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The paper derives a theory of renegotiation-proofness in symmetric repeated
games based on a notion of “equal bargaining power.” According to consistent
bargaining equilibrium a player can mount a credible objection to a continuation
equilibrium in which he receives a particular expected present discounted value, if
there are other self-enforcing agreements that never give any player such a low
continuation value after any history. The definition does not imply strongly sym-
metric solutions. But under modest assumptions, consistent bargaining equilibria of
infinitely repeated games with perfect monitoring are strongly symmetric. Such
solutions have an unusually elementary characterization. Journal of Economic
Literature Classification Numbers: C7, C72. € 1993 Academic Press, Inc.

1. INTRODUCTION

In the context of repeated games, the term “renegotiation” refers to the
ongoing bargaining that takes place among the players as the supergame
unfolds. But considerations of bargaining power are curiously absent from
the formulations of renegotiation-proof equilibrium proposed in the
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literature. The leading theories assume that conflicts of interest are resolved
by a unanimity rule': an equilibrium plan in progress is overthrown in
favor of a credible alternative if and only if the change has unanimous
approval. While this Pareto criterion is less than satisfying, there is no
commonly accepted theory of bargaining power in repeated games to take
its place.

Even in static bargaining problems, it is hard to argue compellingly for
a particular prediction regarding the division of surplus. If the problem is
symmetric, things are easier: although the solution remains logically
indeterminate, a symmetric division of the surplus suggests itself as a
reasonable guess.” This raises the possibility that one could make progress
in symmetric repeated games by incorporating the heroic assumption of
“equal bargaining power” into a theory of renegotiation. That is the
exercise we attempt here. The resulting solution concept is again best
viewed as an educated guess, one that we feel is a better bench mark than
the unanimity criterion can provide.

In this spirit, we consider symmetric discounted repeated games and
begin by remarking that a natural interpretation of equal bargaining power
is (among other things) that the players will receive symmetric payoffs in
the equilibrium negotiated at the beginning of the game, as long as the
Pareto frontier of the set of credible supergame equilibria includes a
symmetric element. It is tempting to extend this reasoning to say that the
symmetry of the subgame in which players find themselves after any history
(possibly including deviations from equilibrium play) suggests that the
continuation equilibrium in the subgame ought to be symmetric. We argue
that there should be no such presumption: even in the subgame it may be
in the interests of the worst-off player not to insist on symmetry.

The line of reasoning that supports this assertion is an elaboration of the
approach to renegotiation theory® taken by Pearce [17]. The approach is
most easily understood by thinking first of the simple case of a symmetric

! This is true, for example, in the independent work of Bernheim and Ray [11] and Farrell
and Maskin [13] that opened the literature, and in the related papers by Benoit and Krishna
[8], Bernheim, Peleg, and Whinston [10], and van Damme [21], as well as in the alternative
approaches of Asheim [7] and Pearce [17]. The frameworks presented by Greenberg [15]
and Bergin and MacLeod [9] do not specify any one criterion.

2 Here too there is ample room for disagreement, especially if the opportunity set is not
convex. For example, if the possible payoff pairs in a two-person bargaining situation are
(5,5), (4,8), and (8, 4), perhaps (5, 5) is not a convincing prediction. In its favor, one could
make the following (inconclusive) case. If player 1 is pressing for (8, 4), for instance, player 2
can demand (5, §), arguing that player | cannot expect player 2 to find 4 acceptable if player 1
will not agree to 5.

30ne could also modify other definitions of renegotiation-proof equilibrium (see
Footnote 1 above) by replacing the Pareto criterion with an assumption of equal bargaining
power; we work here with the approach that we find the most persuasive.
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two-person repeated game all of whose (subgame perfect) equilibria are
symmetric. The supergame equilibrium value set can be regarded as a
subset of R, say V, with maximum ¥ and minimum v. An equilibrium that
achieves v may be supported by the “threat” that after certain histories
(for example, if someone is observed to deviate, or, with imperfect
monitoring, an unfavorable signal arises) the value of the “continuation
equilibrium” in the ensuing subgame will be y. Although the threat is
subgame perfect, it is not credible in another sense: it seems plausibie that
the players could convince one another to abandon the worst equilibrium,
on the grounds that it comstitutes an unnecessarily harsh punishment.
While players understand that in order to enjoy mutual cooperation they
must accept different continuation payoffs after different histories, they will
not accept a “punishment” if there exists another continuation equilibrium
that never needs to use such a severe punishment. In other words, because
players care about the future rather than the past, they ask themselves not
whether a certain punishment was needed to deter deviations earlier in the
game, but whether the punishment is inescapable in the sense that in the
Sfuture any equilibrium must inevitably rely on publishments at least as
harsh.

Consider now the more general case of a symmetric game in which some
supergame equilibrium values are asymmetric. How should players exploit
the equal bargaining power associated with the symmetry of their roles?
Not, we contend, by insisting on symmetric payoffs in every subgame: in
some cases this would result in unnecessarily low payoffs for both players.
Rather, a supergame continuation value pair (a, b) with a <b should be
acceptable to player 1 as long as there is no other subgame perfect equi-
librium in which, in all subgames, each player receives at least some value
¢ > a. It might happen, for example, that all “strongly symmetric equilibria”
(those that treat players symmetrically in every subgame) must use
continuation value threats of (2,2) or worse, whereas the asymmetric
threats (3, 5) and (5, 3) sustain a variety of equilibria whose continuation
values never drop below 3 for either player. (It is easy to find examples of
this sort; a simple one is provided below.) Consequently, if a deviation
by player 1 is followed by a path with value (3, 5), player 1 accepts the
asymmetry because in a symmetric regime, punishments of value 2 would
be unavoidable. Formally, we say that a subgame perfect equilibrium ¢ is
a consistent bargaining equilibrivm (CBE) if the infimum of the values of
continuation equilibria (taken over all subgames and players) of ¢ is at
least as great as the corresponding infimum for any other subgame perfect
equilibrium. In the context of symmetric games, this specializes the
definition of renegotiation-proofness given by Pearce [17].

While it is intriguing that symmetric bargaining power need not lead to
symmetric punishments, it would be tremendously helpful when analyzing
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a particular game to know that one could restrict attention to strongly
symmetric profiles. Abreu [ 1] showed in an oligopolistic model that in the
traditional perfect monitoring setting without renegotiation, optimization
within the class of strongly symmetric profiles yields easily described equi-
libria with vivid properties. But he further showed that more severe
punishments can usually be achieved outside the strongly symmetric class
and that the structure of the optimal punishment tends, unfortunately, to
be complex. One of our principal goals is to provide conditions under
which renegotiation and equal bargaining power imply strong symmetry
and to explore the properties of strongly symmetric CBEs.

