing 
controller structure (GLC) (Kravaris and Chung, 
1987),can be applied. Note that for all three classes of 
systems, the closed-loop response in terms of the dy- 
namically equivalent output will be linear, but the 
closed-loop response of the primary output will be 
nonlinear. 

Throughout this paper, the system under consid- 
eration -will be a SISO nonlinear system with two 
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Fig. 1. General output feedback control structure for use with equivalent outputs 

different outputs of the form 

2 =f(x) + g(x)u 

Y = h(x) (1) 

y* = h*(x) 

where UER, XER”, yeR is the primary process out- 
put, and y* E R is an auxiliary output. In Section 2 of 
this paper, the mathematical definition for dynam- 
ically equivalent outputs will be given. The use of 
dynamically equivalent outputs for systems with lin- 
ear dynamics but a nonlinear state/output map will 
then be investigated. The combination of dynamically 
equivalent outputs and SHM linearizing state feed- 
back for systems with nonlinear dynamics will be 
explored in Section 4. Computer simulations for 
a nonisothermal CSTR example are used to illustrate 
this method. Section 5 is concerned with the more 
general question of synthesizing nonlinear controllers 
via dynamically equivalent outputs to give nonlinear 
closed-loop dynamics. A nonisothermal CSTR com- 
puter simulation example is also used to demonstrate 
this result. 

2. DYNAMICALLY EQUIVALENT OUPUTS 
The notion of dynamic output equivalence refers to 

the case where the auxiliary output has a different 
static gain but the same zero dynamics. To explore 
this concept, it is first necessary to define the level sets 
of the output functions. Given an arbitrary value of 
the output y,, the corresponding level set of h(x) is 
given by 

l,, = {x~R”lh(x) = yO} (2) 

and similarly, given an arbitrary value yt , the corres- 
ponding level set of h*(x) is given by 

I,,; = {x~R”lh*(x) = y,*} (3) 

There are two ways in which the requirement of 
same zero dynamics may be enforced. The first way is 
to force the equivalent output to have the same zero 
dynamics at every set point. 

Definition 1: Consider system (1). The outputs y and y* 
are said to be globally dynamically equivalent ifh(x) 
and h*(x) have the same level sets, i.e. 

and 

Vy; 3y, such that 1,” = rvz. 

An immediate consequence of the definition is that 
there is a real function of a real variable cp such that 

h(x) = cPCh*(x)l. (4) 

Indeed, the above definition of dynamic equivalence 
establishes the existence of a bijection cp from h*(R”) 
onto h(R”) such that 

&;, = 5: VYX 

and 

hence eq. (4). 
Another immediate consequence of this definition is 

the following. Consider the augmented system given 
in eq. (1) with y and y* globally dynamically equiva- 
lent, and let d be the equilibrium set 

8 = {XER-I~LERR:~(X) +2g(~) =o}. (5) 

Furthermore, take y0 such that 

I = I,, n c # 8. 

By definition, the (unforced) zero dynamics is the 
dynamics of the system when the output is con- 
strained to a constant value (Byrnes and Isidori, 
1985). When y = y0 or y* = y$ = up-‘, the states 
of the system will evolve on the same manifold. Since 
the choice of output does not affect the state equa- 
tions, the u-y and u-y* systems clearly have the same 
(unforced) zero dynamics for every y,, locally around 
every element of I. 

An example illustrating the use of a globally dy- 
namically equivalent output is the measurement of 
flow through an orifice plate. The flowrate, F, is pro- 
portional to the square root of the pressure drop 
across the plate, AP, which is the measured output 

F CT (AP)“‘. (6) 

A globally dynamically equivalent output for this 
system is the square root of the measurement, i.e. 

y* = (AP)“2 (7) 

This example can be found in Shinskey’s book on 
process control (1988). Another example is pH pro- 
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cesses when the modeling is done in terms of titration 
curves, as developed in Wright and Kravaris (1991) 
and Wright et al. (1991). 

The other method by which a dynamically equiva- 
lent output may be defined is to require the equivalent 
output to have the same (unforced) zero dynamics 
only at the set point value of the process output. Thus, 
for each value of the set point, it is possible to have 
a different equivalent output defined. 

Definition 2: Consider system (1). Given y0 and yg , the 
outputs y and y* are said to be pointwise dynamically 
equivalent at y0 und yz, respectively, if the correspond- 
ing level sets are equal: 

An immediate consequence of this definition is that 
the (unforced) zero dynamics of the u-y and u-y* 
systems are guaranteed to be the same at the particu- 
lar points y,, and y,*, locally around every element of 
I. 

A more intuitive interpretation of the notion of 
dynamic equivalence arises from the observation that 
the set point value of the output forces the states to 
have a certain relationship with respect to each other, 
as defined by the output map. A dynamically equiva- 
lent output for the system at that set point is one that 
forces the states to have the same relationship with 
respect to each other. 

Remark 1: Note that for linear output functions, the 
notions of global and pointwise dynamic equivalence 
clearly coincide. 

3. DYNAMIC EQUIVALENCE TO A LINEAR OUTPUT 
Dynamically equivalent outputs are useful in the 

case of a linear or nearly linear system with a nonlin- 
ear state/output map. For such systems, if a dynam- 
ically equivalent output can be defined which is linear 
with respect to the state variables, a linear controller 
may be used. Consider the system 

1= Ax + bu 

y = h(x). 

