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Dnmlde (N2H2), an extremely reactwe species, is observed as a gas phase product from the NI(100) surface m the 200 to 450 K 
range dunng hydrazme thermal decomposmon and during thermal desorpUon of predlssociated ammonia These results suggest 
that the primary mechanism for dllm~de formation is recombination of an adsorbed NH surface Intermediate The observation that 
dllmlde can be formed from pre&ssocmted ammonia illustrates that a nitrogen-nitrogen bond m the precursor ts not required for 
dumlde formaUon Dunude formation from pre&ssoclated ammonia is enhanced by coadsorbed hydrogen, which we beheve 
stablhzes NI-I on the NI(100) surface In ad&tlon, the direct decomposmon of adsorbed NEH 4 contributes to the production of 
dnmlde at 230 K 

Dnmlde,  the parent  of azo compounds, is of 
great interest to chemists because it is an ~mpor- 
tant transient intermediate m both gas-phase re- 
actions, and in the selective hydrogenation of 
multiple bonds in organic molecules. However, It 
was not untd 1958 that dum~de was first detected 
in SltU during the discharge-induced decomposi- 
tion of hydrazlne in solution [1], because the 
reactwlty of  dnmlde makes its isolation difficult 
Only recently has gas phase dnmide formation 
been observed from a sohd surface under  U H V  
con&tlons Our  group has recently observed &- 
lmlde formation during thermal decomposition of 
ammonia  and hydrazlne on polycrystalhne Rh 
surfaces [2,3]. As part  of a program to estabhsh 
the generality of  dumlde formation, we have un- 
der taken a study of dumlde formation on the 
NI(100) surface using hydrazlne and predlssoo-  
ated ammonia  as precursors 

Hydrazlne adsorption and decomposition on 
single crystal metal  surfaces has been character- 
lzed previously on Ir(111) [4], Rh(111) [5], Rh(100) 
[6], F e ( l l l )  [7], N~(111) [8], and P t ( l l l )  [9] sur- 
faces Thermal  decomposition studies on Rh(111), 
Rh(100), Pt(111), and N1(111) surfaces suggest 
that hydrazlne decomposes completely at sub- 
monolayer coverages on these surfaces The prl- 

mary gas phase products are N2, NH3, and H 2 
On these surfaces (except perhaps P t ( l l l ) ) ,  the 
extstence and tmportance of NH2(ad) a n d / o r  
NH(ad)  intermediates is evident Thermal  de- 
composition of hydrazlne also leads to dnmxde 
production on Rh foils [2,3], and possibly on the 
Pt(111) surface [9] 

Ammonia  adsorption and decomposition has 
been previously characterized on the Nt(100) [10], 
N1(110) [11-14], and N1(111) [15] surfaces Nickel 
is a well-known ammonia decomposition catalyst 
[16] However, several vacuum based surface 
studies have concluded that no significant ther- 
mal decomposition can be observed on either the 
N1(111) [15] or N1(110) surfaces [11,12] at temper-  
atures below 300 K in an electron free environ- 
ment  We believe that most of the ammonia 
decomposition observed in these studies ts the 
result of  electron Irradiation These ammonia re- 
sults may also have substantial ramifications at 
elevated pressures and temperatures,  because ev- 
idence for some degree of ammonta  thermal de- 
composition clearly extsts [13,17] On the NI(100) 
surface, molecular ammonia  together with its de- 
composition products (NH2, NH, N) populate the 
surface at room temperature  as evidenced by the 
XPS spectra [10] 
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The experimental apparatus utlhzed m this 
work has been described previously [3] It consists 
ot a stainless steel ultra-high vacuum (UHV) 
chamber In which the base pressure was 7 4 × 
10 ~ Torr  The system ~s also eqmpped with 
low-energy electron diffraction (LEED) optics, 
Auger electron spectroscopy (AES), and a multi- 
plexed quadrupole mass spectrometer for tem- 
pe ra tu re -p rogrammed  reacuon  spectroscopy 
(TPRS) The NK100) crystal was cleaned by argon 
ion bombardment and subsequent flashing to 1150 
K, and its cleanliness was verified by Auger elec- 
tron spectroscopy The reactants (N2H 4 and NH ~) 
were adsorbed at 90 K through a doser approxi- 
mately 2 cm away from the NK100) surface Spe- 
cial care was taken to ensure the minimum de- 
composition of NEH 4 by evacuating and recharg- 
ing the doser before each dose [18] TPD data 
were taken w~th a linear temperature ramp of 5 
K / s  while the crystal is m line of sight with the 
mass spectrometer 