For any finite symmetric game G satisfying standard regularity assump-
tions and having an equilibrium in pure strategies, the associated infinitely
repeated discounted game G™(5) has a CBE. While much of the paper
restricts attention to games with perfect monitoring, the definitions apply
equally to imperfect monitoring models. For the latter, we can show that
severest CBE punishments are often nor strongly symmetric. By contrast,
their counterparts in perfect monitoring models usually are strongly
symmetric.

It is by now well understood that the crucial step in determining what
kind of behavior can be supported in a particular supergame is to compute
the worst credible threats that are available to the players. Theorem 2 of
Section 2 provides an unexpectedly simple characterization of the worst
CBE punishment in the repeated game with discount factor é: it is just the
maximized value of a function f defined in an elementary way using the
payoff function of the one-shot game G. Specifically, for any symmetric
strategy profile x in G, df(x) is the diflerence between the payoff when x
is played, and (1 —9) times any player’s best response payoffs against the
same profile. If G is the well-known linear Cournot model, for example,
this result produces closed-form expressions (for any value of the discount
factor and any number of firms) for maximally collusive punishment
values. This degree of tractability suggests that one can readily derive the
theory’s implications in a variety of applied areas.

The worst credible punishments in the class of games whose CBE
solutions we characterize have a “stick-and-carrot” structure similar to that
established by Abreu [1] for the standard theory without renegotiation.
They have two “phases,” the first serving to give the players low payoffs for
a number of periods, and the second following the equilibrium path of the
best strongly symmetric CBE (which without loss of generality can be
taken to be stationary).

The assumptions required to generate these results are nontrivial
restrictions on the component game. Nonetheless, many games of economic
interest satisfy the assumptions. As an example, Appendix A presents a
class of games including Cournot oligopolies with convex cost functions
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and a family of demand functions containing the linear and constant
elasticity demands as special cases. Readers interested in seeing the theory
applied to price-setting oligopolies and to multimarket collusion (Bernheim
and Whinston [12]) may consult Abreu, Pearce, and Stacchetti [6].

The brief treatment of imperfect monitoring models provided by
Section 3 establishes that strong symmetry is notr a general implication of
the definition of a consistent bargaining equilibrium. Fudenberg, Levine,
and Maskin [14] identify* a large class of games with unobservable actions
in which first-best outcomes in the supergame can be approached
asymptotically in equilibrium as & approaches 1. By Proposition 7 of
Pearce [17] this is true even if one restricts attention to consistent
bargaining equilibria. But we show that imposing strong symmetry leads to
ineffeciencies that do not vanish asymptotically. Thus, in imperfect
monitoring models with patient players, consistent bargaining equilibria
will usually violate strong symmetry. Section 4 concludes the paper.

Limitations of Consistent Bargaining Equilibrium

The purpose of this subsection is to place CBE in a particular context
and to emphasize how cautiously it should be interpreted.

One way of summarizing the problem of renegotiation is as follows. For
the purpose of creating incentives, a group of players may find it useful to
make threats, embedded in the negotiated equilibrium plan, about the
value of continuation payoffs in some eventuality (a history ending with a
certain deviation, for example). If the contingency in question actually
arises, players may be tempted to abandon the plan, perhaps because it is
unpleasant for all concerned, or perhaps because it is intolerably asym-
metric. In principle, it is easy to agree that the interests of the group “ex
ante” and “ex post” may conflict radically. But modeling this formally
requires a precise expression of “the interests of the group.” We would like
to say that a cooperative agreement o is renegotiation-proof if after each
history A there is no subgame perfect equilibrium all of whose continuation
values are strictly preferred by the group to ol,. What theory results
depends on the binary relation one uses to represent group preferences.’

One candidate that occurs naturally to economists is the Pareto
criterion: action stream x is preferred to y if each individual prefers x to j.
We find the Pareto rule unattractive in this context; it gives a single player
undue veto power over departures from a verbal agreement. It is unclear
whether the group can credibly commit to respecting such a verbal agree-
ment ex post. More plausible to us is the hypothesis that the bargaining
power of each player, derived from the structure of the game, will play a

*See also the references cited in Section 3 below.
*For a more detailed discussion along these lines, see Abreu and Pearce [4].



222 ABREU, PEARCE, AND STACCHETTI

primary role in determining the division of surplus, both at the beginning
of the game and following any history. An obvious difficulty, and a severe
one, is that there is no authoritative bargaining theory for the division of
surplus in repeated games. Our strategy in this paper is to restrict attention
to symmetric games, where equal division can be used as a natural
benchmark.

Even in symmetric environments, one may judge the consistent bar-
gaining solution to be unduly biased toward equal shares.® It is hard to
argue convincingly one way or the other, and CBE certainly cannot be
viewed as a definitive solution concept for symmetric repeated games. But
we find it a more persuasive construction than the solution concepts
previously available.

A further cautionary remark is in order. The CBE concept implicitly
compares the utilities of different players. Whether this is an advantage or
disadvantage of the theory (relative to other solution concepts that do not
make reference to interpersonal comparisons) depends on one’s views
concerning the likelihood that interpersonal comparisons play a role in
negotiations. The solution concept is intended to apply only to situations
in which players feel that their circumstances are the same as one another’s,
not just in the ordinal description of the game, but also in the utility
consequences of physical outcomes.

2. PERFECT MONITORING

The class of games considered in this section are symmetric repeated
games with perfect monitoring.

2.1. Preliminaries

The stage game is denoted G=(S,,..S,; I,,..,H,), where
N={1, .., n} is the set of players, S, is the set of pure strategies for player
i, S=8,x---x8,,and I1,: S— R is player i’s payoff function. The stage
game is symmetric in that

(i) S;=8, forall 7.

(it) For each permutation t of {I,..n}, I (S 1) s Semy) =
I (s, ..., s,) for all se S and all i.
In addition we assume the following:

(Al) S, is compact.

(A2) [I;is continuous.