(9) 

Regulating the output, y, to a given set point value, ye, 
will enforce a certain relationship between the states, 
x, given by h(x) = yO. The question is whether that 
relationship is linear. From Definition 1, global dy- 
namic equivalence to a linear output simply means 
that h is a function of a linear combination of the 
states 

4x 1,. , x,) = cp(ctx, + . + c&x,) (10) 

where rp is a real function of a real variable and 
ct, _ . . , c,, are real numbers. The following theorem 
gives necessary and sufficient conditions that must be 
met for a globally dynamically equivalent output to 
exist and means for calculating the coefficients. 
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Theorem 1: Let X be an open, connected set in R” 

representing the operating region and h(x) be a well- 
defined and smooth scalar function on X. Assume that 

dh 
z (x) # 0 for every x E X. 

Then h(x) is globally dynamically equivalent to 
y- = C,Xl + . . + c,x, ifand only if 

$1 
~ = constant = ci 

$4 

Vj = 1,2, _ . , n - 1 (11) 
C” 

” 

where the index n is such that 

g (xl # 0. 
n 

Proof: Assume that h(x,,. . . ,xn) = rp(clxi + . . . 
f c,x.). The partial of h with respect to xi is given by 

dh 
- = Q’(C,X, + - . + c,x,)c, 
dXj 

vj = 1,2,. . . , n. 

Then 

dxj _ ci 
ah 

-< Vj= 1,2 ,..., n-l. 

3% 

Assuming that the partial differential equations 
given in eq. (11) hold, a particular solution is 

h(x) = ~1x1 + . . * + c,x,. 

The general solution is therefore given by 

h&l,. * a, X”) = rp(ClXl + . . . + C.X.) 

and this shows that h(x) is globally dynamically 
equivalent to 

y* = crxt + . . + C,X”. 

The case of pointwise dynamic equivalence to a lin- 
ear system is also interesting and useful in applica- 
tions. The following proposition gives necessary and 
sufficient local conditions which must be met in order 
for a linear pointwise dynamically equivalent output 
to exist for every set point value of ye. 

Theorem 2: Let X be an open, connected set in R” 

representing the operating region and h(x) be u well- 
defined and smooth scalar function on X. Assume that 

E (x) # 0 for every x E X. 
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Then the level sets of h will be locally planar around 
every point of X if and only if 

Rank 

for every x E X. Hence eq. (14) is equivalent to 

Proof: It must be shown that for a given arbitrary ah ah a’h ah ah a2h 
y*eh(X) and xO~lY,, lYO n N(x”) is planar, where 
N(x”) denotes a neighborhood of x0, if and only if (12) 

z a~ ax,x, + G dx ax.x 
’ ” n I I 

is satisfied for every x E lva n N(x”). By appropriate dh 

-(-> 

z d’h dh dh d’h 
permutation of indices, set n to be an index for which ax, axixj dxiaxj ax; -0 

g (x0) # 0. 
for i = 1,2,. 

” 
Then h(x1,x2,. . , x,) = y,, is uniquely solvable for 
x, in a neighborhood of x0. This defines a smooth 

Equivalently, 

.,n-1 and j=l,2 ,._., n-l. 

(17) 

implicit function 

%l=WIix2,.‘~,x.-i) (13) 

locally around x0. Clearly, h(x, , x2,. . . ,x.) = y, 
will represent a hyperplane if and only if 
l-(X1,%,. -. 3 x. _ 1 ) is a linear function, i.e. 

a3- 
ax,axj 6 lrX?_.. ‘. 9 X.-l) = 0, 

foralli=1,2 ,..., n-landj=1,2 ,._., n-l. 

det 

0 
ah ah 

axi dx, 

ah a2h d2h --- 
axi ax,axj axiax, 

ah a2h a2h - 
8% ax.ax, n dX2 1 = 0 

(14) 
i= 1,. . ., n-landj=l,...,n-1. (18) 

Applying the implicit function theorem to eq. (13) 
yields 

$x1,. . . .X.-l) = 

gcx, ,..., x”-l,r(xl,...> X,-l)1 
1 

$x1,.. 
. (15) 

. r.h,~hr.. ,x,-di 
n 

Differentiating eq. (15) with respect to Xj and using 
eq. (15) results in 

ah ah d”h z a2h ah ah d2h --- ----- 
m 

-zz axiax, axjx. axixj ax, axj ax; 

ax* x, 
(16) 



Equivalently, for every fixed j between 1 and n 
the matrix 
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1, are linearly dependent for every j. Equivalently, the 
matrix 

0 ah Jh 
dx, ax, 

Jh J2h d2h 
JXl ax, dx, ax, ax, 
dh d2h d2h 

--- 
ax2 ax, ax, dx2ax, 

ah d2h a2h 
axi axiaxj axiax, 

. 

ah J2h J2h 

dx. ax,axj e 

does not have full rank, i.e. the column vectors 

0 

ah 

JXI 
Jh 
ig 

dh 

zg 
a2h 

ax,&, 

d2h 

ax, ax, 

Jh a2h 
ax, aXndxj 

ah 

ax, 
d2h 

axlax, 

and 
J2h 

ax, ax, 

J2h 

JX,z 

0 
ah ah _ 
G ax2 

. . Jh _ . . 
axj 

Jh 

ax, 
al d2h d2h d2h d=h _ _ ~ . . . ~ . . 
ax, ax: axlax ax, ax, ax, ax, 

dh J2h d2h d2h a2h - _ . . . ___ . . . 
ax2 ax2axl ax: ax2axj ax2ax. 

ah J2h d2h 
ax, axmax, axmax 

ax2h 
axmax, 

J=h 
ax; 

has at most two linearly independent columns. Fi- 
nally, it is easy to see that the above matrix cannot 
have Rank = 1 or be identically zero since it would 
correspond to a constant h(x) (zero gradient for all x). 
Hence the result. 

