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Knowledge acquisition in the small: building
knowledge-acquisition tools from pieces
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The knowledge-systems cormmunity is interested in easing the knowledge-system
development process. One approach, the mechanisms approach, views knowledge
systems as a set of tasks, each of which can be realized by a computation
mechanism. To be effective, knowledge-acquisition (KA) tools must be automati-
cally configured once a set of mechanisms has been s¢lected. We present a method
for automatically generating a model-based KA tool for a given set of mechanisms.
The method advocates combining KA mechanisms, which acquire knowledge in the
small, and a set of strategies that provide a global view of the KA activity. We show
that these global strategies are necessary for the KA tool to efficiently interact with a
domain expert.

1. Introduction

The knowledge-systems community has recently become interested in easing the
knowledge-system development process. Several proposals for doing this have been
offered, including translation languages (Neches et al., 1991) and what we shall term
mechanisms {Marques et al., 1992). The mechanism approach, with roots in Generic
Tasks (Chandrasekaran, 1986), Steel’s (1990) componential framework, and
problem-sclving methods (PSM) (McDermott, 1988}, views knowledge systems as a
set of tasks, where each task can be realized by a computation mechanism. It has
been postuiated that many of these tasks are domain independent, or reusable.
There has been some empirical evidence to support this postulation; a number of
researchers have successfully ported systems from one domain to another by
modifying only the domain-specific portions of the knowledge base (Langrana,
Mitchell & Ramachandran, 1986; Brown & Chandrasekaran, 1987; Maher, 1987;
Johnson & Hayes-Roth, 1988; Birmingham & Tommelein, 1991). Recently, an
analytical study has demonstrated that common mechanisms exist among a number
of configuration-design systems (Balkany et al., 1993a).

The mechanisms approach has several advantages. Once identified and made
reusable, mechanisms can significantly reduce programming effort (Klinker et al.,
1990; Neches et al., 1991; Runkel er al., 1992). That is, mechanisms can be reused
among a variety of systems. Furthermore, if mechanism behavior can be described
in the language used by domain experts, then they may be able to construct systems
themselves, given appropriate tools {(Klinker ef al., 1990).

To reap the potential advantages of mechanisms, software-development systems
must be constructed to support their integration and form a complete knowledge
system. Depending on the intended user—domain expert or knowledge engineer—
the interface to such a system will need to be customized. We are concerned with
creating a software-development system, called DIDSY (Birmingham & Tommelein,

T Domain-Independent Design System.

221
1042-8143/93/020221 + 23$08.00/0 © 1993 Academic Press Limited



222 J. T. RUNKEL AND W. P. BIRMINGHAM

1991; Runkel & Birmingham, 1992; Balkany ef al., 1993b), to help knowledge
engineers construct systems faster by automating much of the requisite program-
ming. Through an interactive process, a knowledge engineer using DIDS constructs
a PSM from a library of mechanisms. This results in a knowledge system and a
knowledge-acquisition (KA) tool. The KA tool is then used by a domain expert to
develop a complete knowledge base.

Model-based KA tools are particularly well suited for acquiring knowledge in
domains where DIDS-generated knowledge systems are used. These tools have
demonstrated the ability to create large complex knowledge bases, in some cases
without requiring the knowledge engineer’s intervention. These tools work by
exploiting a model of the problem solver and its knowledge structures. The model
describes how to acquire and then structure knowledge (Birmingham & Klinker,
1693). This model, however, has several limitations: it is hand-crafted by a
knowledge engineer familiar with the problem solver, it is specific to a particular
problem solver and knowledge structure, and it is highly compiled. This creates a
fundamental problem: PSMs are built on a per application basis, so each
DIDS-generated knowledge system may have a different PSM. Any potential gains
afforded by rapid programming would be abrogated by requiring a user to construct
a detailed model of the PSM in order to build a KA tool.