®To the extent that this is true, the asymmetric results of Section 3 are particularly striking.
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The associated repeated game is denoted G*(J), where d€ (0, 1) is the

discount factor. We refer to n-tuples (z,,... z,) by the corresponding
unsubscripted symbol z. Also z_,= (2, ... Z;_.1, Z;4 1, --» Z,)- Each player i
chooses an action s5;(1)e S, in every period t=1,2,... The perfect

monitoring assumption is that s,(z) may depend on the entire history of all
players’ previous choices s(1), ..., s(t — 1). A repeated game (pure) strategy
for player i is denoted g;, and ¢ denotes a strategy profile. Throughout we
confine attention to pure strategies. Also,

o s={s(r)}7,, where s(t)=(s,(t), ..., 5,(t)) € S, denotes a path.
o v{(s)=((1—-0)/0)X 7 | 6'IH,(s(1)) is the average discounted payoff

=1
to i from the path s. Note that first-period payoffs are discounted.
+ 1i,(g) denotes the (average discounted) payoff to i from the
strategy profile o.

o w(s;1)=((1-8)/8)3 7,6 " H,(s(t+1)) is the payoff to i along
the path s from period r onward, discounted to the begining of period 1.

Let H={J,S" be the set of all histories, where S°={(¥} and &
denotes the null history. For all he H, o}, denotes the strategy profile
induced by ¢ on the subgame following the history A By convention
ol =0. We are interested in a subset of the set of subgame perfect
equilibria (Selten [19, 207]).

DerFINITION.  For each strategy profile o, C(o)= {#ol,)|hec H} is the
set of “continuation values” of o, including the value of ¢ itself, and /(o) =
inffmin{w,, .., w,} | (w, .., w,) e Cla)}.

Let e=(1, .., 1)eR", and for any yeS,, let y-e denote the n-tuple
(y, ... ¥). We adopt the convention that x = {x(r)-e} |, x(1r)€ S,, denotes
a symmetric path while s= {s(z)}_ |, s(t)€ S, is, as previously defined, an
arbitrary, possibly asymmetric, path in S. Let

17,(s)=max{I(s;,s_,)|s;eS,}
n(x) = Hl(xs neey x)s
#(x)=M,(x, .., x).

That is, IT,(s) is player i’s best response payoff (in the stage game) when
other players play according to s_,; m(x) is a player’s payoff at the
symmetric action choice x; and 7{x) is a player’s best response payoff when
all other players choose the action x.

A path s is an equilibrium path if it can be “supported” by a (credible)
punishment.
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DEFINITION. A path s is supportable by weR if for each i=1, .., n and
each r=1, 2, ..,

(1 =) (s(1)) — I, (5(2))) < 3(v(s; t + 1) — w).
For a symmetric x these conditions reduce to
(1 =)R(x(1)) — m(x())) < dvi{x; 1+ 1)—w) for all 1.

A strategy profile of G”(d) may be viewed as a rule specifying an initial
path and punishments for any deviation from the initial path or from a
previously prescribed punishment. Let (s, x) denote the simple profile (see
Appendix B for a definition ) with initial path s and a single symmetric punish-
ment X. Any single player deviation from an ongoing path (s or x) is
responded to simply by (re)starting x. From Abreu [2] we have the following.

(P) The simple profile d(s, x) 1s a subgame perfect equilibrium if and
only if the paths s and x are supportable by v,(x).

Henceforth, we will typically refer to subgame perfect equilibrium simply as
equilibrium. We assume that

(A3) G7(0) has a (subgame perfect) equilibrium.
A simple sufficient condition on G which guarantees (A3)" is

(A3) G has a Nash equilibrium in pure strategies.

2.2. Bargaining Power and Renegotiation

Our main definition is motivated as follows. Players do not care about
symmetry per se. Rather, a player exploits his bargaining power by refusing
to accept a continuation payoff, say w, unless all (subgame perfect)
equilibria rely on punishments at least as harsh as w.

DEerINITION.  An equilibrium ¢ is a CBE if for any equilibrium 7,
)< l(o).

If o 1s a CBE, it is impossible for any player / to object, following some
history A, that his continuation payoff ¥,(a],) is intolerably low (and to
demand renegotiation of the agreement). Punishments of at least this
severity are an inevitable part of any self-enforcing implicit agreement.
Conversely, we interpret equal bargaining power to mean that a player
may demand /(o) after any history A.

THeEOREM 1 (Existence). Under (Al), (A2), and (A3), a consistent
bargaining equilibrium exists.

Proof. See Appendix B.
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Recall that a repeated game strategy for player i is a sequence of
functions o,= (0,(1), 6,(2), ...) where 6,(1): ' ' > S..

DErFINITION. A strategy profile ¢ is strongly symmetric if for all ie N,
(i) o,(1)=a,(1), and (ii) o,(t)(h)y=0,(t)(h) for all t=2 and he S* .

Does the equal bargaining power assumption imply equal treatment in
the sense of identical behavior after all contingencies? Not necessarily, as
the following simple example shows. In this version of the Prisoner’s
Dilemma, no CBE is strongly symmetric.

ExampLE. Consider the two-player stage game

U D
u 20, 20 5,30
d 30,5 7,7

Set d =1/2. Consider a strongly symmetric equilibrium ¢ which involves
play of (u, U) after some history. Given that the one-period gain from
cheating at (u, U) is 10, it follows that (1—3)10<3(20—/(0)). Hence
()< 10. If ¢ has players use (d, D) always, then obviously /(g)=7. But
there exist equilibria which are not strongly symmetric, with ail continua-
tion values higher than 10. Let s' = (d, U) and s° = (1, D), and consider the
following strategy profile &. Start with s'. If players use s' in period ¢, s% is
to be played in (r+ 1), and vice versa. If row deviates in ¢, s* is to be
played in (r+ 1), and if column deviates in 7, s' is played in 7+ 1. It may
be checked directly that 4 is an equilibrium. Furthermore, /(6)=
(54 308)/(1 +3)=40/3> 10 = /(a) for any strongly symmetric equilibrium
0. Thus, in this game it is in the players’ self-interest to permit themselves
to be treated asymmetrically.

2.3. Characterizations

While the preceding example demonstrates that strong symmetry cannot
be guaranteed a priori, it is analytically an extremely attractive restriction
and leads to tractable characterizations. The next assumption plays a
central role in establishing that strongly symmetric CBE’s exist.

(A4) For all se S there exists x€.5; such that

(i) n(x)%z 17.(s)

(1) 7#(x)—n(x)<
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This assumption requires that for any action profile there exists a
symmetric action profile which yields higher average payoffs and lower
average gains from cheating. That is, stage game asymmetries do not, of
themselves, increase average payoffs or reduce average temptations to
cheat.