Remark 2: When the condition (12) is satisfied for 
each different yO, a different linear output, in general, 
is obtained. 

Remark 3: This theorem implies that for every 
y,, I,, n X are planes. In some situations, the condi- 
tion (12) may be satisfied only at a particular ZYO. 
A pointwise dynamically equivalent output then may 
be defined only for that particular point y,~. 

Remark 4: From the point of view of checking the 
conditions in particular applications, it is more con- 
venient to use conditions (17) where the nth coordi- 
nate is such that 

A simple code in a symbolic mathematics package can 
be used to check these conditions for a particular h(x). 

Remark S: It is clear from eq. (17) that by interchang- 
ing i and j the same condition is obtained. For this 
reason the number of independent conditions is 
n(n - 1)/2. 

Remark 6: A globally dynamically equivalent output 
satisfying theorem 1 will also satisfy theorem 2. How- 

ever, a pointwise dynamically equivalent output sat- 
isfying theorem 2 will not in general satisfy theorem 1. 

Remark 7: In general, the coefficients ci for a point- 
wise dynamically equivalent linear output must be 
calculated numerically. If h satisfies theorem 2, then 
r is linear. Given the setpoint, yO, it is straightforward 
from eq. (13) to calculate points on the (n - l)-dimen- 
sional plane and the coefficients that describe it. 



3212 RAYMOND A. WRIGHT and COSTAS KRAVARIS 

Corollary: Let X he an open, connected set in R” and 
Y an open, connected set in R. Suppose the output is an 
implicit function of the states, i.e. 

H(x, y) = 0 (19) 

where H is a well-defined smooth function which is 
uniquely solvable in y for every x E X. Assume that 

$x, Y)#O V(X,Y)EXX y. (20) 

Then the level sets of H will be locally planar around 
every point in X x Y if and only if 

Rank 

0 g (x3 Y) g(xvY) . . 

g (x3 Y) $ (x9 Y) 
1 

&(X.Y) . . 

j$ (x9 Y) &(X.Y) $X.Y) . . 

g k Y) 
n 

-g& (XT Y) g&(X> Y) . 

Consider the following output: 

(26) 

It is straightforward to verify that this output map 
satisfies the condition (12). Given an arbitrary positive 
set point value, y = y,, a pointwise dynamically equi- 
valent output for the system is 

Y* = ccl - Y(Y~PIX, + CB - ~(~09, (27) 

g (x. Y) 
n 

-g&(X? Y) 

& k Y) = 2 (21) 

for every (x, y) E X x Y. 

Proof: The proof of the corollary goes along the same 
lines as the proof of theorem 2. Selecting n to be an 
index for which 

g (x, Y) # 0 
” 

an implicit function is defined 

x.=~(x,,xz,.~-,~“-,;Y,) (22) 

as the solution of 

H(x I.x,,....x,;Y,)=o. (23) 
The level sets of H will be planar if and only if, for 
every Y,, 

a21- 
-(x1,x2,.. .,x,-1)=0 axiaxj 

foralli=1,2 ,..., n-l and j=l,2 ,.._, n-l. 

(24) 
But 

with the set point value 

y: = 0. (28) 

Finally, as is shown in detail in Wright and 
Kravaris (1991), all pH processes modeled in terms of 
concentrations where the chemical equilibria are fast 
can be described by 

2 = Ax + bu (29) 

10ey - 10y-14 + f a,(y)x, = 0 
i=1 

(30) 

where the output map is implicitly defined by eq. (30). 
The conditions of the corollary are satisfied as the 
second partials of the output map are all zero. It is 
easy to see that a pointwise dynamically equivalent 
output exists and is given by 

Y* = - i ai( 
i==l 

(31) 

8HdH dZH --- 
a2r axi ax, axjx, 

, dH dH @H aH = i3=H 8H aH a=H 

dXj ax. axix. c-1 ax, -= ax,axj - axi axi ax,2 

dX,Xj (25) 

with set point value 
and this leads to eq. (21) following the same argument 
as in the proof of theorem 2. 

(yo*)SP = 10-Y” - 1O’Y”_ 14) (32) 

The use of pointwise dynamically equivalent out- for every set point value y. of y. Thus the dynamically 
puts is best illustrated through two simple examples. equivalent output makes it possible to design a linear 
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controller based on the linear u -Y* system without 
the nonlinear static gain of the original process. For 
these systems, the equivalent output has the added 
physical interpretation of being the strong acid equiv- 
alent of the system. 

where u,.. . . , a,- i, 01, are scalar adjustable para- 
meters, then in closed loop 

i, = 52 

4, = 53 

4. USING DYNAMICALLY EQUIVALENT OUTPUTS IN 

SHM LINEARIZABLE SYSTEMS 

The use of SHM state feedback to stabilize a non- 
linear CSTR has been demonstrated in Hoo and Kan- 
tor (1985, 1986). In this section, conditions are given 
for the existence of a dynamically equivalent output 
for a SHM linearized system. Consider a nonlinear 
SISO system of the form 

(38) 

L-1 = e. 

in=-a.<1-a,_l~2- ... -a,<,+u 

Y = h(T_‘(<)) 

which is a linear controllable system with character- 
istic polynomial 

1 =f(x) + g(x)u (33) 

Y = h(x) 

s” + a,s”-’ + . . . + a,_ ,s + a, 

that satisfies the following conditions: 

(*) the vector fields g(x), adig(x . . , ad;-‘g(x) 
are linearly independent 

(**) the set of vector fields (g(x), ad>g(x), . , , , 
ad;-‘g(x)} is involutive 

but a nonlinear state/output map. Note that eq. (38) is 
of the form eq. (9) discussed in the previous section. 

