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A PC program, DESIGN, which can be used to evaluate and compare alternative choices of the design 
matrix, X, in the general linear model y = Xg + e is described, illustrated and made available to interested 
naders. Given X, the program (1) computes various measures of the ‘stability’ of X and X’X and (2) 
determines the precisions of estimates of the model parameters, B, and of predicted values, f, at the given 
design points. Examples focusing on polynomial regression are given. 
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Introduction 

Multiple linear regression is among the statistical tools most often used in 
biomedical research. Good general accounts are given in literature [l-3], and we 
make repeated reference to these publications for many of the details that are omit- 
ted here. In accordance with Ref. 1 (p. 237), we write the general linear regression 
model in the form 

fori=1,2,..., n. This relates the response or ‘dependent’ variable, yj, to a num- 
ber of predictor or ‘independent’ variables, xii. The /3 values are parameters to be 
estimated from the data and the Ei values represent random errors. 
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The model (1) is more conveniently written in matrix notation (Ref. 1, p. 238) as 
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In the above, y is a (n x 1) vector of observations, X is a (n x p) matrix of con- 
stants, fl is a (p x 1) vector of parameters, and E is a (n x 1) vector of errors or 
residuals assumed to satisfy 

c - MVN (0, a21) (3) 

i.e., we assume e has a multivariate normal distribution with mean or expected value 
E(e) = 0 and covariance matrix V(e) = a21 

Given this structure, the mean of y is E(y) = X/3 and its covariance matrix is 
V(y) = a21 (Ref. 1, p. 238). The least squares estimator of /3 is (Ref. 1, p. 239) 

b = (X’X)-‘X’y (4) 

and this is unbiased with E(b) = /3 and covariance matrix (Ref. 1, p. 242) 

V(b) = (X’X)_‘a2 (5) 

Now, when the above procedure is carried out in the context of a designed experi- 
ment, the design matrix, X, is determined or controlled by the investigator and is not 
a part of the results of the experiment (the response y represents the experimental 
outcome). The ‘best’ choice of X depends on the purpose(s) to which the fitted equa- 
tion will be put. A good discussion is given in Netter et al. (Ref. 1, p. 175). Even 
in the simplest case of simple linear regression (where there is but a single x variable 
and X is n x 2), among other things, the experimenter will have to consider 
(Ref. 1, p. 175): (i) How many values of x should be studied? (ii) What shall the two 
extreme values be? (iii) How should the other values of x, if any, be spaced? and (iv) 
How many observations should be taken at each x-value? The situation is obviously 
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more complicated when there are multiple x’s: The above points need to be con- 
sidered for each x, and the combinations of levels of the variables must be selected. 
We focus on two related but separable aspects of the choice of X, namely, the 
accuracy with which b is computed from Eqn. 4 and the magnitudes of the variances 
of the elements of b as measured in Eqn. 5 (Ref. 4, p. 4). 

It is well known that, with respect to the first consideration, it is advantageous to 
choose X so that its columns are uncorrelated or orthogonal (Ref. 1, p. 271): A design 
matrix X with mutually orthogonal columns ‘represents the best possible experimen- 
tal data’ (Ref. 4, p. 109). It is also true that choosing the columns of X to be or- 
thogonal can favorably impact on the variances of the elements of b, viz., V(bJ. 
Theoretical discussions are given Refs. 3 (p. 58) and 5 (p. 193). Graphical demonstra- 
tions are given in Refs. 6 and 7 (Chap. 14). It is, of course, not always possible to 
choose an orthogonal X and in such cases both the accuracy of Eqn. 4 and the 
magnitude of Eqn. 5 will depend on the extent of the correlations between the col- 
umns of X. The terms collinearity, multicollinearity and ill-conditioned are used to de- 
scribe situations in which these columns are highly correlated, and multicollinearity 
can have profound effects on the accuracy with which the regression coefficients and 
their variances are estimated (Ref. 1, p. 275). Historically, the existence of 
multicollinearity has been indicated by a small eigenvalue of X’X and/or the associ- 
ated correlation matrix, R, and the extent to which a given X is ill-conditioned has 
be measured in several ways, including variance inflation factors (VIFs) and the mul- 
tiple correlations between a given column of X and the remaining columns (Ref. 1, 
p. 39). These measures are, of course, also useful in situations in which X is not under 
the control of the experimenter but, rather, together with y, constitute the outcome 
of the experiment. Our program may be used in such cases to check on 
multicollinearity in X’X and to assess the extent to which this problem can be 
ameliorated by remedial measures such as centering or scaling. Centering refers to 
subtracting a constant from each value in each of the columns of X (e.g. the mean 
of the values in that column). Scaling refers to dividing each value in a given column 
of X by a constant (e.g., the standard deviation of the values in that column). The 
two can be used separately or in combination. Centering and/or scaling can effect 
the stability of X’X, but it is important to realize that which (if any) to use depends 
on the problem under consideration. An invaluable reference in this regard is Belsley 
et al. [4]. 

As concerns the variances of the estimators, it is seen that V(b) is proportional to 
(X’X)-’ and it is clear that, when X is under the control of the experimenter, it is 
advantageous to choose it so that (X’X)-* is ‘small’. Two of the more widely used 
criteria for ‘smallness’ in this context are the trace (tr) and determinant (det) of 
(X’X)-’ (Ref. 3, p. 92) The trace of a matrix is the sum of the diagonal elements of 
the matrix; in this case, the sum of the variances of the elements of b. When this is 
small, the average variance of the bj will be small. The determinant is sometimes 
called the generalized variance (Ref. 8, p. 139) and, again, it is desirable that this 
quantity be small. The design X is said to be A-optimal if it minimizes tr[(X’X)-‘1. 
It is said to be D-optimal if it maximizes det[(X’X)] (this is the same as minimizing 
the generalized variance). A-optimal designs minimize the ‘total variance’. D-optimal 
designs minimize the (hyper) volume of fixed level confidence regions for 0; they also 
minimize the maximum variance of any predicted value (Ref. 3, p. 92) 
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The choice of X has received much attention in the literature and optimal designs 
exist for many combinations of criteria and experimental structures. Useful reviews 
are given in the literature [9,10]. Unfortunately, it is not always possible to find the 
optimal design in a given situation and, even when such a design exists, practical 
considerations and/or physical constraints may preclude its use. It may be of interest 
in such situations to compare the possible with the ideal [lo]. Moreover, optimal 
designs tend to concentrate all experimental runs on a small number of design points 
and, while they may be ideally suited to estimating the coefficients of the assumed 
model, they provide little or no ability to check for lack of fit [lo]. For example, in 
simple linear regression, if our primary interest is in estimating the slope, &, we 
minimize V(bl) by using two levels in X, at the two extremes for the scope of the 
model, and placing half the observations at each of the two levels (Ref. 1, p. 175). 
This is the best design given the model, but it provides no information concerning the 
fit of the model. For polynomial regression, D-optimal designs for estimating a 
polynomial of degree D locate experimental runs at exactly D + 1 distinct levels of 
the predictor variable [IO]. This design can provide no indication that a higher 
degree polynomial may be needed (Ref. 3, p. 186). A number of alternative strategies 
have been devised to cope with this situation [lo] by compromising optimality to 
allow some ability to test the model and our program can be used to discover some 
of the properties of these compromise designs and compare their efficiencies with 
respect to the problem in hand. 