LemMa 1 (Smoothing). Given Assumption 4, for any path s supportable
by weR, there existy a symmetric path x supportable by w such that

n

1
vix; 1) ==Y wvi(sir)  for 1=1,2, ..
n

i=1
Proof. Consider s = {s(¢)} ", supportable by w. Then for all i,
(1 =S)IT(s(2)) — I (s(1))) S d(vy(s; 14+ 1) —w).
Hence,

1
(1-6)-

y=> [ H,(s(t))]Sé(%Zv, s;t+1) —w).

H

:

By (A4) there exists a symmetric path x = {x(r) e}, such that
1 _
f))ZEZH;(S(f)) and ﬁ(-\‘(f))—ﬂ(x(f))égz[U,'(S(t))—”f(S(t))]-

Hence, vi(x; ) = (I/n) X, v,(s, 1), and (1 — d)(@(x(1)) — n(x(1))) <
O(vi(x;t+ 1)—w) for all 1. Q.ED.

The next assumption appears in the proof of Theorem 2. It is used there
to resolve an integer problem (time is discrete) and should be viewed more
as a convenience than as an essential component of the basic argument. See
the discussion following the proof. Note that (A3) and (A4) imply that
G has a symmetric Nash equilibrium. Denote by x" the symmetric
equilibrium which yields the highest payoff. By (A1) and (A2), x*" is well
defined.

(A5) For any z€ 8, and a such that n(x")<a <n(z), there exists
ye€ .S, such that a=n(y), and a(y)—n(y)<a(z)—n(z).

While (A4) and (AS) are nontrivial assumptions, they are both satisfied
in all the examples we consider in Appendix A and in Abreu, Pearce, and
Stacchetti [6].

DerFINITION.  If 6 and ¢ are CBE’s, it follows that {(¢)={(y). Let r =(s)
for any CBE o.
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The key result of this section is Theorem 2. If one sets aside questions of
“openness,” the argument is roughly the following. Symmetric CBE paths
exist,” because by Lemma 1 any asymmetric CBE path can be “averaged”
across players while preserving incentive compatibility. It is easy to show
that among the best symmetric CBE paths there is at least one that is
stationary. For any action x, let f(x) be the greatest value that would
support the stationary symmetric path on which action x is always chosen.
Such a punishment would be just sufficient to deter a deviation; therefore,
n(x)=(1—3d)a(x)+ df(x), that is, f(x)=(1/0n(x}— (1 — ) 7(x)). Let z
be the action chosen on some stationary symmetric CBE path. We know
that r < f(z). Let x* maximize f. Consider a path x in which x™ is played
for t periods, followed by x* forever. Except for integer problems (the
proof resolves these using (A5)), 1 can be chosen so that the path has value
f(x*). Moreover, the value of the path is weakly increasing, so all its
continuation values are at least f(x*). There are no profitable deviations
from the simple profile d(x, x), therefore by the definition of r we have
r=f(x*). Thus, r< f(z)< f(x*)<r. This characterizes r as a simple
function of § and the data of the component game.

THEOREM 2. Let f(x) = (1/8)(n(x)—(1—8) (x)). Thenr = max ., f(x).

Proof. From the definition of a CBE it is clear that any CBE path is
supportable by r. Hence by Theorem 1 and Lemma 2 there exists a sym-
metric path z= {z(7)-e} ™ | which is supportable by r. Let Zecl{z(1)},
(where “cl” is “closure”) satisfy 7n(Z)=n(z(¢)) for all + Then =n(Z)>=
vi(z;t+1), t=1,2,... By the continuity of = and 7 it follows that
(1 =8NR(Z)—n(2)) < Hrm(Z)—r). That is, r<(1/0)n(Z)—(1 =) A(Z))<
max, f(x). Let x* be any solution to the problem max f, and define
v =mn(x*). Observe that f may be rewritten as f(x)=mn(x)—((1—3)/3)
(m(x)—n(x}). Hence

-9
m(x”) = f(x7) < f(x*)=r(x*) - £—5—) (T(x*) —m(x¥) < vt

Assume that f(x*)> f(x"). Since x*" is a payoff maximal symmetric Nash
equilibrium (NE), this implies that x* is not an NE. Hence v > f(x*).
Also, m(x*) > n(x"). Let

T =max {r “gé)

(6+0*+ - +87)n(x")+ v Zf(x*)}.

" We refer to a path s as a CBE path if there exists a CBE 7 with outcome s.
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By the continuity of = and (AS5) there exists y such that

(1-9)
)

[(5+ - +387) n(x")+ o7 H! n(y)] +5T+1VT = f(x*),

and () —n(y) <A(x*)—7w(x*). Let x={x(¢)-e}, be the symmetric
path where x(1)=x", =1,.,7;, x(T+1)=y; x(t)=x* t=T+2,
T+3,... Then v(x)=/f(x*) and v (x;t+1)> f(x*) all t=1,2,... Also
from above, (1—Jd)a(x*)—n(x*))=3d(n(x*)—f(x*)). Since 7@(x")=
a{x™), and 7(y)}—n(y) <7A(x*)—=n(x*), it follows that x is supportable
by v,(x)=/f(x*), and hence by (P), d(x,x) is an equilibrium. Since
(6(x,x))=/f(x*), r=f(x*). Combine this with the earlier inequality
r<max f to complete the proof for the case f(x*}> f(x"). The case where
x maximizes f is trivial. Then T'=oc and x is the constant symmetric
path x*" forever. Q.E.D.

It is clear from the proof that (AS) is used only to solve an integer
problem. If T as defined above exceeds O then (AS5) may be dropped if
public randomization is allowed. In period T+ 1, players play x“" with
some probability » and x* with complementary probability. Thereafter
they play x* forever. Our results need to be modified somewhat if T=0
and (A5) is violated.

Before we comment on this rather striking formula it is useful to have
some further results. Let x be as defined in the proof above. First note
that the strongly symmetric simple profile 6(x, x) is a CBE and yields the
payoff r. The following lemma is elementary.

LEMMA 2. A4 path s is a CBE path if and only if
(1) s is supportable by r, and
(i) v(s;t)y=zrfori=1,...nandt=1,2, ...
Under these conditions the simple profile (s, x) is a CBE.
Proof. See Appendix B.

An immediate consequence of Lemmas 1 and 2 is

THEOREM 3. For any CBE v there exists a strongly symmetric CBE ¢
such that ¥ (o) 2 (1/n) X, ¥,(y).