The output of the system (38) will be linear in 
{-coordinates if (Tarn et al., 1987) 

dh(x)ER-span{dq(x), dL,q(x), . . . , dL;-‘q(x)} 
(39) 

i.e. 

Then the system of n - 1 first-order partial differential 
equations 

dq(x) -I 

dL,q(x) 
dh (x) 

ii1 

= constant. (40) dW 
i: !Ji(X),=O 

i=l “Xi 

5 (ad:g)i(x) 9 = 0 
iz, - OXi 

(34) 

admits a nontrivial solution, w = q(x), and the trans- 
formation (Hunt et al., 1983) 

1 
q(x) 

Lf q(x) 
5 = T(x) = i 1 (35) 

L L;-- l q(x) J 
system of is invertible and transforms the dynamic 

eq. (33) into the natural coordinate form 

(36) 

i,-1 = 4. 

When this system is subject to the state feedback 

dL;-lq(x) 

Note that the above condition is extremely restrict- 
ive; it can only be satisfied when r = n or the forced 
zero dynamics of (38) are linear. As a means around 
this restriction, the notion of distinguished outputs 
was proposed by Kantor (1987). A distinguished out- 
put is defined as any output that corresponds to r = n. 
Such an output clearly meets the conditions given 
above for total linearization [the choice q(x) = h(x) 
satisfies (34) and (4O)J However, distinguished out- 
puts will, in general, not be equivalent to the given 
original output of the system and, because they induce 
maximal relative order, will ensure the most indirect 
effect of the manipulated input on the output. 

Using the notion of dynamically equivalent ouputs, 
it is still possible to achieve the purpose of total 
linearization for the original system output. If h 0 T- ’ 
is nonlinear but dynamically equivalent to a linear 
output, that dynamically equivalent linear output can 
be used in the control structure. The conditions under 
which this can happen will now be derived. 

Remark 8: Global dynamic equivalence in the trans- 
formed coordinates implies 

h(T- ‘(0) = cp(ci<t + c2t2 + . . . + ~5.). (41) 

Thus, a globally dynamically equivalent output exists 

IA= 
u - LTq(x) - aI L;-’ q(x) - . . - cr,- I Lfq(x) - w(x) 

L&y 1 4x1 
t37j 
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for a system of the form of eq. (38) if and only if 

h(x) = cp(c,q(x) + c2 LfCI(X) + - - + c,L;- l q(x)) 
(42) 

Proof: Since it is desired to have pointwise dynamic 
equivalence in terms of the transformed coordinates, 
let h‘= h( T-‘(c)), then from theorem I of the previous 
section 

Rank 

where cp is an arbitrary function. Necessary and suffi- 
cient conditions for the existence of a globally dynam- 
ically equivalent output and a means of calculating 
the coefficients are straightforward from theorem 1. 

The following proposition gives necessary and suffi- 
cient local conditions that must be met in order for 
a linear pointwise dynamically equivalent output to 
exist for a system of the form eq. (38). 

Theorem 3: Let X be an open, connected set and h(x) be 
Q well-defined and smooth scalarfunction on X. Assume 
that 

g (x) # 0 

fir every x E X, and that the conditions ( * ) and ( **) are 
satisfied for every x EX. Denote by q(x) a nontriuial 
solution of the set of PDEs (34), and by T(x) the vector 
function defined by eq. (35). Then the level sets of 
h 0 TM’ will be 1ocaUv nlanar around every point of _ . 
T-‘(X) if and only if 

0 Y,(x) Y,(x) 

Rank 

for every x in X, where 

. . . Y,(x) 

dq(4 

d&+4 

IL;- i q(x: 

r 

-1 

1 II =2 

(43) 

WI W y,(x) . . Yr,(x)l = dW4 I 

= 2 (45) 

The first row and first column of this matrix contain 
0 and the gradient of F{(5). The remaining matrix is the 
Hessian of F(t). The gradient of h(c) is given by 

d&c) = [dh(x) (g)-’ ] (46) 

or 

(47) 

x=T-l(<) 

Set 

Wx) ‘y.?(x) 

The Hessian of h((r) is then given by 

aK 
d a51 (8 

[ _I 
Hessian [6(t)] = 

d -& (5) 
[ 1 2 

. . . ym(x)l. 

(48) 
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Combining the gradient and the Hessian leads dir- 
ectly to the result. 