In any case, experimenters are often faced with the problem of choosing between 
competing (possible) designs or assessing the impact of a proposed change in strat- 
egy. Our program, DESIGN, was developed to allow the evaluation of a given design 
and the comparison of several designs. It is meant to be used prior to experimenta- 
tion and does not depend on the values of the response variable, y. We emphasize 
that DESIGN is not an optimization program: it does not construct optimal designs. 
Rather, it is a means for the evaluation and comparison of user-proposed designs. 
Some of the measures used in this process were alluded to briefly above. In the next 
section we descibe the program’s output in more detail and indicate how each can 
be used for evaluative and/or comparative purposes. We should note that the poten- 
tial value of a program of this type was recognized much earlier [l 11. Indeed, these 
individuals developed a program (called EXPLOR) for the General Electric MARK 
III time-sharing system as early as 1975. Our program, which follows their outline 
closely, was written both to facilitate our work in polynomial growth curve models 
[12-181 and to make this useful tool more readily accessible to biomedical resear- 
chers. Given our emphasis, we differ from EXPLOR in that we do not consider 
models without an intercept term (&,). In addition to the measures given in Meeker 
et al. [ll], we provide measures based on the singular value decomposition of X, 
which have a number of desirable properties (Ref. 4, p. 98) Information on obtaining 
a copy of DESIGN is provided in the appendix. 

The Program 

The menu-driven program is invoked by the single command 

gsrunl design 
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The user is then ‘prompted’ for the location and name of the file containing the ma- 
trix, X. This may be either an ASCII or GAUSS file. We should note here that while 
DESIGN is written in GAUSS 1191, it is not necessary to have purchased or installed 
GAUSS to run the program. We allow the use of GAUSS files for the convenience 
of users who have access to GAUSS, but our program stands alone. The user then 
is presented with the opportunity to specify the value of a2 to be used in the com- 
putations (the default value is a2 = 1). If the us er can provide a reasonable guess at 
a2, certain of the quantities computed below will be more readily interpretable, 
especially the confidence intervals for the parameters and predicted values whose 
lengths will then incorporate this information. 

The output includes: 

(I) X, R, de@), R-‘, SQRT(R), X’X, and (X’X)-‘a2. The input matrix, X, is 
echoed so the user may check for accuracy. R is the (p - 1) x (p - 1) correlation 
matrix containing the correlations between the columns of X (excluding the first col- 
umn which has every element 1; we denote these columns as x1, x2, . . . , x&. Large 
off-diagonal elements (near unity) in R indicate collinearity. de@) has been called, 
‘an essential part of a good computer regression routine’ (Ref. 2, p. 264). Small 
values of this determinant signal that the estimated regression coefficients may be 
unstable. R-’ is the inverse of R whose use in multivariate analysis - including 
multiple regression, factor analysis and discriminant function analysis - was con- 
sidered in Raveh [20]. Our interest in R-’ is in computing the VIFs described 
below. SQRT(R) is the Cholesky or square-root factorization of R. It is an upper 
triangular matrix such that SQRT(R)’ x SQRT(R) = R. Each squared diagonal 
element of this matrix is of the form 1 - R$ where Rj* is the multiple correlation of 
xj with the preceding x’s These multiple correlations are related to de@), viz., 
de@) = II(1 - R;), where II denotes the product. The diagonal elements of 
X’X)-‘a2 are the variances of the elements of b, the estimated regression coeffr- 
cients. We provide details concerning the computation of (X’X)-’ under IV below. 

(II) The VIFs and the multiple correlations between each single x and all the other 
x values. The VIFs are the diagonal elements of R-’ and their diagnostic value 
stems from the relation VIFj = l/(1 - RJ?) where R,? is the multiple correlation coef- 
ficient of Xj regressed on the remaining explanatory variables. A high value for a 
given VIF indicates an R2 near unity, and hence points to multicollinearity. It has 
been suggested that when the largest VIF exceeds 10, this indicates that 
multicollinearity may unduly influence the least squares estimates. Alternatively, 
mean ‘VIF values considerably larger than 1 are indicative of serious multicollin- 
earity problems (Ref. 1, p. 392). The exact nature of these problems may be seen 
from the relationship [21] 

v((bj) = a2V1Fj 
(n - I)$ (6) 

where S” is the variance of the elements in xP This shows that I’(‘(bj) is directly pro- 
portional to VIFP Confidence intervals for bj will increase in length by the factor 
[vIFj]1’2. It has been suggested [22] that the VIF be used as a measure of how 
many times larger V(bJ will be for correlated data than for orthogonal data (where 
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each VIF is unity). It is the ratio of the variance of bj to what that variance would 
be if xj were uncorrelated with the remaining x values. Consider e.g., the case where 
the correlation matrix has equal off-diagonal elements, viz., 

. . . . 