Thus, under our assumptions players’ self-interest does not force them to
accept asymmetries (recall the example and the earlier discussion). The
minimum payoff /(g) is not improved by permitting asymmetric treatment.
Our principle of equal bargaining power therefore implies that players
may, without loss, insist on symmetric payoffs both prior to and following
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a deviation. We therefore restrict attention to R= {¥,(s)|¢ is a strongly
symmetric CBE}. It is straightforward to show that R is a compact set.

LEMMA 3. R is compact.
Proof. See Appendix B.

Two numbers of special interest are r =min R (=/(o) for any CBE ¢),
and 7 =max R. The former is the worst credible punishment payoff, and the
latter the best, or most “collusive,” payoff. It is remarkable that both these
numbers, which emerge from a potentially complex intertemporal incentive
compatibility problem, may be expressed in terms of explicit, trivially
computable formulae.

DEFINITION.  Let x* satisfy x*eargmax f and n(x*)=n(y) for all
vearg max /. This notation is useful in characterizing F.

THEOREM 4. F=rm(x*).

Proof. Let y be a symmetric CBE path with payoff . By Lemma 2, y
is supportable by r. Let Fecl{y(t)} satisfy n(y)=n(y(t)) for all 7. By
continuity of n and 7 (this step is analogous to the proof of Theorem 2),
(1 — o) (a(F)— n(¥)) < &(n(F) —r). Hence, r <(1/6)(n(F)— (1—6) a(5)). It
follows from Theorem 2 that 7 maximizes f. Thus, n(x*)>=n(7), and
v(x*)=zn(§F)=v,(y)=F Since x* is supportable by r, it follows from
Lemma 2 that x* is a CBE path. Therefore, 7= v (x*)=n(x*) as required.

Q.E.D.

To summarize, r=max f, 7=mn(x*), and x*, the constant path x*
forever, is the most collusive symmetric CBE path.

Let x™ denote any maximizer of n. The proofs of the next two results
assume that .S, is an interval and use the following regularity assumptions:

(A6) The functions = and 7 are continuously differentiable.

(A7} The points x", x™ lie in the interior of §,, and @T'(x™),
7'(x") # 0. Furthermore, for all x¢int S, n(x“)> n(x).

THEOREM 5. r>n{x‘"), and r < n(x™) for all 6€ (0, 1).

Proof. By theorem 2, r=max f=max(n(x}—{(1—0)/0)[n(x)—n(x)]).
Hence, by (A6) and (A7), argmaxfcint§, and f'(z)=0 for all
rearg max f. Obviously, r = n(x“"). Now observe that if

(1-9)

1
r=m(x) = m(x ) = () — ) ] = 5 () = (1= S)A(x)),
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then x” earg max f and f'(x*)=0. Noting that 7'(x”") =='(x") we have
7'(x")=0, contradicting (A7). Finally, suppose that 7=n(x*)=n(x").
Then x* maximizes n and #'(x*)=0. By assumption 7'(x*)#0, which
contradicts the requirement f’(x*)=0. Q.ED.

This should be contrasted with the usual theory without renegotiation,
where the first inequality of Theorem 5 (with r replaced by v, the minimum
of the equilibrium value set) is reversed, and the second inequality (with 7
replaced by v, the symmetric maximum of the equilibrium value set) holds
with equality for sufficiently high 9.

THEOREM 6. As functions of 6, r(8) and F(d) are strictly increasing.
Furthermore, im; _, | r(6)=lim, _ [ /(d)=n(x").

Proof. Let f(x;8)=mn(x)—((1—-0)/8)[n(x)—mn(x)]. By Theorem 2,
r(8)=max f(x,0). Consider 5, <d, and let x, maximize f(x;J;). By
Theorem 5, x, does not define a symmetric NE and 7(x,)> =(x,). Since
(1-6,)/8,>(1—6,)/0,,

r(d;)=max f(x;0;) 2 f(x,;0,)> f(x;0,)=r(0).

Hence, r(d) is strictly increasing in d.

From the first order conditions of the problem max f(x; d,), it is clear
that x, # x,. Hence, f(x,;8,)> f(x2;8,) and f(x;;6,)> f(x,; ;). These
inequalities may be seen to imply n(x,)>n(x,). Hence, 7(J) is strictly
increasing in d. Finally, observe that n(x™) = n(x)— ((1 — 8)/0)(7(x) — n(x))
for all x and 4, and lim; _  [#(x™)— ((1 —8)/d)N7A(x™) — m(x")] = n(x™).

Q.ED.

The limit results of Theorem 6 are in the spirit of Proposition 3 of Pearce
[17]. Our additional structure yields the new result that 7(J) is strictly
monotonic.

Recall the punishment path x constructed in the proof of Theorem 2 and
the interpretation in Theorem 4 of x* forever as the most collusive CBE
path. Then x has two phases: an initial phase of low payoffs (the stick)
followed by a phase of the highest (renegotiation proof) payoffs available
(the carrot). This is analogous to the symmetric stick-and-carrot
punishments of Abreu [1].

Under an additional assumption this structure may be expressed more
crisply: phase | consists of exactly one period.

(A8) If (1 —9d)r(x")+d6F>r, there exists yeS, such that
(1=90)a(y)+dor=r and 7(y) < a{x").
This assumption is, for instance, satisfied in symmetric Cournot super-
games with constant marginal cost.
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DerFmNITION.  For all x,, x,€ S, let £(x,, x,) denote the symmetric path
in which x, is played in the first period and x, in all subsequent periods.

THEOREM 7. There exists x,€ S, such that 6(&(x,, x*), &(x,, x*)) is a
CBE and v((&(xy, x*))=r.

Proof. 1f the hypothesis of (A8) is false, then in the proof of Theorem 2,
T=0 and we may set x,=a, as defined there. If not, let y be as in
(A8) and set x,=yp. Then (1—-08)7(x)+or<(l—-)n(x")+dr<r=
(1 —06) n(x,)+dF, where the second inequality follows from r=n(x").
Hence (1 —0)@(x,)— n(x,)) < 8(F —r). Therefore, z=&(x,, x*) is suppor-
table by r, and since v (z)=r, by (P), é(z, z) is an equilibrium. Also,
vi(z; ty=7r, t=2,3,... Thus é(z, z) is a CBE, and the proof is complete.

Q.ED.

Theorems 2 and 4 emphasize how easily the best and worst renegotiation
proof payoffs may be computed. The simple stick-and-carrot structure of
the associated strategies is given a sharp expression in Theorem 7.