Thus, a means for developing model-based KA tools without using handcrafted,
explicit models must be found. We propose that by combining knowledge of PSMs
with properties of the underlying knowledge structure, this problem can be
ameliorated. Specifically, KA procedures similar to mechanisms can be revised to
rapidly construct KA tools that drive the acquisition process using the knowledge
roles of mechanisms, that perform consistency and completeness checks, and that
generalize and operationalize knowledge (Birmingham & Klinker, 1993). We
associate model-based acquisition procedures, called mechanisms for KA (MeKA)
(Marques et al., 1992} with (PSM) mechanisms, and general-purpose acquisition
procedures with knowledge structures. MeKAs alone, however, cannot produce the
capabilities of model-based tools. Global acquisition strategies, ensuring that
questions are posed in an order that makes sense to the user, must be applied to
sequence the MeKAs.

Like mechanisms, MeKAs have the properties of reusability and combinability.
This allows a library of MeKAs to be built and consequently reused among many
knowledge-acquisition tools. Thus, the MeKA library reduces the time to create a
knowledge-acquisition tool as a mechanism library does for a knowledge system (see
Section 5).

We are limiting our initial investigation of mechanisms to configuration-design
systems. Roughly speaking, these systemst construct a design from a fixed set of
parts, which may be stored as a library, or given as input. These parts are well
characterized with respect to function and relationships among each other. During
configuration, parts are selected, and then interconnected or arranged in a
topological or sometimes geometrical order such that the user’s specifications are
met. Configuration design is an ideal starting point because the definition of the task
is cogent, there are a large number of working systems that perform the task, and it
is inherently diverse, i.e. not all configuration tasks are the same.

T See Mittal and Frayman (1989) for a formal definition.
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In this paper, we expand on these issues, and present ideas for developing
model-based KA tools from mechanisms. Qur framework of knowledge systems is
explained in Section 2 and MeKAs are described in Section 3. The use of strategies
is presented in Section 4, and our preliminary results are discussed in Section 3.
Related work is presented in Section 6, and a summary is given in Section 7.

2. The DIDS model

In this section, we present the DIDS model of knowledge systems; the model
strongly influences our view of how KA tools can be assembled. The model is based
on three elements: mechanisms, knowledge structures, and process models. Mecha-
nisms are software routines that implement the subtasks of a knowledge system.
They communicate with each other using the set of knowledge structures. The
process model contains a set of data structures and inference methods on these
structures that operationalize the knowledge structures and mechanisms. The data
structures and inferences in the process model are geared towards efficient problem
solving, uniike the knowledge structures, which are geared to facilitate knowledge
acquisition. Each model element is described below.

2.1. KNOWLEDGE STRUCTURES

The DIDS model defines a set of ten knowledge structures that identify what
knowledge is required to perform configuration design; other tasks could require
different structures. These knowledge structures were identified by studying existing
configuration-design systems (Balkany et al., 1993a), and we believe that they are
sufficient to represent all the domain knowledge necessary for all configuration
tasks. More importantly, however, is that the knowledge structures provide
guidance for assembling McKAs in a meaningful order, as described in Section 4.

The knowledge structures define the functionality of mechanisms, the knowledge
communicated between mechanisms, and the domain knowledge used by mechan-
isms. All mechanisms are defined by the operations that they perform on the
knowledge structures; the inputs and outputs of mechanisms must be in terms of the
knowledge structures. For example, as defined below, there are knowledge
structures called abstract parts, parts, and connections. A mechanism may take an
abstract part (i.e. a function) as an input and return a part that implements it;
alternatively, a mechanism can be given a set of parts and determine the connections
among them.

The knowledge structures assumed by DIDS are the following:

1. Parts: The part knowledge structure represents the elements in the part
library. Parts are defined by a set of attributes and ports. The attributes of a
part define the properties of a part that can be expressed by a name and a
scalar value. Ports define how a part can be connected to other parts. The
attributes, which are called characteristics, have values that are defined before
problem solving begins and cannot change during problem solving. In
addition, each part must realize at least one function, so that its addition
moves the design closer to completion.