Fig 1 presents the desorpt~on spectra gener- 
ated following the adsorption (at 90 K) ot a 
submonolayer dose of hydrazme At this dosage, 
N 2 H 4 reacts completely on the Nl(100) surface to 
form NH~, N2H 2, H2, and N 2 For coverages 
above one monolayer, a molecular sublimation 
peak is also identified for hydrazme at 170 K 
The sharp ammoma, mtrogen, and dnm~de peaks 
at 230 K are believed to be the result of direct 
hydrazme decomposmon, as m the case of hydra- 
z l n e / R h  [3] In the temperature range 300 to 520 
K, the partially dlssocmted hydrazme speoes on 
the surface go through a dehydrogenation pro- 
cess, and produce gas-phase hydrogen as a result 
At even h~gher temperature, the only product 
observed is molecular mtrogen formed between 
750 and 1100 K The broad dnmlde feature above 
the 230 K peak is quite interesting Thts peak 
appears m the 350-400 K range at low coverages, 
and broadens to lower temperature range (200- 
450 K) at h~gher coverages Eventually, a clear 
peak appears at 230 K with a h~gh temperature 
shoulder extending to 450 K for coverages close 
to monolayer coverage of hydrazlne Based on 
these observauons, we believe that second-order 
b~molecular reacUon between adsorbed NH mter- 
medmtes is the main mechamsm responsible for 
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Fig I Thermal desorptlon spectra of N2H 4 on Nl(ll0) The 
spectra were taken m a single run of temperature-pro- 
grammed reaction of N2H 4 (submonolayer coverage) on the 
surface, with all the products momtored simultaneously Here, 

the major products are N2H4, N2H2, N 2, NH3, and H 2 

producmg dnmtde [18] We propose that an im- 
portant intermediate m th~s process is adsorbed 
lmlde (NH) which is formed by dehydrogenation 
of N2H 4 The adsorbed ~m~de continues to react 
up to 450 K, suggesting that adsorbed mude is 
qmte stable on the Nl(100) surface Hydrazme- 
derived NH is known to be an xmportant interme- 
diate on F e ( l l l )  [7], and N I ( l l l )  [8] surfaces up 
to 400 K Hydrazme-derwed NH has also been 
observed on polycrystalhne Rh [2,19], AI [20], Fe 
[21], Ir [22], W [23] and Mo [24] surfaces In the 
300 to 450 K temperature range, the lmade mter- 
medmte appears to dominate dmmde formauon 
on Nl(100) surface Above 450 K, we propose that 
NH dehydrogenates on the surface resulting m 
diminishing dlmalde yields from N2H 4 
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Ftg 2 shows the temperature programmed re- 
action products from predissociated ammonia on 
the NI(100) surface For submonolayer coverages 
of NH3, the major desorption peak is a molecular 
ammonia peak in the 180 to 400 K range We also 
observe a small amount of hydrogen which de- 
sorbs at about 370 K Dnmide formation appears 
first at 350-400 K for low coverages of predisso- 
ciated ammonia, and broadens to a lower temper- 
ature range (180-500 K) for higher coverages of 
predissoclated ammonia As in the case of hydra- 
zIne adsorption on the NI(100) surface, we pro- 
pose that the major mechanism for dnmide for- 
mation is second-order combination of adsorbed 
lmide intermediates We beheve that adsorbed 
lmlde Intermediate (NH) is produced by electron 
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Fag 3 N2H 2 yaeld from submonolayer coverage of NH 3 on 
Na(100), with and without coadsorbed hydrogen speoes 
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Flg 2 Thermal desorptlon spectra of NH 3 on Nl(ll0) The 
spectra were taken In a single run of temperature-pro- 
grammed reaction of NH 3 (submonolayer coverage) on the 
surface, with all the products monitored sunultaneously Here, 
the major products are N2H z, N2, NH3, and H 2 The peak at 
450 K in the N 2 spectrum as hkely due to CO contammataon 