Remark 9: The Tarn et al. (1987) condition 

dh(x) = constant (40) 

or 

CY I (x) Y*(x) . _ . Y,(x)] = constant (50) 

is clearly a special case of the proposition. 
The controller structures used for combining the 

SI-IM linearizing transformation with a dynamically 

equivalent output are shown in Figs 2-4. If state 
feedback is possible, the structure used with either 
a globally dynamically equivalent output or a point- 
wise dynamically equivalent output is as shown in 
Fig. 2. If state measurements are not available and 
output feedback is used, the resulting structure differs 
depending on whether the equivalent output is glo- 
bally or pointwise dynamically equivalent. From 
eq. (41) it is clear that a globally dynamically equiva- 
lent output is of the form 

Y = cp(Y*). 

Thus, a state estimator is not required in the calcu- 
lation of the equivalent output and the output feed- 
back structure shown in Fig. 3 may be used. For 
pointwise dynamically equivalent outputs, the struc- 
ture shown in Fig. 4 would be used. 

Example 
The control method is illustrated through the fol- 

lowing example. Consider a CSTR with the irrevers- 
ible, first-order reaction 

A-+ B. 

The system is governed by the equations 

dc, 
- = ;Gl,_ 

dt - C”) - W) CA 

$+T)+k(T)C,~+ 
P 

-& (51) 

Littear Contdkr v 
with --) SHM & 

integral Action feedback x = f(x) + g(xh 

T 

Linear Equivalent 
I output Map 

5 Transfomation 

in Natural 
to Nalural 

Coordinates 
Coordinates 

Fig. 2. State feedback controller structure for use with SHM feedback and dynamically equivalent outputs. 

Fig. 3. Output feedback controller structure for use with SHM feedback and globally dynamically 
equivalent outputs. 
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Linear Controller v 
with - SHM L 

Integral Action feedback 

/\ 

3 
t Estimator * 

Linear Equivalent 
output Map 
in Natural 

Coordinates 

2 Transfomution 
m Natural 

Coordinates 

Fig. 4. Output feedback controller structure for use with SHM feedback 
equivalent outputs. 

where 

k(T) = AOe-E’RT 

the manipulated input is u = Q 

the controlled output is y = T. 

A transformation to natural coordinates is obtained 
by setting the first coordinate equal to any function of 
CA. The simplest transformation is given by 

51 =CA 

e2 = ; (C”,, - C,) - k(T)CA. (52) 

The SHM state feedback is then given by 

where 

k-W)) 

and the model in natural coordinates is then 

(1 = r2 

(54) 

and pointwise dynamically 

Thus, the state equations have been made linear by 
the feedback, but the output is nonlinear. This is true 
regardless of the transformation chosen in eq. (52). 
Notice that eq. (54) is of the same type as the first 
example in the previous section [eq. (26)]. It is 
straightforward to verify that the rank condition (12) 
holds for the output map in eq. (54). A linear point- 
wise dynamically equivalent output for the process in 
natural coordinates is 

Y* =k(T,,)<l +A,,-ti)+h (55) 

In the original coordinates (55) becomes 

Y* = [UT,,) - k(T)1 CA. (56) 

Physically, controlling the equivalent output to 
y$, = 0 has the obvious interpretation of controlling 
the reaction rate. 

Discrete-time simulations were performed using the 
parameter values given in Table 1. At the given condi- 
tions, the reactor exhibits three steady states. The 
desired steady state for operation is the middle, or 
open-loop unstable one. For the simulations that fol- 
low, the SHM state feedback is tuned so that the 
resulting system follows first-order (linear) dynamics 
in y* with the time constant l/L. This corresponds to 
choosing 

ai = k(T,,) + i + 3. 

The first disturbance studied is an unmeasured 5” 
change in the inlet temperature. The open-loop re- 
sponses in T and y* are shown in Figs 5 and 6, 
respectively. Notice the nonlinear behavior exhibited 
in these figures and that the relatively small inlet 
disturbance has a large effect on the final steady state. 
For this simulation study, only the temperature is 
assumed to be measured; a reduced-order state ob- 
server that simulates the first equation of eq. (51) is 
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Table 1. Parameter values used in simulations 

C,, = 1.5 kmolmm3 
A0 = 1.5 x IO6 m3 krnol-‘~-~ 
E=58,000kJkmol~‘K~1 
p= 1000kgmm3 
C,= I kJkg_‘“C-’ 
F=0.1m3s-’ 

-AH, = 41,800 kJ kmol-’ K-’ 
R = 8.314 kJ kmol-’ K-’ 
v= lOrn3 

Tl = 30°C 
T*p = 100°C 

Samphng period = 20 s 

Fig. 5. Open-loop temperature response for 5” change in 
inlet temperature. 

-0.005 I\ 

Fig. 6. Open-loop response in y* for 5” change in inlet 
temperature. 

used for concentration. The control structure em- 
ployed is that of Fig. 4 with the external controller 
being a PI in terms of y*_ The closed-loop simulation 
results for T, y*, and Q, using K, = 0.02 and 
I = i/r, = 0.03 are shown in Figs 7-9, respectively. 
These results show a fast response in y* and a return, 
without offset, to the set point for both y* and T. 

Another set of runs was performed where the dis- 
turbance was an increase in the inlet concentration 
from 1.5 to 1.6 kmol mm3. The control simulations for 
this case assume that all state measurements are avail- 
able. The open-loop responses for reactor temper- 
ature, outlet concentration and y* are shown in Figs 
10-12, respectively. Again notice the resulting non- 
linear behavior and the large difference in final 
steady state. 

