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A b s t r a c t .  In a real-time control system, transient computer failures caused by elec- 
tromagnetic interference(s) may seriously affect system stability due to not updating the 
control input properly. This paper presents a method for deriving hard deadlines by ex- 
amining the stability of the state difference equations modified with an assumed maximum 
delay and several random sequences that represent the effects of stationary occurrences of 
disturbances to, as well as random delays of, the control input. A one-shot event model, in 
which a single long-lasting fault causes a dynamic failure, is also presented based on state 
trajectories and allowed state spaces. 
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ence; computation time delay; control input disturbance; hard deadline; system stability; 
allowed state-space. 

1. INTRODUCTION 

Most real-time control systems consist of two 
synergistic parts: the controlled process or en- 
vironment,  and the controller computer. Digital 
computers are commonly used in real-time con- 
trol systems due mainly to their improved per- 
formance and reliability in dealing with increas- 
ingly complex controlled processes. The control 
programs, which are executed by a controller 
computer  residing in the feedback loop, perform 
a set of functions using sensor readings from 
the controlled process and/or  the environment 
at regular t ime intervals. 

Since the controller computer is highly suscept- 
ible to transient electromagnetic interferences in- 
ducing functional errors (perhaps without dam- 
aging any components),  it is usually equipped 
with some fault-tolerance mechanisms especially 
for life- or safety-critical systems like aircraft 
or nuclear reactors. When the abnormality 
(component failure or environmental interfer- 
ence) of the controller computer occurs, the 
computat ion-t ime delay increases significantly, 
thus either failing to update the control input 
during the t ime taken for error detection, fault 
location, and recovery; or updating the control 
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input incorrectly until the failure is handled suc- 
cessfully (i.e., detected and recovered). The sta- 
tionary occurrences of these abnormalities may 
lead to the loss of system stability if their act- 
ive duration exceeds a certain limit called the 
hard deadline (Shin et al., 1985). Even one oc- 
currence of the abnormality for a long period - -  
called a one-shot event model by Shin and Kim 
(1992) - -  may drive the controlled process out 
of its allowed state space, or a dynamic failure 
o c c u r s .  

Most. conventional analyses of computation-t ime 
delay effects have been based on the assump- 
tion that  the feedback delay is fixed or constant 
(Gosiewski and Olbrot, 1980; Hirai and Satoh, 
1980). Shin and Kim (1992) derived hard dead- 
lines for linear time-invariant control systems 
based on the fact that  computation-t ime delays 
are stochastic in both their occurrence times and 
magnitudes reflecting the nature of computer 
failures. However, Shin and Kim (1992) did not 
consider control input disturbances under tile as- 
sumption of perfect fault detection. 

In this paper, the hard deadlines are derived by 
examining the stability of the state difference 
equations modified with random sequences that  
represent the stationary occurrences of com- 
puter failures and the imperfect error coverage 
(with binomial distributions), the duration of 
failures/interferences (with multinomial distri- 
butions), and the magnitude of disturbances to 

623 



624 K.G. Shin and H. Kim 

the control input (with a normal distribution). 
The system dynamics are modified first accord- 
ing to the assumed maximum delay, NT~, and 
the probability distribution of delays whose oc- 
currence periods _< NT,, where N is changed 
from 1 to the actual maximum delay (or hard 
deadline), denoted by DT~. In addition, the 
state and input constraints are used to derive the 
allowed state space from which the hard deadline 
is derived as a function of time and the system 
state. This analysis is useful for the one-shot 
event model, where a single event - -  a long- 
lasting failure - -  may cause a dynamic failure. 