This can be written in the form R = (1 - p)[I - pJ] where J is the (p - 1) x @ - 1) 
matrix with every element 1. It can be shown that, for (-l)/(p - 2) < p < 1, 

R-l=-._!- I- L P J 
1-P 1 + (p - 2)P 1 

and hence that 

VIFj = 1 +@-3)P 

(1 - P)]l + (P - aPI 

It is seen that as p - 1, VIFi - 00. The values of VIF for several combinations of 
p and p are given in by Mansfield and Helms [22]. For example, for p = 4, 
P = -0.495421, VIF = 36.844. Changing p slightly to p = -0.499 gives VIF = 167. As 
p approaches -0.5, VIF approaches infinity (for p = 4). 

The VIF values and the Rj values are also related to the tolerance by 
tolerance = 1NIFj = 1 - Rj. Many computer packages will automatically exclude 
variables with tolerances less than 0.01 or 0.001 (Ref. 1, p. 393). Tolerance is usually 
thought of in the context of computational accuracy. As a rule of thumb, the number 
of leading zeros in the tolerance is the number of significant digits lost if the compu- 
tation includes the variable in question. 

(III) The matrices C = (X’X)-‘X’ and H = X(X’X)-‘X’. The matrix C is 
sometimes referred to as the catcher matrix [23,24]. Since b = (X’X)-‘X’y = Cy, the 
rows of C consist of the weights (cil, CQ, . . . ,ch) that enter into the expressions 

6, = Ci]yl + Cjfl* + ’ ?? ’ + cidn (7) 

which reflect the sensitivity of the estimated coefficients to the (to be observed) 
responses [ll]. The elements of C are related to the VIFs by [24] 

VIFj = C C$ C (Xii - xj)’ (8) 
i i 
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and to the V(bj) by (Ref. 4, p. 13) 

V(‘(bj) = a2 c c; (9) 

The matrix H is known as the hat matrix (Ref. 1, p. 220). It is related to the fitted 
values of y by 9 = X(X’X)-‘X’y = Hy. A number of the properties and uses of H 
were given in Hoaglin and Welsch [25]. For our purposes, the most important is the 
role that H plays in the covariance matrices of 9 and the residuals e = y - 9. viz., 

V(Y) = a2H (10) 

and 

V(e) = is2 (I - H) (11) 

The rows of H consist of the weights (hii, hi2, . . . , h,) that enter into the 
expressions 

Pi = hi,yl + hig2 + * ?? * + hid,, (12) 

reflecting the relative importance of the yi in predicting the response variable: h, 
has the direct interpretation as the amount of leverage or influence exerted on pi by 
yi (regardless of the value of yj since H depends only on X). With fixed X, we can 
examine, and perhaps modify, the experimental conditions in advance. 

It can also be seen from Eqn. 11 that the variance of a given residual, say eb is 
given by V(eJ = (1 - h,) where hii is the ith diagonal element of H. The element hii 
is called the leverage of the ith observation. The larger the value of hij, the smaller 
eb i.e. the closer the fitted value j$ will be to the observed value yP Similarly, from 
Eqn. 12, the larger hii, the more important yi is in determining j$. It can be shown 
that (Ref. 1, p. 402) 

0 I hii < 1 

tr(H) =p 

and 

hii= i hi 
j= I 

this last equation showing in fact that hii summarizes the leverage of yi on all the fit- 
ted values. A given hji is usually considered ‘large’ if it exceeds twice the average le- 
verage, viz., 2p/n (Ref. 1, p. 403). This, however, is based on an approximation that 
is accurate only for large n and p. For smaller n and p, 3pln may be more appropriate 
~241. 
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The value of hii may also be interpreted as a measure of the distance between the 
x values for the ith case and and the means of the x values for all n cases. A large 
leverage hii signals that the ith case is distant from the center of all the observations. 
The Mahalanobis distance of Xi from the other observations can be written [24] 

When designing an experiment, it is desirable to choose the x values to be roughly 
equally influential, i.e. to have each hii = p/n (Ref. 4, p. 17) This recommendation 
is based on results given in the literature [26,27]. Huber [26] studied the effects of 
outliers on experimental designs for linear models and suggested using designs for 
which the hii are all well below unity. Indeed, he suggested that’h, > 0.2 implies that 
too much weight is being given to yi (note that this cut-off point is independent of 
p and n). He showed that 

ji = (1 - h&tib(i) + hi8i 

where (here only) xi is the ith ro’ow of X and h(i) is the estimate of /3 when the ith ob- 
servation is omitted. This expresses pi as a weighted average of yi and a quantity 
which does not depend on yi (it depends on the other y values since they are involv- 
ed in computing b(i)). It is easily seen from this that a point with hii = 1 completely 
determines its predicted value. It is also clear that aji/ayi = hii, i.e. hii is a measure 
of the rate of change of ji with respect to yi. Box and Draper [27] showed that the 
effect of one or more outliers on the vector of predicted values was proportional to 
Ch,Z and that this is minimized when hii = p/n for all i. This reinforces the sugges- 
tion that one should take hii = p/n for all i, and also shows that p/n itself should not 
be large, i.e. that n should be large relative to p. D-optimal designs have all 
hii = p/n. 

As an example, for linear regression with a single explanatory variable, 

This shows that the further Xi is from its mean, the more influence it exerts. Con- 
versely, a large hii signals an observation which is distant from the center of the 
data. 

Finally, we note that studying the hii can be useful even if the experiment has 
been performed and the residuals, ei, are available for scrutiny. Emphasis is proper- 
ly placed on the examination of residuals (Ref. 2, Chap. 3) when the data have been 
analyzed by multiple linear regression, but this study should incorporate a consider- 
ation of leverage. We have seen that large hii can cause problems, but large hii are 
accompanied by small ei (large hii ‘forces’ the regression surface to be close to vi) SO 
this aspect of the conditioning problem cannot be discovered through plotting 
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residuals alone. The hii are functions of the x values only, and hii measures the role 
of the x values in determining how important yi is in affecting the fitted value gi. 