3. IMPERFECT MONITORING

In repeated games with perfect monitoring, some histories of play
discriminate sharply among the participants: perhaps one player has
deviated from cooperative behavior, while all others have conformed to
some agreement. Evidence distinguishing one player from another tends to
be less conclusive in models in which publicly observed signals are only
stochastically related to players’ private decisions. This suggests that there
is if anything less reason to treat players asymmetrically after certain
histories in imperfect monitoring models than in supergames with perfect
monitoring. We show that on the contrary, consistent bargaining equilibria
under imperfect monitoring will commonly violate strong symmetry, unlike
their counterparts in perfect monitoring environments. In other words,
sometimes players find it in their interest to submit gracefully to
asymmetric treatment.

The results presented below are chosen with the intention of conveying
as succinctly as possible the idea that asymmetric continuation payoffs
arise quite naturally despite the presumption of equal bargaining power.
No attempt is made to describe the specific structure of optimally collusive
equilibria.

The model is a repeated partnership. We set out the model and notation
below, emphasizing only those aspects which do not overlap with
Section 2. It is now assumed that player / selects an action in period ¢ from
a finite set S;. His choice s,(t) is unobservable to j# i but the realization of

642/60,2-2
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a random variable 6(r) is publicly obeserved at the end of period t. The
signal 6 can take one of m values 8, .., 8,,, and p,(s) denotes the proba-
bility of signal 8, given the action profile se€.S. We assume that 6 has
constant support: p,(s)>0 for all i=1,..,m and s S. Player i’s realized
payoff in period ¢ depends on his own action and on the realization of the
signal. His payoff 7,(s(¢)) in the component game is the expectation of his
realized payoff =,(s;(z), #(z)). Thus a player cares about the unobserved
actions of others only insofar as these determine the distribution of the
payoff relevant signal. The component game is symmetric in that ;=5
for all i, and I7,,)(s,, 53, s $,.) =TT (S.(1), Sec2ys -n Sey) fOr any permutation
tof {1,..,n}

A strategy a; for player / in the repcated game is a sequence of
measurable functions ¢,(1), 6,(2), ..., where o,(1)e S, and for =2, o,(¢):
(S;x@) 'S, where @=1{0,,..,0,}. Let v(s) denote the vector of
average (expected) present discounted payoffs when the strategy profile ¢
is used. Define p(s)={(p(s), ., pa(s)) and P(s)={pls,s_;)}s| #s,,
s;eS;}. Denote by G™(J) the repeated game with discount factor 4.
Fudenberg, Levine, and Maskin [14] have introduced the following
condition.®

DEerFNITION.  The stage game satisfies the pairwise full rank condition if
the collection of vectors {p(s)} v P(s)u P/(s) is linearly independent for
all se S, and i+

We will assume that

{(M1) The stage game has a symmetric Nash equilibrium in pure
strategies.

{(M2) If x-eeargmax >, I1,{s), then a{x)> n(x).

(M3) The stage game satisfies the pairwise full rank condition.’

We invoke (M1) only for convenience and (M2) guarantees that the
stage game is non-trivial in that efficient behavior is never a Nash
equilibrium. Finally (M3) implies that the signal contains information
which permits deviations by different players to be distinguished.

We first record a simple corollary of a folk theorem of Fudenberg,
Levine, and Maskin [14] which implies that a symmetric first-best payoff

8 We adapt their conditions and results in an obvious way to conform with our assumption
of pure strategies. They work with the more general class of public strategies.

°It might seem at first sight that the pairwise full rank condition is inconsistent with
symmetry. This is emphatically not the case. To construct a simple example, let £ =(¢&), ..., &)
be a multi-dimensional random variable where the ¢,’s are independent, and the probability
distribution of each &, depends only on s,. Of course, in a non-trivial example n; will depend
on all the ¢/’s.
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can be approached in equilibrium as & tends to 1. Related results are given
by Matsushima [16] and, in a static setting, by Williams and Radner [22].

The pairwise full rank condition is required for the result below.
Let n*=(1/n)max, >, IT(s), and V(3)= {v(6)|o is a (perfect Bayesian)
equilibrium'® of G*(3)}.

ProrosiTion 1 (Fudenberg, Levine, and Maskin, 1989). fFor all ¢>0
there exists O such that for all 6 = 0 there exists ue V(0) with |n* -e —u| <e.

The preceding theorem is easily translated to a statement about consis-
tent bargaining equilibria by appealing to a limiting characterization of
renegotiation-proof equilibria.

ProposiTION 2 (Pearce, 1987). For all &', ueV(d') and £>0, there
exists § such that for all 3 = 4 there exists an equilibrium & of G™(8) such
that for all i, inf, v (a|,) 2 u,— ¢

The next result on consistent bargaining equilibria i1s an immediate
corollary of the preceding propositions.

CoOROLLARY. For all ¢ >0 there exists O such that for all 6 >0 there
exists a consistent bargaining equilibrium & with I(6) = n* —¢.

We now show that restricting attention to strongly symmetric equilibria
bounds payoffs away from efficiency uniformly in 6. Our main result then
follows immediately. Theorem § is closely related to the work of Radner,
Myerson, and Maskin [18] and various subsequent papers (see, for
example, Abreu, Milgrom, and Pearce [3] and Fudenberg, Levine, and
Maskin [14]).

THEOREM 8. There exists 4 >0 such that for all & and for all strongly
symmetric equilibria ¢ of G™(0), v,(6) < n* — 4.

Proof. See Appendix B.

It is now easy to argue that equal bargaining power need not imply
strong symmetry; in many supergames none of the consistent bargaining
equilibria is strongly symmetric. In the notation of Theorem 8, /(o)<
n* — A for every strongly symmetric equilibrium o of G*(6) (regardless of
the values of ). Setting ¢ = 4/2 in the Corollary to Propositions 1 and 2,
we find a 3 <1 such that for all § > there exists an equilibrium & with
(&)= n* — 4/2. That is, I(6) > l(g) for any strongly symmetric equilibrium
o, therefore no CBE can be strongly symmetric. This result for patient
players is recorded in Theorem 9.

1Y See Fudenberg, Levine, and Maskin [14). Note that given our constant support assump-
tion, there is no essential distinction between Nash and perfect equilibrium.
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THEOREM 9. Under (M1), (M2), and (M3) there exists d <1 such that
for all 3=0 there exists no strongly symmetric consistent bargaining
equilibrium.