Section 2 addresses the generic problem for ana- 
lyzing the effects of computat ion-t ime delays and 
input disturbances. Section 3 presents the ba- 
sic assumptions and the random sequences that 
characterize controller failures and input dis- 
turbances. Then, hard deadlines are derived 
with the modified state difference equations for 
linear time-invariant control systems for both 
stationary and one-shot event models. In Sec- 
tion 4, simple linear systems are examined to 
demonstrate the proposed approach. Section 5 
deals with the application of the hard-deadline 
information to the design of a reliable controller 
computer. The paper concludes with Section 6. 

recovery takes n sampling intervals. The con- 
trol inputs during this period (i.e., from time 
k0 to k0 + n) will be held constant at u(ko) by 
the D/A converter and latch circuits. Suppose 
a computer failure is detected nl sampling in- 
tervals after its occurrence at t ime k0 and the 
subsequent recovery takes n2 sampling intervals. 
The control inputs during this period are: (i) 
u(k0)Ia ,  u(k0+ 1)In, - • •, u (k0+nl  )Izx from time 
k0 to k0 + hi ,  (ii) held constant at u(k0 + nx)IA 
from time k0 + na + 1 to ko + nl + n2, and (iii) 
u (k0+nl  + n 2 +  1), u (k0+nl  +n2+2)  •. .  from time 
k0 + nl + n2 + 1, where I a  is a diagonal matr ix 
with Diag[IA]i = 1 + Aui and Aui is a random 
sequence modeled as the output  of a dynamic 
system with a white-noise input. Since faults oc- 
cur randomly during the mission lifetime, they 
are considered to be random disturbances to the 
controlled process, which can be modeled based 
on the fault characteristics. 

The hard deadline of a stationary model is 
defined as the maximum duration of the con- 
troller computer 's  failure without losing system 
stability. Thus, in linear time-invariant systems, 
the hard deadline is defined as: 

D(N) = inf sup{N : ItA(N)[I < 1 } ,  
Ctnv 

2. EF FECTS OF CONTROLLER 
C O M P U T E R  FAILURES 

Linear time-invariant controlled processes are 
generally represented by state-space models as 
shown in (1) and are equipped with well- 
designed controllers that  stabilize the overall 
control system and optimize the control object- 
ives: 

x(k + i) = Ax(k) + Bu(k) 

where k is the time index, one unit of time rep- 
resents the sampling interval Ts, and x E 77~" 
and u E 7~ l are the state and input vectors, 
respectively. The (digital) controller computer 
reads sensors, and calculates the control in- 
put once every T8 seconds according to a pro- 
grammed control strategy. The control input, 
which is held constant within each sampling in- 
terval by a latch circuit, is applied to the con- 
trolled process. 

When a fault I occurs in the controller computer, 
it will trigger functional error modes - -  which 
are computer failures - -  perhaps, without com- 
ponent damages. Suppose a computer failure is 
detected upon its occurrence at time k0, and its 

1Transient electromagnetic interferences (EMI) such 
as lighting, high intensity radio frequency fields (HIRF) 
and nuclear electromagnetic pulses (NEMP) are con- 
sidered as the poss ib le  sources  of  the  fault. 

where A(N) is an eigenvalue of the controlled 
process in the presence of computer failures of 
the maximum duration NTs and C~,~, repres- 
ents all the environmental characteristics that 
cause computer failures. Let XA(k) and UA be 
the allowed state space at t ime kTs and the ad- 
missible input space, respectively. Suppose the 
state is evolved from time k0 in the presence of a 
computer failure (disturbance/delay) which oc- 
curred at ki ts ,  was detected N1 sample intervals 
later and is recovered within N: sample intervals 
of its detection, where N = N1 + N2, 0 < 
Na,N2 <_ N. The control input during this 
period (kl < k < kl + N) is: 

uN(k) = u(kl)IIk, (N1) + u(k)IaII~,,+N, (N2), 

where lira(n) = ~(k - m) - ~(k - m - n) is a 
rectangular function from m to m + n, and ~ is 
a unit step function. Then, the hard deadline of 
a task during the time interval [k0Ts, kiTs ] is 
defined as: 

D(N, x(/co)) = inf sup{N : ¢(k, k0, 
u~(k)eUa 

, , (ko) ,u~(k) )  e X A ( k ) ,  ko < k < ky}, 

where the state trajectory is governed by: 

x(k) = ¢(k, ko, x(ko), 

3. DERIVATION OF HARD DEADLINES 
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Let NT~ and DT~ be the assumed maximum 
and actual maximum delays, respectively. Then, 
the hard deadline can be obtained by iteratively 
testing the necessary conditions for system sta- 
bility and state residence in the allowed state 
space while changing N from 1 to D. 