(IV) In Meeker et al. [l 11, considerable emphasis was placed on the eigenvalues 
and eigenvectors of X’X and R. Multicollinearity was said to be indicated by the 
presence of a ‘small’ eigenvalue in either or both these matrices, and the ratio of the 
smallest to the largest eigenvalue of R was compared to the value of 1 for a com- 
pletely orthogonal design. For non-orthogonal designs, this ratio is less than 1, 
sometimes considerably less, and thus the difference between this ratio and 1 was 
proposed as a measure the degree of non-orthogonality of the design under consider- 
ation. For reasons made explicit in Relsley et al. [4], we choose to approach these 
questions using the singular value &composition (SVD) of X. This will provide infor- 
mation that encompasses that given by the eigensystem of X’X, and provide ad- 
ditional measures which should prove useful in evaluating and comparing proposed 
designs. Other uses and properties of the SVD are given in the literature [28-311. 
We follow (Ref. 4, p. 98) Any n x p matrix X can be written as 

X = UDV’ (13) 

wherethen xpmatrixuandthep xpmatrixVareorthogonal(U’U=V’V=I) 
and D is a p x p diagonal with non-negative diagonal elements dr, d2, . . , dP called 
the singular values of X. It turns out that the di2 are the eigenvalues of X’X and the 
columns of V are the eigenvectors of X ‘X, so we do provide the same information 
as given in Meeker et al. [ll]. However, the approach based on Eqn. 13 which 
produces the singular values di allows the definition of the condition number of X 
which in turn can be used to remove the subjectivity associated with deciding 
whether or not X’X has a ‘small’ eigenvalue (Ref. 4, p. 96) 

The condition number of X is defined as 

K(x)=&/& 2 1 (14) 

i.e. the ratio of the largest singular value of X to the smallest. The condition number 
of any matrix with orthonormal columns is unity, so that it reaches its lower bound 
in this ‘cleanest of all possible cases’ (Ref. 4, p. 104) It can also be shown that, for 
a given X (not necessarily orthogonal), the maximum VIF of X is a lower bound on 
the condition number. The condition number provides a measure of the potential 
sensitivity of the estimated standard errors of the regression coefficients to small 
changes in the data. The elasticity of the variance of any least squares estimate is 
bounded by twice the condition number of X, i.e. 2K(x) provides an upper bound 
to the sensitivity of the parameter variances to changes in X. If, for example, a condi- 
tion number were 100, a 1% change in any element of X could result in a 2 x 100% 
change in the variance of any estimate (Ref. 4, p. 177). We also define and compute 
the kth condition index of X 

qk dmax =-fork=1,2,***,p-1 
dk 

(15) 
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There are as many near-dependencies in the X matrix as there are ‘large’ condition 
indices, and studies have shown that weak dependencies are associated with condi- 
tion indices of about 5 or 10, while moderate to strong relationships are indicated 
for indices of 30-100. Condition indices of 100 or more can cause substantial vari- 
ance inflation and great potential harm to regression estimates (Ref. 4, p. 153). Note 
that these rules-of-thumb apply to the condition number and condition indices of 
X. It can be shown that K(X’X) = K*(X), so that ill-conditioning in X is greatly com- 
pounded in X’X (Ref. 4, p. 114). 

Returning to the eigenvalues and eigenvectors of X’X, these may be useful in 
determining which linear combinations of b may be estimated with precision. Con- 
sider the linear combination a’b and let 6i, 62, . . . , 6, be the eigenvectors cor- 
responding to the eigenvalues dt, d$, . . . , di. Then relatively precise estimation is 
possible in the directions of the ai corresponding to large eigenvalues, but relatively 
imprecise estimation is obtained in the directions corresponding to small eigen- 
values. In cases where ill-conditioning is a problem, taking additional observations 
in the directions of eigenvectors corresponding to small eigenvalues can help circum- 
vent the problem. See Seber (Ref. 3, p. 80) for a discussion and further references. 

The matrix U in Eqn. 13 is related to the hat matrix by H = UU’ and this is the 
preferred way of computing H [25]. The SVD is related to the variances of the 
estimators by 

m = a*vD-*v ’ 

so that for a given bi 

Note that this decomposes V(bJ into into a sum of components, each associated 
with one of the singular values of X. Small values of 4 will cause large variances: 
Y$ = 0 if columns i and j are orthogonal (Ref. 4, p. 106). 

The SVD is also used in our program to compute other quantities, e.g. (X’X)-‘. 
If our program is to be useful, it must be able to accomodate ill-conditioned design 
matrices; it goes without saying that we must employ the most accurate of the avail- 
able computational techniques. While GAUSS is, in general, an extremely accurate 
program, certain of its functions are more accurate than others (at the cost of in- 
creased computing time). In particular, the inverse of a matrix can be computed in 
various ways; among those available are the INVPD and INV functions, the QR 
algorithm, and the SVD. The INVPD command is based on the Cholesky or square- 
root factorization in which X’X = T’T where T is a p x p upper-triangular matrix. 
INV is based on the Crout decomposition (with partial row pivoting) in which 
X’X = LT, where L(T) is lower (upper) triangular. GAUSS uses a tolerance of 
lo-i4 for these functions. In the QR algorithm, X = QT, where Q’Q = I and T is 
upper triangular. Then X’X = T’Q’QT = T’T and (X’X)-’ = T-‘(T-l)‘. In the 
SVD, (X ‘X)-l = (V-i) ‘D-*V -‘. These methods are described, and their accuracies 
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compared in Seber (Ref. 3, Chap. 11). It is concluded that the SVD is at least as 
accurate as the other methods and is particularly useful when X defines a polynomial 
regression model or is ill-conditioned in an unpredictable way. We also informally 
compared these procedures by computing (X/X)-‘* X’X for several highly ill- 
conditioned matrices. For the 10 x 8 X polynomial regression design matrix cor- 
responding to fitting a 7th degree polynomial to 10 equally spaced points l(l)10 (cf. 
the example to follow, viz., the X matrix in Eqn. 19), off-diagonal elements were as 
large as 0.0133 when INV was used. We decided, therefore, to employ the SVD in 
all applicable situations, in particular in the computation of (X/X)-’ and all 
quantities involving this matrix. 