The benefit of treating players asymmetrically after certain histories is
easily explained. Players’ incentives to cooperate depend upon their
payoffs varying with the realizations of the random signal. In a strongly
symmetric regime this means that surplus is systematically thrown away;
with a finite signal space (or whenever the relevant likelihood ratios are
bounded above) there is consequently an inescapable efficiency loss.
Relaxing symmetry introduces the possibility of passing surplus from
player to player instead of destroying it. Thus, rather than punish both
players in a two-person game whenever certain signals arise, one may
reward one player at the expense of the player whose “record” is less
favorable.

4, CONCLUSION

This paper suggests a particular approach to the problem of renegotia-
tion in symmetric repeated games. The theory developed is based on the
idea that players will tolerate asymmetries in continuation payoffs precisely
to the extent that even the worst-off player in any subgame finds this to be
in his interest. In games with imperfect monitoring, our solution concept
often leads to asymmetric continuation payoffs, despite the equal
bargaining power of the players. But we give conditions under which solu-
tions of games with perfect monitoring are strongly symmetric. Under these
conditions we provide simple formulae for the computation of the most
collusive credible equilibrium and the value of the severest credible punish-
ment. In contrast to the traditional theory without renegotiation, severest
punishment paths here take an almost naively intuitive form: following a
number of periods of “Cournot-Nash reversion,” play returns to
(constrained ) maximal collusion. A variety of oligopolistic models satisfy
the required conditions. Cournot oligopolies with modest restrictions are in
this class; the linear Cournot supergame is solved fully in closed form, for
all discount factors and any number of firms in Appendix A.

We explained briefly in the Introduction why we find some bargaining
theory along the lines suggested in this paper more plausible than the
Pareto criterion, which is totally insensitive to bargaining considerations.
The Pareto criterion has some appeal as a necessary condition for the
absence of renegotiation, but is entirely inadequate as a sufficient condi-
tion. We also expressed our reservations about our consistent bargaining
solution.
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It is clear that no theory yet articulated is entirely compelling. Why do
we bother, then, to work out the details of a particular theory? Our
reasons are roughly as follows:

(1) To illustrate precisely how a theory taking some kind of
bargaining power into account can be integrated conceptually with
Pearce’s approach to renegotiation-proofness in repeated games.

(1) To demonstrate that carrying out the exercise in (i) can yield a
nonempty solution concept that allows a degree of cooperation, while
limiting its extent and form.

(iii) To show that the importance of variations in the relative shares
of the players is, ironically, greater under imperfect monitoring (where the
evidence discriminates less sharply between players).

Adoption of an alternative bargaining theory can surely be expected to
alter the details (and to destroy some of the simplicity) of our analysis. But,
as Abreu and Pearce [4] argue, in many cases, exercise (i) above can still
be carried out. Furthermore, we think that the features in (ii) and (iii) are
broadly representative of what one would find by exploring more
complicated alternatives.

APPENDIX A

The purpose of this appendix is to suggest by example that the assump-
tions of Section 2 will be satisfied in a range of natural repeated economic
models and to demonstrate the tractability of the solution concept. Further
examples are given in Abreu, Pearce, and Stacchetti [6].

We consider here a class of quantity-setting oligopolistic supergames of
the sort studied in Abreu [1]. Identical firms produce a homogeneous
product at constant marginal cost ¢>0. The industry inverse demand
function is denoted p. Then II,(s,, .., s5,) = (p(Zs;) —c)s;, where s, is the
output of firm /.

Under reasonable assumptions this model f{its into the framework above.
These assumptions are:

(Ql) p: R_—R, is continuous and strictly decreasing. Also,
lim. 4 p(z)>c, and lim, _, . p(z)=0.

(Q1) implies that there exists M(3) such that — /7,(M(5},0, ..,0) >
(3/(1 = 8))sup, I1,(z, 0, ..., 0). The loss to a firm from producing an output
of M(3) or more cannot be recouped by any possible future gain. Thus
w.lo.g. we may restrict firms to output choices in the interval [0, #(d)].

(Q2) S,=[0, ()], i=1,.,n
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(Q3) G=(S,,..S,; IT,,.., II,) has a symmetric pure strategy Nash
equilibrium.

(Q1) to (Q3) imply (A1) to (A3) of Section 2. They also imply (A4), since
n(l/n) X,.s;)=(1/n) X I (s;), and by Lemma 21 of Abreu [1], 71, is a
convex function. If in addition we assume that = is concave, (AS5) holds.

(Q4) = is concave.

Sufficient conditions (on primitives) for (Q4) are that the demand function
is linear, or has constant elasticity greater than unity. Corresponding to
(A6) we now have

{Q5) = and 7 are continuously differentiable.

If the inverse demand function is differentiable then, of course, so is «;
since 7 is convex it follows that it is differentiable almost everywhere.

(Q1) to (Q3) imply n(x") > 0. Also n(0) =0 and n(M(3)) <0. Together
with (Q5), Corollary 3 (reproduced below) and Lemma 21 of Abreu [1],
(A7) is implied.

COROLLARY 3 (Abreu, 1986). Let x,>x,20. Then #i(x,)=7(x,)=0,
or T(x,)> w(xy).

Finally (A8) follows from Corollary 3 (above) and the fact that if
(1-90)mn(x")+dv,>v, 20, we may always choose y=x such that
(1—9)n(y)+ov,=v,. Thus, the symmetric oligopolistic quantity-setting
supergame with assumptions (Q1) to (QS5) satisfies all the assumptions of
Section 2. The relevant picture is Fig. 1.

—— X

M (3)

FIGURE |
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For illustrative purposes we compute a linear example. The inverse
demand function is

p(_)z{x—ﬁz z<a/f

- 0 otherwise,

where 2, >0 and 2> c. Then

n{x)=(ax—~c—nfx)x when xsiﬁ- and n(x)= —cx otherwise, and
n
T(x) ! ( (n—1) px)* when x< ¢ and  zero otherwise
mx)y=—aa—-c—\n— X X&x—/— .
4f (r—1)f

By definition, f{x)=(1/0)(n(x)—(1—¥8)7(x)), and by Theorem 2,
r=maxf(x). This problem has a unique maximum at

_*_a—c[ (n+l)—6(n—1)}
VTR st v om—n)

Hence

I~

__(oz~c)2 1
B [4n+(1—5)(n—1)2]'

By Theorem 4, ¥ = n(x*). That is,

___(fx—c)2 (n+l)2—63(n—1)3]
= [ [(4n+(1—5)(n—1)2)2'

It follows directly that in agreement with Theorem 6,

. T _(Dt—(‘)z_ .
ﬂh_r.n; [(6)—(!1111’:(0)— anf =n(x™).
APPENDIX B

We provide here proofs omitted in the text. The following definition and
result from Abreu [27] will be useful.