3.1. Hard Deadline of Stationary Model 

The controlled processes described by (1) are un- 
stable without any state feedback control. Thus, 
the state feedback control input necessary to sta- 
bilize such unstable systems can be calculated in 
the usual form of u(k) = - F x ( k ) ,  depending on 
the control objectives, e.g., time-optimal control 
with energy constraint, optimal state tracking, 
and optima] linear regulator. 

To derive hard deadlines, the given state equa- 
tion is modified to include all the stochastic be- 
haviors of computer failures based on the follow- 
ing random sequences and the basic assumptions 
for tractability. 

Definition of Random Sequences: 

1. p: the probability of a computer failure at 
each sampling instant. 

2. d: the conditional probability of successful 
failure detection given that a computer fail- 
ure had occurred. 

3. qd: the conditional probability of a delay 
(recovery duration) for i sampling intervals 

N (~-.i=1 q~ = 1) if a computer failure oc- 
curred and is detected before generating any 
incorrect, control input. 

4. qW: the conditional probability of a con- 
trol input disturbance for i sampling inter- 
vals (EN=I q~ = 1 ) i f  a computer failure 
occurred and is not detected till its disap- 
pearance. 

5. qa~: the probability density function (pdf) 
of the magnitude, Au, of the control input 
disturbance at time kTs, i.e., uaa,,at(k) = 
Ud,.,i~,d(k)IA. The mean and variance of 
q~,~ are given a priori as pa~ and a2A~. 

Basic Assumptions: 

1. The control inputs calculated after recover- 
ing computer failures are always correct. 

2. The probability that  two transient, failures 
occur sequentially within a small number, 
N - i, of sample intervals, where the delay 
(recovery duration) or duration of incorrect 
control inputs (active duration of a transi- 
ent failure) is i sample intervals and N is 

the assumed maximum value of such inter- 
vals, i.e., 1 < i < N - -  is small enough to 
be ignored. That  is, we consider only one 
computer failure possible during N sample 
intervals. 

3. Every random sequence considered here is 
independent identically distributed (i.i.d) 
with respect to the time index k. 

Suppose the control input has been updated cor- 
rectly at t = raNT,. In case an abnormality 
(delay/disturbance) is active for i sampling in- 
tervals since time t = ruNTs as a result of a 
controller computer failure, where 1 < i < N, 
let the control input at (mN+i)T8 be denoted as 
ua(rnN+i) which is equal to either u(mN+i)Ia 
for disturbance or u (mN)  for delay. The corres- 
ponding state equations for the group of inter- 
vals during which the system failed to update 
the control input correctly become: 

x(mg + 1) -- Ax(mN) + Bua(rnN) 

x(rnN + 2) = A2x(rnN) + 

(A + I )Bu,(mN + 1) 

x(mg + i) = A~x(mg) + 
i--1 

E AJBu~(mN + j )  
3=0 

x(rnN + i + 1) = A'+lx(mN) + 
t 

E A~Bua(rnm + j )  + Bu(mN + i) 
3=1 

x((rn + 1)N) = ANx(rnN) + 
N-- I  

E AJBu~(mN + j) + 
3 = N - t  

N--i--1 

E A J B u ( r n N + N - j -  1), 
3=0 

where m is the time index for the groups of N 
sampling intervals each. 
Let X(m) = [ x l , x 2 , . . . , x g ]  T = [x(mN + 
1) ,x(mN + 2 ) , . . . , x ( ( m  + 1)N)] T and U(m) = 
[Ul,U2,. . . ,UN] T -~ [u(mN + 1) ,u( ,nN + 
2) . . . . .  u((m + 1)N)]T; that  is, X(m) and U(m) 
are respectively the augmented state and con- 
trol vectors for the group of sampling intervals 
of NT,.  Then, the following augmented state 
equations are obtained: 

X ( m +  1) = ADX(m) + B b , U ( m  ) 

+ n ~ , U ( m  + 1), 

U(m) = --FDX(rn), 

B 1 ~ rBnl n2 where [ D,, BD,] becomes BDo ] for the t D o '  

normal behavior, [B~I,B~2] for delay, and 
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nwl  nw~l for disturbance, respectively. In the U D i  ' J ' D i J  