CES 48:18-H 

% 102- 

$ 

i,k 
c”’ 

98 ,,,, 
0 

,“‘,‘,,’ 
100 2 5 

Tii (s) 
0 

Fig. 7. Closed-loop temperature response for 5” change in 
inlet temperature. 
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*z 
-0.4- 

-0.6 ’ , , , , , , , , 
100 2 

, , , , , , , , , , 

3@J 400 ! 
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0 

Fig. 8. Closed-loop response in y* for 5” change in inlet 
temperature. 

Two different external linear PI controllers were 
used. The first uses Kantor’s distinguished output, 
which for this example is CA. The second uses the 
pointwise dynamically equivalent output (56). The 
results using the distinguished output are shown in 
Figs 13-16. The tuning parameters for this run are 
K, = 0.0005 and I = l/r1 = 0.03. Figure I3 shows the 
reactor temperature response. Note that there is a 2.4” 
offset in the final value. This results from the fact that 
T and CA are not dynamically equivalent. The re- 
sponse of C, is shown in Fig. 14. Notice that CA is 
controlled back to its initial point, which is its set 
point value. The changes in the manipulated input, Q, 
are shown in Fig. 15. The resulting trajectory of y* is 
shown in Fig. 16. Notice that a similar offset to the 
one noted in T is exhibited in this figure. 



Time (s) 
Fig. 9. Changes in Q in response to a 5” change in inlet 

temperature. Fig. 12. Open-loop response in y* for inlet concentration 
disturbance. 
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Fig. 10. Open-loop temperature response for inlet concen- 
tration disturbance. Fig. 13. Closed-loop temperature response using distin- 

guished output. 

“1 L 
o.o’,,,, ,,,I 1,1, ,/I, 

1 2&I 3&l 
Time (s) 

Fig. 11. Open-loop response in C, for inlet concentration 
disturbance. 

Simulation results using the pointwise dynamically ing y* profile is shown in Fig. 18. Notice that there is 
equivalent output in the state feedback structure of no offset from set point in the final steady state in 
Fig. 2 are given in Figs 17-20. The external controller either of these values. The changes in the manipulated 
was again a PI. The PI and SHM tuning parameters input, Q, are shown in Fig. 19. The response of CA is 
are Kc = 0.02 and 1 = l/z, = 0.03. Figure 17 shows shown in Fig. 20. As is expected, when there is no final 
the response in reactor temperature. The correspond- offset in T and y*, there is a difference between the 

RAYMOND A.WR~GHT and COSTAS KRAVARIS 

x 10-l 

104 

3218 

Time (s) 

Fig. 14. Closed-loop response in concentration using distin- 
guished output. 
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Fig. 15. Changes in Q using distinguished output. 

-O.lrni - 
-0_125L,, r,,, ,,(, //,, ,,/, 

1 2 300 4 5 
Time (s) 

Fig. 16. Closed-loop response in y* using distinguished out- 
put. 

Fig. 17. Closed-loop temperature response using dynam- 
ically equivalent output. 

initial and final values of CA. This is again due to the 
nonequivalence of T and CA The main conclusion to 
draw from these simulation runs is that, when choos- 
ing an output to simplify the controller synthesis 
problem, extreme care must be taken to ensure that 
the original control problem will also be satisfied. The 
concerns that must be addressed are fully answered in 
the notion of dynamically equivalent outputs. 

-0.8 ’ , / r 

I 2 ho13cjo1 
Time (5) 

Fig. 18. Closed-loop response in y* using dynamically 
equivalent output. 

Fig. 19. Changes in Q using dynamically equivalent output. 

l.i:;; 
Time. (s) 

0 

Fig. 20. Closed-loop response in CA using dynamically 
equivalent output. 

-200 , , 1 I I 1 , , , , , , , , I , 

0 do 200 4 5 
Time (s) 

5. CONTROLLER SYNTHESIS FOR NONLINEAR 

CLOSED-LOOP INPUT/OUTPUT DYNAMICS 

In the previous sections, systems with nearly linear 
dynamics, such as pH processes, or SHM linearizable 
dynamics, such as the CSTR example, were examined. 
For such systems it is natural to look for a dynam- 
ically equivalent output that is linear to simplify the 



3220 RAYMOND A. WRIGHT and COSTAS KRAVARIS 

Fig. 21. State feedback controller structure for use with GLC feedback and dynamically equivalent 
outputs. 

controller synthesis problem. The resulting controller 
structure provides a response that is linear in terms of 
the dynamically equivalent output, but nonlinear in 
terms of the system’s original output. Viewed from 
a different perspective, a dynamically equivalent out- 
put is actually a means of designing a nonlinear con- 
troller to provide a specified nonlinear closed-loop 
response. This idea will be explored in this section for 
general nonlinear systems. 

Controller design methods for nonlinear processes 
are typically based on some notion of linearity that is 
enforced in closed loop (input-to-state linearity or 
input-to-output linearity). This is done for conveni- 
ence since it is the linear dynamics that are well- 
understood and for which controller performance spe- 
cifications can easily be expressed. If nonlinear dy- 
namics are requested in closed loop, this will auto- 
matically imply that the nonlinearity of the closed- 
loop dynamics is tunable, i.e. there will be, in essence, 
an infinite number of tunable parameters. If closed- 
loop input/output dynamics which are nonlinear in 
the output are still sought, they must be “linear in 
something else” in order to have a finite number of 
tunable parameters. The quantity with respect to 
which the closed-loop dynamics is requested to be 
linear must be a function of the process variables, i.e. 
the states. It will be advantageous to synthesize a con- 
troller in terms of this quantity whenever the quantity 
is more important on physical grounds than the 
actual measured output. Consider the general system 