DEFINITION,  Let s', i=0, 1, .., n, be paths in S. The simple (strategy)
profile 6(s’, s, .., s") specifies

(i) play according to s° until some player deviates singly from s°,
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{(ii) for any je N, play ¢’ if the jth player deviates singly from s/,
i=0,1,..,n where s’ is an ongoing previously specified path. Continue
with s if no deviations occur or if two or more players deviate
simultaneously.

(P} The simple profile &(s° s, ..,s") is a subgame perfect
equilibrium if and only if (1—38)(M1,(s'(2))—,(s'(1)))<
o(v,(s5t+1)—v;(s’)) for all j=1,.,n i=0,1,.,n and
t=1,2, ...

Proof (Theorem 1). Let r=sup{l(c)|c is an equilibrium}. By (Al),
(A2), and (A3)’ r is well defined. We complete the proof by exhibiting an
equilibrium ¢ with I(g)=r. Let {6"}_, be a sequence of equilibria such
that (r—I(¢"))< I/n. For each ¢” there exists a history 4 and a player {
such that 0<r—¥,(¢"|,)< 1/5. Since ¢” is an equilibrium so also is ¢”"|,.
Furthermore, by symmetry there exists an analogous equilibrium in which
player i and player 1 are interchanged. That is, w.lo.g. we may (in addi-
tion) assume that 0 < (r —v,(s*")) < 1/n, where s is the initial path of ¢".

The rest of the proof mimics Proposition 2 of Abreu [2]. We endow
£2=5" with the product topology. By (A1) and (A2) v:2->R" is
continuous, and by Tychonoff’s theorem Q2 is compact. We may w.l.o.g.
take {s*} to be a convergent sequence. Let s®=1Ilims®. By definition,
v,(s¥; )= l(¢") for all i, +. Hence we have v,(s% ¢)=r for all i, ¢+. Also
v,(s’)=r. Let s’ be obtained from s° by interchanging the roles of players
1 and i That is, writing s*= {(s%(¢), .., s*(¢))} 7=\, k=0, 1, .., n, we have
sf(y=sX1), j# 1, i, si()=5)(¢), and s{(z)=s](¢). Clearly v/(s’)=r and
vAss 1)z r for all i, j, 1. We now argue that (s’ s, ..,s") is an equi-
librium. Suppose not. Then by (P'), 1,(s%1))— I ,(s°(1))>(5/(1—9))
(v/(s% t+1)—r) for some j, t. Since " —s” and /(¢") - r, by continuity
for n large enough I7,(s*(¢)) — IT,(s*"(1)) > (8/1 — 8)(v;(s™; 1 + 1) — I(a™)).
But then by (P), ¢” is not an equilibrium, a contradiction. Hence
#(s% s, .., s") is an equilibrium. Since its minimum continuation value is r,
it is a CBE. Q.ED.

Proof (Lemma 2) (Necessity). Let ¢ be a CBE with initial path s. By
the definition of a CBE, /{o)=r. This establishes (ii). To establish (i)
simply note that s must be supportable by /(7).

(Sufficiency). By (P), é(s, x) is an equilibrium. Its continuation values
are {v(a;f)]a=s,x and r=1,2,..}. Hence, {d(s, x))>=r, and 6(s, X} is
a CBE. Q.E.D.

Proof (Lemma 3). From (Al) and (A2), R is bounded. Consider a
sequence of symmetric CBE paths {x”} such that lim v,(x") = a. We need
to show that ae R. Endow Q=S5 with the product topology. By
Tychonoff’s theorem, 2 is compact. Assume w.l.o.g. that x"—x. By
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continuity, v,(x;t)=limv,(x";z)=r for all i and r=1. By (P’) and the
definition of a CBE, x" is supportable by r. Hence by Lemma 2 x is a CBE
path with v,(x)=a. Q.E.D.

Proof (Theorem 8). Fix 4. Let ¢ be a payoff maximal strongly symmetric
(perfect Bayesian) equilibrium. By Corollary 2 of Abreu, Pearce, and
Stacchetti [5], such a ¢ exists. Let v=v,(g). As argued in that paper we
may w.lo.g. take players’ behavior in ¢ to be a function only of publicly
observed outcomes and not of the history of their own past choices. Let
ol, denote the behavior induced by ¢ after a first period outcome 8 (which
by assumption is independent of players’ first period choices). Since ¢ is
a perfect Bayesian equilibrium, so also is ¢[,. Hence, vy <wy<V, where
w,=v (0|,) and v is the worst strongly symmetric equilibrium payoff. Let
ay€ (0, 1) be defined by wy=7— ao(v—v).

Let o,(l)=x be the action played in the first period. Then
v={1—=8)n(x)+ 83, pswq, Where p, is the probability of the outcome
# when all players use action x. Suppose x-e¢ A=argmax Y, I1,(s).
Then n(x)<n* and v<(1—4d)n(x)+dv. Therefore ¥ <n(x)<n* and
v<n*—d4,, where 4, =min{n* —n(x)|x-ee S\A4} >0 (recall that S, is a
finite set.} Now suppose x-ee€ A. Then by (M2) there exists s, # x such
that I1,(s,, x, .., x) > II,(x, .., x). Let g >0 be the difference between these
payoffs. Let g, be the probability of outcome 6 when the action profile is
(5(, X, ..., x). Since ¢ is an equilibrium, it follows that

0
_ Z(Pﬂ 4ol V‘“(;(‘_V))—'—_(Q P)v—v),

where P=Y a,psand Q=3 a,q,. Let m=(Q — P)/P. Then (1 —-d)(g/m) <

o(v—y)P. By the constant support assumption, P>0. Together
with the finite outcome, finite action assumption it follows that m is
bounded above ((m+ 1) is a likehood ratio) by some finite 2, independent
of a#,, x-ec A, and the profitable deviation s,. But v=(1-4d)n*+
0> polv—ay(v —v)]. Therefore, (1 —8)v = (1 —d)a* —JP(V —v) <
(1—d)n*—(1—9)(g/m). Hence v<n*—(g/m). Let 4,=g/m>0. Set
A=min{d4,, 4,} to complete the proof. Q.E.D.
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