(V) det ((X’X) ) and tr ((X’X)-’ ) . When comparing two designs, the one with the 
larger value of det ( (X ‘X) ] is preferred using the D-criterion [9]; while the one with 
the smaller value of tr((X’X)-’ ) is preferred if the A-criterion is used [32]. The 
trace criterion for optimality leads to X matrices which have orthogonal columns; 
however, in the general case of multiple regression, this has several shortcomings 
(e.g., a dependence on the scaling of the x-variables) so that there is a general prefer- 
ence for D-optimallty. There are algorithms available for producing D-optimal 
designs [33]. For more details and references see Ref. 3 (p. 92). We consider the spe- 
cial case of polynomial regression, where we claim A-optimality may be more useful, 
later. 

In any case, the quantity trl(X’X)-’ 1 can be used to gain considerable insight 
into a number of issues regarding the ‘goodness’ of b in estimating /3 as a function 
of the design. Several of these are considered below. It can be shown [34,35] that 
the expected squared distance between b and fl can be written 

m - PI’@ - 81 = a2tr((X’X)-‘) = a2 $ -L > -f- 
i=* di’ mln 

where df, d2 2, * * - 3 $ are the eigenvalues of X’X. Thus when tr((X’X)-‘) is large 
and/or X’X has a small eigenvalue, this distance can be expected to be large. The 
inequality in [16] shows how d2, can be used to provide a quick rule of thumb for 
how far b will be from fi. 

It can also be shown that the estimated coefficients tend to be too large in absolute 
value, i.e. lb1 > I@[, viz., 

a2 
E@‘b) = B’S + a2tr((X’X)-‘) > fi’/3 + - 

&in 
(17) 

and it is possible that some will even have the wrong sign [34]. The more X ‘X is ill- 
conditioned, the more b can be expected to be too large in magnitude. A ‘real world’ 
example is given previously [35] where tr( (X’X)-’ ) = 33.825 so that the expected 
squared distance of b from /3 is 33.825a2, which is more than three times what it 
would be for an orthogonal system (for an orthogonal X, tr( (X’X)-’ ) = p and 
p = 10 in their example). This has lead some to consider ‘shrunken estimators’ of the 
form Xb (0 < X I 1). See Ref. 3 (p. 90) for a description and references. 
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Finally, Ref. 3 (p. 88) shows that 

p-1 

c Var(bj ) = a2tr((X’X)-‘) = a2 i 
a2 

4-2 > - 
j=O j= 1 &,i, 

which shows that the ‘total variance’ may be high if X’X has a small eigenvalue. 
(VI) The standard errors (SEs) and half-lengths of the confidence intervals 

(HLCIs) for each of the elements of b. The SE of bj, the ith element of b, is (I times 
times the square root of the ith diagonal element of (X ‘X)-l. The corresponding 
HLCI is this value times t (1 - (w/2; n - p), i.e. the (1 - CY/~) x 100% percentile of 
the t-distribution with n -p degrees of freedom. 

(VII) The SEs and HLCIs for the predicted mean value of y at the design points, 
X. The fitted or predicted values of y are obtained from 9 = Xb = Hy. The variance 
of 9 is cw2H, so that SE(j$) is (I times the square root of the ith diagonal element of 
H. The corresponding HLCI is this value times t (1 - o/2; n - p). 

The above summarizes the output which is obtained from our program. The 
output is shown on the screen and automatically written into a file called 
DESIGN.OUT so that it can be modified using a word processor and printed. 

An Example 

Consider the polynomial regression model with a2 = 1 where a quadratic equa- 
tion is to be fit to the n = 5 points 1, 2, 3, 4, 5 so that (Ref. 2, p. 260 and Ref. 9) 

x= 

11 1 
12 4 
13 9 
1 4 16 
1 5 25 1 and /3 = 

We compute 

R= l o*g811104g1 1 
det(R) = 0.03743315 

R-’ = 26.714286 -26.209517 
26.714286 1 

60 [I 81 

82 

(19) 

SQRT(R) = 1 0.98110491 1 0 0.19347650 
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[ 

5 
X’X = 

and 

(X)X)_’ = 

15 55 
55 225 1 979 

4.6 -3.3 0.5 
2.671486 -0.42857143 

0.071428571 

where we do not repeat the lower elements of symmetric matrices. From this it is 
seen that VIF 1 = VIF2 = 26.714286 (R* = 0.96256684). Substantial variance infla- 
tion is in evidence. In this example, with p = 3, SQRT(R) adds no information to 
that already contained in R*, viz., 1 - R**,i = (0.19347650)* gives R2.i = R*, as it 
should. For larger values of p, recall that successive squared diagonal elements of 
SQRT(R) refer to the squared multiple correlations with the preceding variables. 

The catcher and hat matrices are given by 

1.8 0 
c= -1.0571429 0.32857143 

0.14285714 -0.07142857 

and 

-0.8 -0.6 0.6 
0.85714286 0.52857143 -0.65714286 

l-O.14285714 -0.071428571 1 0.14285714 

r 

H= 

0.88571429 0.25714286 -0.085714286 -0.14285714 0.085714286 
0.37142857 0.34285714 0.17142857 -0.14285714 

0.48571429 0.34285714 -0.085714286 
0.37142857 0.25714286 

0.88571429 - _ 

It is seen from Eqn. 7 e.g., that 

A0 = l.Sy, + Oyi - 0.8~~ - 0.6~~ + 0.6~~ 

Similarly, from Eqn. 11 

j$ = 0.8857~~ + 0.2571~~ - 0.0857~~ - 0.1428~~ + 0.0857~~ 

One can also see that the hii vary somewhat from the optimal (constant) value 
p/n = 3/5 = 0.6 suggested in literature [26,27], but that none exceeds 2ph = 1.2, so 
that the while the proposed design may be sub-optimal, none of the hii is unduly 
large. 
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The singular value decomposition X = UDV’ yields 

u= 

-0.038954489 -0.52790324 0.77814845 
-0.13670189 -0.58903782 -0.075997413 
-0.29496108 -0.45745271 -0.43525771 
-0.51373205 -0.13314788 -0.29963243 
-0.79301481 0.38387664 0.33087841 

0 
2.1977332 0 

0.37437558 1 
and 

-0.97291858 

V’ = 0.79636420 -0.59768096 0.21177325 1 0.09263653 

As mentioned earlier, the di2 are the eigenvalues 
(rows of V’) are the corresponding eigenvectors. 