bombardment of adsorbed ammonia and is stable 
through the 180-500 K temperature range The 
erastence of lmlde on NI(100) was indeed verified 
by a XPS feature at 397 7 eV at room tempera- 
ture [10] Yates et al have proved that ammonia 
is non-dissociative on the N1(110) surface when 
free of electron bombardment [8] The same is 
true on the N1(111) surface where electron-in- 
duced decomposition of ammonia may contribute 
significantly to the formation of some intermedi- 
ate species [6] We, too, believe there is great 
possibility of electron beam induced ammonia 
decomposition on the NI(100) surface 

Formation of NEH 2 is appreciable from both 
N2H 4 and predissociated NH 3 on the NI(100) 
surface In both cases, broad dnmlde peaks ap- 
pear around 350-400 K at low coverages, and 
shift to lower temperature at higher coverages 
However, ammonia is different from hydrazine in 
that it is a precursor which does not contain a 
nitrogen-nitrogen bond Dnmlde formation from 
predlssoclated ammonia supports our contention 
that adsorbed NH is the primary surface interme- 
diate responsible for dumlde formation The cru- 
cial step for dnmlde formation from both NH 3 
and N2H 4 is the formation of an adsorbed NH 
intermediate species and the bimolecular recom- 
bination of these species in the 200 to 450 K 
range Above 450 K, NH dehydrogenates further 
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i n t o  Nad + Had on the surface, as indicated by the 
diminishing dnmlde yields from both N2H 4 and 
predlssocmted NH~ 

Dnm~de from predlsSoclated ammoma ~s en- 
hanced greatly by the coadsorptlon of hydrogen 
on the Nl(100) surface As shown m the dumlde 
yield curve (fig 3), the yield of dnmtde from 
ammonia is increased significantly m the pres- 
ence of post-adsorbed hydrogen or in a 10 -7 
Torr hydrogen flow We believe that coadsorbed 
hydrogen stablhzes the NH intermediate, and 
therefore increases the surface concentratmn of 
~mlde in the hydrogen-deficient surface enwron- 
ment In the 200-450 K temperature range This 
result ~s in good agreement with similar results 
from NH 3 on polycrystalhne rhodium foil [2], and 
serves as further support for the importance of 
lmlde as an Intermediate 

The dnmlde yield from N2H 4 does not re- 
spond to the ad&tlon of hydrogen We propose 
that substantial hydrogen coverages are present 
after adsorptmn of hydrazlne because of substan- 
tlal low temperature hydrazme decomposition 
Therefore, the stability and recombination of ad- 
sorbed NH is not substantially affected by addl- 
tmnal coadsorbed hydrogen In addition, during 
hydrazlne decomposition for coverages close to 
one monolayer, there is a second sharp dnm~de 
peak at 230 K which we believe is the result of 
dnmlde formed directly from hydrazlne This low 
temperature dumlde is not affected by the coad- 
sorbed hydrogen either 

In summary, dnmlde (N2H 2) is observed as a 
gas phase product from the NI(100) surface in the 
200 to 450 K range during hydrazlne thermal 
decomposltmn and during thermal desorptlon of 
predlssocmted ammonia These results suggest 
that the primary mechanism for dllmlde forma- 
tion is recomblnatmn of adsorbed NH surface 
intermediates The observation that dnmlde can 
be formed from predlssocmted ammoma illus- 
trates that a mtrogen-nltrogen bond in the pre- 
cursor is not required for dilmlde formation DI- 
lmlde formatmn from predlssoclated ammonia is 
enhanced by the coadsorbed hydrogen which we 
beheve stablhzes NH on the NI(100) surface In 
ad&tion, the direct decomposltmn of adsorbed 

N2H 4 also contributes to the production of dJ- 
lmlde at 230 K Further spectroscopic characteri- 
zation of this process will allow more detailed 
characterization of both the surface species and 
surface reactions that favor the dnmlde forma- 
tion 
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