1 =J(x) + &)u 

Y = h(x) (1) 

y* = h*(x) 

where h*(x) is the function of the states with respect to 
which the dynamics must be linear. Nonlinear closed- 
loop dynamics that are linear with respect to h*(x) 
will be of the form 

F(x) + 1 Yr $ ch*(x)l = Y.*, (57) 
k 

where y& is the desired set point value of y* and the Yk 
are tunable parameters. Assuming closed-loop stabil- 
ity, the system will eventually reach h*(x,) = y$, 

where x, is a process steady state. If h* is dynamically 
equivalent to h, this automatically implies that 
h(x,) = y,, even if the equilibrium line is shifted away 
from its nominal position (due to persistent changes in 
the process disturbances), and therefore the original 
output is still controlled to its set point value. 

This suggests a method of synthesizing a controller 
for nonlinear processes that will have nonlinear 
closed-loop dynamics. A GLC controller (Kravaris 
and Chung, 1987) is used to regulate y* = h*(x) to its 
set point. The input/output linearizing state feedback 
is given by 

ld= 
u - h*(x) - pi L/h*(x) - . . - /?,.L;: h*(x) 

Pr*L,L;‘-‘h*(x) 

(58) 

where r* is the relative order of the u-y* system and 
B . . . . 8,. are tunable scalar parameters. This will 
gi;e the following closed-loop response in terms of y* : 

The closed-loop response in terms of y will be nonlin- 
ear. The combination of the dynamically equivalent 
output and the control law represents a nonlinear 
controller designed to provide a nonlinear response. 
The dynamically equivalent output is the tool 
through which this can be accomplished. 

The controller structures used for obtaining nonlin- 
ear closed-loop dynamics in the original system out- 
put are shown in Figs 21-23. If state feedback is 
possible, the structure used with either a globally 
dynamically equivalent output or a pointwise dynam- 
ically equivalent output is as shown in Fig. 22. If state 
measurements are not available and output feedback 
is used, the resulting structure differs depending on 
whether the equivalent output is globally or pointwise 
dynamically equivalent. As was the case when com- 
bining SHM state feedback with globally dynamically 
equivalent outputs, a state estimator is not required in 
the calculation of the equivalent output. Thus, the 
output feedback structure shown in Fig. 22 may be 
used. For pointwise dynamically equivalent outputs, 
a state estimator is required to compute the equiva- 
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Linear Controller ” 
Input/output 

with 
Linearizing U 

- State Feedback - 
Integral Action for y* = h*(x) 

i 
P8 

Y* 
; 1 

state 
- Estimator - 

Fig. 22. Output feedback controller structure for use with GLC feedback and globally dynamically 
equivalent outputs. 

Linear Controller v 
Jnpuuowput 
Linearizing ” 

with - State Feedback - 
Integral Action for y’ = h*(x) 

?-r 

Fig. 23. Output feedback controller structure for use with GLC feedback and pointwise dynamically 
equivalent outputs. 

lent output on-line and the structure shown in Fig. 23 
would be used. 

Example 
Consider a system similar to that of the last section 

but with a second-order reaction, i.e. CSTR with the 
irreversible, second-order reaction 

A 4 B. 

The system is governed by the equations 

dCA - f (CA,_ - C,) - tqqc; dt-V 

$ = ;(Ti. - T) + k(T)C: (* + 
P 

&v (60) 

where the manipulated input is u = Q and the con- 
trolled output is y = T. 

The state equations may still be linearized by 
a SHM state feedback, but the nonlinear output in the 
transformed coordinates will not be dynamically 
equivalent to a linear output (the rank condition of 
theorem 1 is not satisfied). Assume that from product 
quality considerations it is more important to control 
the rate of reaction than the measured temperature. 

Time (s) 
0 

Fig. 24. Open-loop temperature response in second reactor 
example. 

Motivated by the example of the previous section, one 
can define the alternate output 

Y* = Ck(i-6,) - wmc: (61) 
which is clearly dynamically equivalent to the original 
output. The control methodology outlined previously 
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Fig. 25. Open-loop response in y* for second reactor 
example. 
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Fig. 26. Closed-loop temperature response for second reac- 
tor example. 
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Fig. 27. Closed-loop response in y* for second reactor 
example. 

with y* given by eq. (61) as output can then be ap- 
plied. The response of Twill be nonlinear. 

Discrete-time simulations were performed using the 
same conditions as given previously in Table 1. The 
disturbance used is the unmeasured 5” step in inlet 
temperature. The open-loop responses in reactor tem- 

Fig. 28. Closed-loop changes in Q in second reactor 
example. 

perature and y* are shown in Figs 24 and 25, respec- 
tively. The closed-loop responses using the control 
structure of Fig. 23 arc shown in Figs 26-28. The 
controller parameter settings for this run are K, = 0.3, 
fi,, = 1, /?I = tl = 25. Notice the equivalence of re- 
turning y* and T to their respective set point values. 
These results demonstrate the ability to design a con- 
troller for a specified nonlinear response in the pri- 
mary output through a linear controller design for the 
dynamically equivalent output. 