From these we compute 

, of X’X and the columns of V 

K(X) = d,,,J&, = 32.15633410.37437558 = 85.89324656 

and it is again seen that serious variance inflation may exist. Were an element of X 
to be changed by l%, the variance of an estimator could be changed by as much as 
2 x 86 x 100% = 172%. The condition indices are 

q2 = 32.15633412.1977332 = 14.63159131 

n3 = 32.15633410.37437558 = 85.89324656 

and we see that there is one moderate to strong relationship among the columns 
of x. 

The values relevant to the assessment of the A- and D-criteria are 

tr((X’X)-’ ) = 7.3428571 and det (X’X) = 700 
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The standard errors of the elements of b and the corresponding HLCIs for 95% 
confidence intervals (t (0.975; 2) = 4.3027)) are 

SE (b,,) = 2.1447611, HLCI = 9.2280 

SE (b,) = 1.6344506, HLCI = 7.0324 

SE (b2) = 0.26726124, HLCI = 1.1499 

The standard errors of the elements of 9 and the corresponding HLCIs are 

SE (j$) = 0.94112395, HLCI = 4.0493 

SE (y2) = 0.60944940, HLCI = 2.6222 

SE (9s) = 0.69693206, HLCI = 2.9986 

SE (j$) = 0.60944940, HLCI = 2.6222 

SE (j+) = 0.94112395, HLCI = 4.0493 

This shows how DESIGN can be used to evaluate a given experimental design. It can 
also be used to compare designs. In the context of polynomial regression, one might 
envision using our program to compare designs in two distinct ways, e.g. to assess 
the effects of centering and/or scaling on the conditioning of the design matrix (com- 
putational considerations), and to see how a change in the design points might effect 
leverage, etc. (design considerations). 

Consider tirst the effect of centering the data points, i.e. of using (Ref. 1, p. 300) 

-1 -2 4‘ 
1 -1 1 
1 00 
1 11 

-1 24_ 

instead of X. It should be noted here that ‘centering’ is used in (at least) two different 
ways in the literature. The first, appropriate for polynomial models, is illustrated 
above. There the values l-5 are mean-centered (the mean of the column, 3. is sub- 
tracted from each entry) to produce the second column of X; these values are 
squared to obtain the third column. In the second kind of centering, each of the col- 
umns is centered by subtracting from each value in column j the mean for that col- 
umn, viz., zii = xii - Zi. In the context of the above example, this would result in the 
centered Z matrix (the mean of the third column is 11) (Ref. 2, p. 262) 
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-2 -16 
-1 -7 

z= [ 

0 -2 
1 5 
2 14_ 

Note that Z is 5 x 2: The reason for this is that the intercept is no longer included 
in the model: The y-values are also centered when this approach is used, and this 
leads to be = 7, See Ref. 2 (p. 260) for details. 

Using the first (polynomial) form of centering, we have R = I (columns 2 and 3 
are orthogonal), R-* = I and so VIFt = VIF2 = 1. 

(gl Q-1 = 

0.48571429 0 -0.14285714 

0.10 0 
0.071428571 I 

The condition number is reduced from K(X) = 85.89 to K( a) = 4.44. The determi- 
nant is unchanged, but the trace is reduced to 0.657. The hat matrix is unchanged. 

Scaling for equal column length of unity has been claimed to be ‘nearly optimal’ 
in the sense of minimizing the condition number of a matrix by (Ref. 4, p. 184). We 
again need to note that ‘scaling’ can have different meanings. Most often scaling 
refers to dividing by the standard deviation, but scaling for equal column length is 
also often used. To scale X to have column length 1, compute the sums of squares 
of each column and multiply X by the diagonal matrix with diagonal entries the 
reciprocals of the square roots of these numbers, i.e. compute 

f&x 

0 

A 
0 

0 

0 
1 

GB 

This results in the scaled design matrix 

0.44721360 0.13483997 0.031960139- 
0.44721360 0.26967994 0.12784056 

X= 0.44721360 0.40451991 0.28764125 
0.4472 1360 0.53935988 0.5 1136222 
0.44721360 0.67419985 0.79900347 
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This has K($) = 25.537210, which is considerably smaller than K(X). The H matrix 
is the same as for X. The diagonals of the D matrix are d,, = 1.660296, 
d22 = 0.46913664 and d33 = 0.065239296. Note that X matrices that differ from one 
another only by the scale assigned the columns are essentially equivalent model 
structures (Ref. 4, p. 120); yet scaling can drastically effect the conditioning of X and 
result in very different SVDs and condition numbers. Thus, it is necessary to stan- 
dardize to equal length before condition indices can be meaningfully compared. This 
scaling transforms a matrix with mutually orthogonal columns, ‘the standard of 
ideal data’, into a matrix whose condition indices are all unity (Ref. 4, p. 120). It 
is also true that when all condition indices are unity, the matrix is orthogonal. 

If one wished to consider altering the design by using 

11 1 
13 9 
1 3.5 12.25 
1 4.5 20.25 
1 5 25 

which places more emphasis on the higher values in the range from 1 to 5 than did 
the original X, the diagonals of the hat matrix are 

hll = 0.99228, hzz = 0.51814, hs3 = 0.42705, h4 = 0.32824, hSs = 0.73428 

and it is seen that, relative to X, fi has larger values of hll and ha. smaller values 
of h33, h@ and hSS. Shifting to larger x-values has moved the smaller values (x = 1 
and x = 3) further from the mean and increased their importance in predicting yi 
and y2. 

We also have det(X#X) = 728.68750 and tr( (ii’%)-‘) = 6.8476713, both of which 
are slightly worse than for X. 

We have concentrated on polynomial regression in illustrating our program. This 
emphasis was deliberate. While DESIGN can accomodate a wide variety of linear 
models, polynomial regression, where multicollinearity is in a sense self-induced, 
provides a ready supply of examples, and continues to be actively discussed - and 
debated - in the literature. It is hoped that our program, by allowing the direct 
comparison of possible reparameterizations of the original design matrix (e.g. 
centering and/or scaling) will provide some insight into these issues. However, our 
choice of examples should not be construed as indicating that this is the only area 
where controversy exists. Active debate about all forms of multiple regression analy- 
sis continues. An appreciation for some of the points of contention in this debate 
is available in the literature [23,36,37]. All three papers are accompanied by critiques 
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from a number of discussants and it is clear that sharp differences of opinion exist 
with respect to how best to approach multiple regression in general and, in par- 
ticular, polynomial regression. These points of view are briefly summarized below. 