,B ~k B dl and B ~  above equations, A D , B ~ k  o Do, D,  
are the augmented state and input transition 
matrices, where k • {1, 2}, and FD is an aug- 
mented feedback gain matrix. Then, the state 
difference equation is modified to: 

X(m + 1) = ADX(m) + ((1 -- ¢)B~10 4- 

- + U ( m ) +  
i = I  

K" ,- B,O~+ ((1 - ¢)B52o + ¢ (1  - o ,  
i-----1 

¢~o/__~1~,Bd2 , U ( m +  1) (2) 

where ¢,~p • {0, 1} are binomially-distributed 
random sequences with probabilities p,d, and 
~i, (i • {0, 1} are multinomially-distributed ran- 
dom sequences with probabilities q~,q~, i.e., 
Pr[~i = 1] = q~'. 

Similarly to the method used by Shin and Kim 
(1992), the deterministic value of the hard dead- 
line is determined by examining the pole posi- 
tions of the first moment (ensemble average) of 
(2). Although the resulting hard deadline has 
little practical meaning, it indicates the trend 
of the ensemble system behavior with the un- 
certainty (in the state and output) that  can be 
measured by the second moment of (2). In ad- 
dition, one can derive the probability mass func- 
tion (pro f)  of the hard deadline with respect to 
q,~u rather than the deterministic value of the 
hard deadline based on the mean of q ~ .  The 
mapping between the hard deadlines and the 
magnitudes of disturbances (Au's) is not one- 
to-one and hard deadlines can be derived iter- 
atively using a numerical method with respect 
to each sample value of Au's. The sample val- 
ues of Au's are obtained by uniformly quantizing 
the qzxu continuum of the interval [a, b], where 

f :qA, ,dAu = 7. Let this quantization result in 
M equal-length subintervals (cells), where a, b, 
and M depend on the required accuracy of ana- 
lysis. Then, points are allocated to the quant- 
ized intervals (cells). Let the point of the ith 
cell ([a + (i - 1)b_--~, a + ib_---~M~]) be Aui which 
corresponds to the value of the midpoint of the 

( 2 i - 1 ) M  cell, i.e., Aui = a + ~(b-'a) , then the prob- 
ability of being at this point is calculated as 
q~x= = /-a+i ~--~. J:+(i--U~_. qa:(s)ds. A hard deadline 

is derived for each Aui, and let it be Di whose 
probablity is equal to that  of the ith cell (i.e., 
q~,).  Finally, the p m f  of the hard deadline is 
derived numerically by multiplying Di and i qAu, 
I < i < M .  

3.2. 0ne-Shot  Event Model 

The pole locations do not change in case of 
only one single failure with a relatively long 
(> T,) active period. The (asymptotic or global) 
stability condition discussed thus far is there- 
fore no longer applicable. Instead, the terminal 
state constraints can be used to test whether or 
not the system leaves its allowed state space. 
Note that every critical process must operate 
within the state space circumscribed by given 
constraints, i.e., the allowed state space. When 
the control input is not updated for a period ex- 
ceeding the hard deadline, the system may leave 
the allowed state space, thus causing a dynamic 
failure. The allowed state space consists of two 
sets of states X~ and X~ defined as follows: 

• X~: the set of states in which the system 
must stay to avoid an immediate dynamic 
failure, e.g., a civilian aircraft flying upside 
down is viewed as an immediate dynamic 
failure. This set can usually be derived a 
priori from the physical constraints. 

• X~: the set of states that  can lead to meet- 
ing the terminal constraints with appropri- 
ate control inputs. This set is determined 
by the terminal constraints, the dynamic 
equation, and the control algorithm used. 

The system must not leave X~ nor X 2 A in order 
to prevent catastr6phic failure. 

Let k0, k 1, N1, and N2 denote the indices for the 
failure occurrence time, the mission completion 
time, and the period of disturbance, the period 
of delay measured in sampling intervals, respect- 
ively, where N = N1 + N2, 0 < N1,N2 < N. 
The dynamic equation of a one-shot event model 
is: 

x(k + 1) = Ax(k) + B [u(k) + (u(k0) - u(k)) 

II}0(N1 ) + u(k)(I~ - I)IIko+N, (N~)] (3) 

where IIko(N) is a rectangular function defined 
in Section 2, and N1 and N2 are random vari- 
ables whose probabilities are determined by q/d 
and q~. Then, the deterministic value or the 
pmf  of hard deadline can be derived, similarly 
to the stationary model, by using the first mo- 
ment or the samples of (3). 