6. CONCLUSIONS 

The notion of dynamically equivalent outputs has 
been introduced. Two types of dynamically equivalent 
outputs, globally and pointwise, have been mathemat- 
ically defined. Conditions for dynamic equivalence to 
a linear output were given. This idea was shown to be 
useful for systems with linear dynamics and nonlinear 
state/output map. Dynamic equivalence to a linear 
output was also combined with SHM feedback for 
nonlinear systems with linearizable dynamics. Con- 
troller structures illustrating this combination and 
a simulation example demonstrating this approach 
were presented. The more general notion of synthesiz- 
ing nonlinear controllers to provide nonlinear closed- 
loop dynamics was then addressed. It was shown that 
by combining a dynamically equivalent output and 
GLC feedback such controllers could be designed. 
Another simulation example demonstrating this idea 
was provided. 
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NOTATION 

kth-order Lie bracket off and g 
pre-exponential factor used in computer 
simulations 
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A, b 

Ci 

CP 

CA 

c 4, 

E 

I 

F 

f(x), 9 tx) 

h(x) 

h*(x) 

l%) 

ff(x Y) 

k(T) 

K 

1 

L:h(x) 

n 

q(x) 

Q 
r 
R 

t 

T(x) 
T 

L 

S 

U 

v 

V 

x 

Y 

Y* 

matrices in standard state space descrip- 
tion of a linear system 
scalar constants 
heat capacity of inlet stream in computer 
simulation examples 
concentration of A in the effluent stream 
in simulation examples 
inlet concentration of A in simulation 
examples 
activation energy used in computer simu- 
lation examples 
the set of state variables which, for 
a given scalar constant, constitute the 
equilibrium set 
flowrate through an orifice plate, also 
flowrate into CSTR in computer simula- 
tion examples 
vector fields that characterize the state 
model of a nonlinear process 
scalar field that determines the state/out- 
put map 
scalar field that determines the 
state/equivalent output map 
the composition function h(T-I(<)) 

implicit state/output map of a nonlinear 
system 
reaction rate constants in simulation 
examples 
external PI controller gain in simulation 
examples 
level set of the output function 
kth-order Lie derivative of h with respect 
to f 
order of system 
nontrivial solution to the set of partial 
differential equations used in obtaining 
a natural coordinate representation of 
a nonlinear system 
heat added to the reactor 
relative order 
ideal gas constant used in computer 
simulation examples 
time 
SHM transformation 
temperature of the CSTR in computer 
simulation examples 
temperature of the inlet stream in com- 
puter simulation examples 
Laplace transform variable 
manipulated jnput 
GLC transformed control variable 
volume of CSTR in simulation example 
vector of state variables 
process output 
equivalent output 

Yk 

I- 

AP 
-AH 

tunable scalar parameters used for non- 
linear input/output dynamics 
scalar function of state variables defined 
when state/output map is solved for the 
last state variable 
pressure drop across an orifice plate 
heat of reaction in computer simulation 
examples 
scalar constant 
states of SHM transformed system 
density of the inlet stream in computer 
simulation examples 
external PI controller reset in simulation 
example 
scalar field of the state variables 
the n functions defined as the gradient of 
the composition function h(T- 1 (5)) 

Other symbols 

; 
belongs to 
the empty set 

R real line 
R” n-dimensional Euclidean space 

subscripts 

cl particular constant value of process out- 
put 

SP set point value 

REFERENCES 

Byrnes, C. I. and Isidori, A., 1985, Global feedback stabiliz- 
ation of nonlinear systems, in Proceedings of the 24th 
IEEE CDC, p. 1031. Ft. Lauderdale. 

Hoo, K. A. and Kantor, J. C., 1985, An exothermic continu- 
ous stirred tank reactor is feedback equivalent to a linear 
system. Chem. Engng Commun. 37, 1. 

Hoo, K. A. and Kantor, J. C., 1986, Linear feedback equiva- 
lence and control of an unstable biological reactor. Chem. 
Engng Commun. 46, 385. 

Hunt, L. R., Su, R. and Meyer, G., 1983, Global transforma- 
tions of nonlinear systems. IEEE Trans. aurom. Control 28, 
24. 

Kantor, J. C., 1987, An overview of nonlinear geometric 
methods for process control, in Shell Process Control 
Workshop (Edited.by D. M. Prett and M. Morari), p. 225. 
Butterworth, London. 

Kravaris, C. and Chung, C. B., 1987, Nonlinear feedback 
synthesis by global input/output linearization. A.I.Ch.E. J. 
33, 592. 

Shinskey, F. G., 1988, Process Control Systems. McGraw- 
Hill. Maidenhead. 

Tarn, T. J., Cheng, D. and Isidori, A., 1987, Pfaffian basis for 
affine nonlinear system?., in Proceedings of the 26th IEEE 
CDC, p. 493. Los Angeles. 

Wright, R. A., 1990, Equivalent output formulations of non- 
linear control problems. Ph.D. dissertation, The Univer- 
sity of Michigan, Ann Arbor, MI. 

Wright, R. A. and Kravaris, C., 1991, Nonlinear control of 
pH processes using the strong acid equivalent. ZEC Res. 

Greek letters 30, 1561. 

ai coefficients of characteristic equation in Wright, R. A., Soroush, M. and Kravaris, C., 1991, Strong 

SHM linearized system 
acid equivalent control of pH processes: an experimental 

Bk coefficients of characteristic equation in 
study. IEC Res. 30, 2437. 

Wright, R. A. and Kravaris, C., 1992, Nonminimum phase 
GLC linearized v-y system compensation for nonlinear processes. A.Z.Ch.E. J. 38, 26. 