Hocking [23] gives a review of developments in linear regression during the period 
1959-1982. He considers that most of the progress has been in regression 
diagnostics, and in developing strategies for dealing with serious multicollinearities 
once discovered, including transformations [38,39], ridge regression [34,35], robust 
estimation [40-421, and variable elimination [43&l]. He recognized the special pro- 
blems presented by polynomial models, and suggested that these might often be 
resolved by simply centering the data. He thought that, ‘there is little disagreement 
as to its value in polynomial regression’. Snee seconded the importance of centering 
both so that the regression coefficients would be estimated within the range of the 
data and would be easy to interpret, but noted, ‘This important characteristic of 
good statistical practice does not appear to be widely recognized’. He recommended 
both centering and scaling: Centering reduces the correlation between the terms in 
the model, and scaling makes the estimated regression coefficients directly compar- 
able. He noted that several forms of centering and scaling were often used, viz., 

xi -2 
q = - 

% 
(20) 

Zj = 
Xi - (Xi & + Xi -)/2 

Cxi max - Xi n&/2 
(21) 

Zj = 
Xi - 2 

GCiSi 
(22) 

the latter being the form routinely used and recommended by Snee. In this form, 
Z’Z = R, the correlation matrix, and the regression coefficients are often called beta 
weights. The transformation (Eqn. 22) is sometimes called the correlation trunsforma- 
tion (Ref. 1, p. 378) Finally, Snee noted that irregular experimental conditions can 
produce multicollinearity, a point of interest to potential users of our program. 
Welsch, on the other hand, argued that centering could mask problems associated 
with ill-conditioning: ‘If we wish to diagnose when the constant term is collinear with 
any of the others, we must use an uncentered variance inflation factor’. 

This point was reiterated and expanded upon in Belsley [36]. There Belsley focus- 
ed on centering regression data by taking deviations from the mean. While he con- 
ceded that centering might have certain uses, he argued that assessing the 
conditioning of the data was not included among these. He did, on the other hand, 
reiterate his earlier position [4] that the (uncentered) columns of X should be scaled 
to have unit length to obtain the most meaningful m:asure of the conditioning of 
the basic data. He noted that centered X matrices, X, will have K& < K(X) and 
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indeed, in paCtiCe one eXpectS K( a) -SK K(X), so that mean-centering apparently 
‘helps’. He claimed, however, that K( %) ‘gives us information about the wrong prob- 
lem... mean-centering typically removes from the data the interpretabitity that makes 
conditioning diagnostics meaningful’. Snee and Marquardt commented that center- 
ing removed only ‘nonessential ill-conditioning’, viz., that tied up with collinearites 
associated with the constant term (&), which they view as a nuisance parameter. 
They also stated that the importance of centering becomes especially clear when one 
considers fitting polynomial models. 

Another set of problems may be described by noting that the model y = X/3 + E 
can always be rewritten in the form 

~=X/~+E=(XA)(A-‘/‘~)+~=Z~+E (23) 

where A is any non-singular matrix. One can then either estimate B directly from [4] 
or estimate y ($ = (Z’Z)-‘Z’y) and use b = A?. This opens up the possibility that 
A can be chosen so that Z is ‘stable’. Smith and Campbell [37] argue that the 
resulting estimators should be equal and thereby criticize the use of ridge regression 
[34,35] - one of the alternatives available to investigators with highly collinear data 
- since this property does not hold. They note further that A can always be chosen 
such that Z’Z = I, but argue that this cannot make the data ‘more informative’, and 
characterize the use of such an A as, ‘the cosmetic extreme of orthogonalizing the 
data’. They suggest that the high correlations among the variables have simply been 
transformed into low variances on linear combinations of these variables. In the en- 
suing discussion, Thisted questioned the ‘obvious’ need for the invariance of b. He 
noted that choosing b to minimize the mean squared error, MSE@,@ = E[(b - (3)’ 
(b - /3)] (cf. Eqn. 15), is not equivalent to choosing + to minimize MSE(+, y); 
rather the former is equivalent to choosing T to minimize E[(+ - y)‘(A’A) 
($ - r)]. These coincide only if A is orthogonal. He also showed that taking A = 
(XIX)-“’ results in each yi being estimated with equal precision. Marquardt argued 
in favor of standardizing the predictor variables, claiming that polynomial regres- 
sion coefficients are interpretable only when the predictor variables are centered. He 
also noted that centering reflects the prior belief that the effects of the predictor 
variables, over their actual ranges in the data, are of comparable magnitude. 

Centering, however, may not be completely effective in reducing multicollinearity 
in polynomial regression models. It is shown in Bradley and Srivastava [45] that, for 
centered x-values, I(x’, xb) = 0 when a + b is odd, but this correlation may remain 
large when a + b is even. They therefore suggest the use of orthogonal polynomials, 
which ensures that all such correlations are zero. Recall that using orthogonal 
polynomials is A-optimal. Seber (Ref. 3, p. 58) shows that for xij centered and scal- 
ed so that 

c xii = 0 and c xi= c 
i i 

i :$’ v(bj ) 

J-0 
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is minimized when the columns of X are orthogonal. Orthogonal design matrices for 
a given X (equally spaced x-values or not) can be generated by our program ORPOL 
Ml. 

It is even true that centering can affect tests of the form H: & = 0 [46]: The t- 
ratios for the coefficients of lower-order terms change when the data are centered 
(the r-ratio for the highest order term is unaffected). This argues in favor of the use 
of ‘well-formulated’ regression models [47], i.e. if a Dth degree polynomial is fit, the 
model includes terms for powers 1,2, . . . , D - 1. Evidence that testing for lower 
order terms persists is given in Bernhardt and Jung [48]. A text book example where 
the square and cross-product terms are included in a model, but the first order term 
is dropped because it is not significant is cited in Griepentrog et al. [46]. It should 
also be realized that measures of the goodness-of-fit of a not-well-formulated 
polynomial regression model can be artificially raised or lowered by centering [47]. 