The state trajectory, which is tested for the given 
constraints, can be obtained by using the first 
moment or the samples of (3). Xl E X / can be 
tested indirectly by the following relation: 

x ( k f )  • x(k0 + N )  • 

where 

= ( x I [A + 

E k , - 1  A t , _ i _ , B u ( i )  ] • X/a } i=ko+N 
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Table 1 I~,=1 

N 3 4 5 6 7 
d = 1 0.7537 0.8945 0.9659 1.0021 1.0204 
d = 0.9 0.7579 0.9985 1.1698 1,2922 1.3798 

Table 2 Prnf of D and qzx, 

D 3 4 5 7 9 
Pr[D] 0.12 0.28 0.48 0.08 0.04 
AU --5-1-4 --5-1-3 - -5 : t :2  --5-1-1 --5 
qz~= o.oe~ 0.1334 0.2 0.2667 0.3334 

In practice, it is difficult to obtain X~.  Although 
there may be a one- to -one  mapping between 
x ( k 0 + g )  and x(kf ) ,  X/A is usually a continuum, 
which requires an excessive amount  of computa- 
tion due to the curse of dimensionality. The size 
of X~ will decrease as either N increases or k ap- 
proaches kl, but the size of X~ is usually larger 

than that  of X / due to the (asymptotic) stabil- 
ity of a controlled process. 

4. EXAMPLES 

To demonstrate  the concept of hard deadline, 
the hard deadlines are derived for several simple 
example control systems, two of which are de- 
scribed for the stat ionary and one-shot event 
models. 

E x a m p l e  1: Consider a simple controlled pro- 
c e s s :  

xl(k  + 1) = l l . 02z l (k )  + 1.08x2(k) + 10ul(k) 

z2(k + 1) = 0.95x2(k) + 10u2(k), 

where the coefficient matrices of a quadratic per- 
formance index and the corresponding optimal 
(feedback) control gain matr ix  stabilizing the 
controlled process by discrete Riccati equation 
are given by: 

0 10 ' and 

F = [ 3.1251 0.3090 ] 
-1.0791 0.5512 ' 

This feedback control changes the eigenvalues 
from {0.95, 11.02} to {0.0777,0.2101}. Then, 
the change of poles as a result of incrementing N 
is derived deterministically for the occurrence of 
the largest delay possible (p = qg = 0.045) and 
is given in Table 1, where the first case is for the 
perfect coverage (d = 1) and the second case 
represents the existence of input disturbances 
(d = 0.9 and #,xu = - 5 ) .  The deterministic 
value of the hard deadline is D = 6Ts in the ab- 
sence of input disturbances with an instant fail- 
ure detection, whereas it decreases to D = 5T~ 
with some (infrequent) input disturbances. The 
pmf of hard deadline is given in Table 2 with 
the p m f  of the magnitude of disturbances to the 
control input. 

E x a m p l e  2: The hard deadline of a one-shot 
event model is derived for the system of a double 
integrator which was also used for a one-shot 
delay model by Shin and Kim (1992). The 
state difference equation of the discretized pro- 
cess with the sampling rate, T0 = 0.01s, is: 

1 1 ] u(/e). 1,_-[01 ] 
With the same (s tate/ terminal)  constaints and 
the same feedback control input as those of 
Shin and Kim (1992), the pmf of hard dead- 
line at time T = 15T~ is derived for a Gaus- 
sian probability density function of Au, qA~ = 

l ( z ~ - l ° } ~  ~7~q-~10 e-  ~o0 , and is given in Table 3. 

Table 3 P m f  of hard deadline 

D 2 3 4 5 6 
Pr[D] 0.3295 0.0905 0.1326 0.0152 0.0678 

m m 

D 8 10 11 20 21 
PrrD1 0.0248 0.0159 0,0093 0,0096 0.3048 

b J 

5. APPLICATION OF HARD DEADLINE 
INFORMATION 

The information on hard deadlines is very use- 
ful for modeling system reliability and designing 
both the hardware and software of a controller 
computer. When designing a controller com- 
puter, one has to make many design decisions 
in the context of controlled processes that are 
characterized by their hard deadlines and cost 
functions (Shin et al., 1985), including: 

hardware design issues dealing with the 
number of processors and the type of in- 
terconnection network to be used, and the 
synchronization of processors, 

software design issues related to the imple- 
mentation of control algorithms, task as- 
signment and scheduling, redundancy man- 
agement, error detection and recovery. 

From the hard-deadline information, one can de- 
duce the knowledge of system inertia, which can, 
in turn, be used to specify the fault-tolerance 
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requirement of a real-time control system. This 
knowledge is required to estimate the system's 
ability of meeting timing constraints in the pres- 
ence of controller-computer failures, which was 
characterized as the probability of dynamic fail- 
ure, Pd~n by Shin et al. (1985). 

To illustrate the application of the knowledge 
of system inertia, consider a simple example of 
a triple modular redundant (TMR) controller 
computer in which three identical processors ex- 
ecute the same set of cyclic tasks. The T M R  con- 
troller computer updates, once every 7', seconds 
or every sampling period, the control input to 
the controlled process (plant). Tha t  is, the 
period of each cyclic task is equal to T,. The 
input of the cyclic task is a discretized output  
of the plant and the output  of the cyclic task 
will be used to control the plant during the next 
sampling interval. The output  of the TMR con- 
troller is correct for each task only if at least 
two of the three processors in the TMR con- 
troller produce correct outputs. A TMR fail- 
ure is said to occur if more than one processor 
in the T M R  controller fail during T,. Thus, 
the output  of the T M R  controller would not 
be changed in case of a TMR failure. The 
condition for a system (dynamic) failure res- 
ulting from controller-computer failures 2 is de- 
rived from the hard deadline, which is the allow- 
able maximum computat ion-t ime delay. In other 
words, this condition gives the knowledge about 
the controlled system's inertia against controller- 
computer failures. 

More than 90% of computer failures have been 
reported to be transient, especially with short 
active durations. Thus, the controller computer 
may recover from most failures in a few sampling 
intervals, and it can correctly update the control 
input without causing any dynamic failure, if the 
active duration of controller-computer failure is 
smaller than the hard deadline. 

Suppose the hard deadline derived from the con- 
trolled system is three sampling periods and 
a T M R  controller computer is used. That  is, 
no dynamic failure occurs if the faults inducing 
computer failures disappear (or are recovered 
by a fault-tolerance mechanism) within three 
sampling intervals. Then, the reliability model 
for this controller computer is built by extending 
a Markov chain model with two additional states 
before the state of a dynamic failure, where the 
parameters of the Markov chain model are to be 
estimated at a given level of confidence from em- 

2The other sources of system failure(s), such as fail- 
ures in actuators or sensors or mechanical parts and fail- 
urea of A/D and D/A converters, are not considered in 
this paper, because its main intent is to analyze tile coup- 
ling between a controlled process and a (fault-tolerant) 
controller computer. 

pirical data. The additional states account for 
the system inertia, i.e., a dynamic failure results 
from only three consecutive incorrect (missing 
the update of) outputs of the controller com- 
puter or for a period of 3Ts, not immediately 
from one or two incorrect (missing tile update 
of) outputs. Without  the information of hard 
deadline, one can over-estimate the probability 
of a system failure under the assumption that 
the system has no delay-tolerance, i.e., one in- 
correct output  can lead to a dynamic failure. 

6. CONCLUSION 

The hard deadline for a critical control task is 
usually assumed to be given a priori. This pre- 
supposes the existence of a precise definition of 
the hard deadline and a method to derive it, 
which, however, have not been addressed in de- 
tail. In this paper, the hard deadlines were de- 
rived for linear time-invariant control systems in 
the presence of input disturbances due to imper- 
fect detection coverage based oil consideration 
of the intrinsic nature of computer failures. The 
knowledge of hard deadlines, which must be de- 
rived from real control applications, is very im- 
portant  for task assignment and scheduling, spe- 
cification and evaluation of fault-tolerant con- 
troller computers. 
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