It is seen, then, that there is not complete agreement in how best to assess the 
goodness-of-fit of the general linear model, nor how one should proceed when 
multicollinearity is a problem. Some claim that centering is enough others advocate 
both centering and scaling; still others recommend scaling, but not centering. Our 
contention is that a program such as DESIGN may prove useful not only in compar- 
ing alternative choices in this context, but also in making decisions about such mat- 
ters as where to position observations to satisfy certain requirements when resources 
are limited. It needs to be realized that many, if not all of the above notions are tied 
to the problem being solved, i.e. a matrix can be ill-conditioned with respect to one 
problem, but well-conditioned with respect to another. Our program may be of assis- 
tance in balancing the aims of a given study with what is possible from the practical 
standpoint. 

It should be noted, however, that the program has some definite limitations. In 
particular, we do not provide for direct assessment of the goodness-of-fit of the 
model. That this is an important consideration is demonstrated below; however, 
most measures of the adequacy of the model require that the y-values be available 
and this is beyond the scope of the present paper. Consider, for example, the fact 
that ,9(h) = fl holds only if the postulated model is correct. If the model is not cor- 
rect, than the estimates are biased. The extent of the bias depends not only on the 
postulated and true models, but also on the values of the X variables. In the case 
of a designed experiment, then, the bias depends on the design. 

If we postulate y = Xi/J,, and thus compute bl = (X, ‘X1)-‘X1 ‘y, if the true mot 
el is y = Xi& + X& then E(hJ = 81 + A& where 

A = (X,‘X,)-’ Xl’Xz = C,Xz 

where Cl denotes the catcher matrix for the postulated design. It is seen that the 
bias depends on the design through Xi and X2 (the matrix A is known as the alias 
matrix (Ref. 2, p. 118), and that the catcher matrix can be used to evaluate potential 
bias in the regression estimates. When X = [Xi, X2] is orthogonal, A = 0, but it can 
be substantial otherwise. Note that in the context of polynomial regression, choosing 
X, is tantamount to choosing the degree of the polynomial to be tit (if Xi is n x p, 
this implies a degree, D, of p - 1). Choosing D too small will cause the estimates 
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b to be biased. Draper and Smith (Ref. 2, p. 119) give an example where 
E(J) = & + &x is postulated, but J!?(J) = 00 + &x + &x2 is true. Using the design 
matrix 

1 -1 

x1= [ 1 0 1 1 1 
they show that E(bO) = PO + 2f12/3 and E(bi) = & so that bi is unbiased but bs is not. 
If a linear model is postulated but a cubic is correct (observations at -3, -2, -1, 0, 
1,2,3), E(bO) = bo + 4f12 and E(b,) = /3, + 7j3s Here both estimators are biased. This 
does not, however, mean that one should tend to ‘overfit’ to avoid bias. While choos- 
ing too small a degree does lead to bias, choosing a degree too large will necessarily 
- unless X is orthogonal - increase the variances of the estimators which are pro- 
perly included in the model. Indeed, Bock (Ref. 49, p. 199) shows that the variances 
of the estimators will increase as additional terms are added (except if the new col- 
umns are orthogonal to those already included) no matter what the correct model 
is, and he gives an example where V(&) = 0.00499u2/16 when a line is tit, but V@i) 
= 3.63742a2/16 for a cubic equation, an increase by a factor of over 1000. The vari- 
ances of the estimated values of the y values are also adversely effected when ad- 
ditional terms are entered into the model: The variance of 9 cannot decrease when 
another regressor is added to the model (Ref. 3, p. 138). Walls and Weeks [501 give 
an example where the variance is increased tenfold when the model is enlarged from 
a line to a quadratic. 

Finally, we provide a brief indication of how all this fits in with our work in the 
polynomial modeling of longitudinai growth processes. The present discussion has 
focused on the situation where @ was estimated by ordinary least squares (OLS), viz., 
b = (X’X)-‘X’y, which is appropriate only when V(y) = ~‘1. When the y values are 
measured over time, we do not expect them to be uncorrelated and generally have 
to use weighted or generalized least squares (WLS) to estimate the parameters, viz., 
b = (X’S_‘X)-l X’S’y, where S reflects the correlation structure of the repeated 
measurements [12,13,15,17,18]. However, there are two important cases in which, 
given longitudinal data, the parameters of the model are properly estimated by OLS. 
One is the two-stage polynomial growth curve model 1141; the other the Potthoff- 
Roy model when their so-called arbitrary matrix is taken to be the identity [17]. In 
these cases the conditioning of X’X is important, especially so since recent authors, 
e.g. (Ref. 51, p. 93) have reverted to the use of the successive powers-of-time form 
of the time design matrix (e.g., the X matrix in Eq. 19) on grounds of interpretability. 
This can be very poorly conditioned, especially for moderate to high degree 
polynomials like those used, e.g. in Ref. 52. 

Acknowledgment 

Supported by DE08730 from the National Institute for Dental Research. 



22 A.M. Furey et al. 

Appendix: Computer Implementation 

A full set of PC programs for longitudinal data analysis, including this program, 
can be obtained on 5.25” or 3.5” diskettes (please request type) by sending $25 to 
defray the cost of handling and licensing fees. These programs require a 80386 or 
80486 based personal computer (PC) running the MS-DOS operating system (ver- 
sion 5.0 or higher is recommended, although versions as low as 3.3 will suffice). 
80386 computers must also be equipped with a 80387 math coprocessor. At least 4 
mb of memory is required, and must be available to GAUSS386i, i.e. not in use by 
memory resident programs such as Windows. EGA or VGA graphic capabilities are 
required to display the color graphics; VGA or SVGA is suggested to display op- 
timally the graphic results. Runtime modules are supplied with the programs so that 
no additional software (i.e., compiler or interpreter) is required to run these pro- 
grams. One can create and edit ASCH data sets for use by these programs using the 
full screen editor supplied with MS-DOS version 5.0. The programs are written and 
compiled using GAUSS386i, version 3.0, require no additional installation or modi- 
fication, and are run with a single command. When requesting the programs, address 
inquiries to the corresponding author and make checks payable to Baylor College 
of Dentistry. 
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