2. Function: Functions define what is required of the artefact being designed for
a particular problem instance. This knowledge structure is needed for the
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part-selection subtask of design. It drives the design process, as parts are
selected to provide the functions required.

. Abstract Parts: Abstract parts represent all the functions and subfunctions

that an artefact being designed may perform. Abstract paris are defined by
their characteristics, ports, and specifications. Specifications are attributes
whose values depend on the problem instance, and, therefore, their values
must be computed during problem solving. This knowledge structure provides
a hierarchical decomposition of the functions required of the artefact.

. Subfunction: The subfunction knowledge structure successively decomposes

the artefact being designed along functional lines. It describes the functional
relationship between the parts and abstract parts. This relationship describes
how abstract parts may be realized by combining sets of abstracts parts and
parts.

. Required Functions: Parts and abstract parts often require functions per-

formed by other parts to support their operation. This information is
contained in the required-function knowledge structure. Associated with each
function performed by a part is a list of required functicns that must be
realized by the artefact. The part will not realize its intended functions unless
the artefact realizes the required functions. Required functions do not add
any desired functionality to the artefact; rather, they perform a function that
is necessary for other parts to operate.

. Constraints: Constraints specify algebraic relationships among the attributes

of parts and abstract parts that must be maintained. Constraints enable the
problem solver to distinguish acceptable from unacceptable solutions and to
compute attributes’ values.

Preferences: Preference knowledge enables a design system to choose
between sets of acceptable design alternatives. Preferences differ from
constraints in that constraints eliminate alternatives, while preferences rank a
set of acceptable alternatives so that optimal designs can be produced.
Ordering: Problem solvers use task-ordering knowledge to determine the
most effective order of designing the abstract parts. For some problems, the
order in which subtasks are performed affects both the quality of the design
and the amount of search needed to generate it.

Connections: Connection knowledge constrains the set of possible connec-
tions that can be made among the ports of parts and abstract parts. It may
either specify illegal connections, or sets of connections that have been found
to be useful in the past.

Arrangement: Arrangement knowledge specifies how parts can be geometri-
cally or topologically arranged. It constrains the positions a part may accupy.

The knowledge structures are combined to form a graph, which is the knowledge
base. Two structures form nodes in this graph: part and abstract part. The other
structures represent relationships between them. For example, Figure 1 shows a
knowledge base for a bicycle task. This figure contains both parts and abstract parts
and two sets of links. First, the subfunction knowledge structure defines the
functional relationships among the parts; in this view, the parts form a hierarchy.
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Second, attribute constraints relate the capacities of various components. The figure
contains two constraints: one that computes the total weight of the bicycle by
summing the weights of the chain, frame, and rim, and another that sets the weight
of the frame equal to the weight of the part chosen to implement the frame.

2.2. MECHANISMS

Underlying our work is the notion that a configuration system can be represented as
a collection of mechanisms. Many of these mechanisms can be separated from
task-specific knowledge, and therefore made reusable. Mechanisms are made
operational for a new task by adding task-specific knowledge to them.

As described above, mechanisms are operators on the knowledge structures. This
has two advantages. First, the mechanisms will be reusable and combinable. This
definition ensures reusability, because it places no restrictions on the task-specific
concepts that must be supplied, or on the source task of the concepts. The only
requirement is that the knowledge-structure classification of the concepts is the same
as the inputs to the mechanism. This guaraniees that a mechanism can be applied to
any configuration task where the task contains the appropriate knowledge struc-
tures. The knowledge structure definition also ensures the combinability of
mechanisms, since all the mechanisms share a common representation of these
structures. Therefore, any two mechanisms that use the same knowledge structures
can share information, and can be easily combined. Second, this definition makes
clear exactly which knowledge must be in the knowledge base for each mechanism
to operate. This information can be used to guide the selection of mechanisms when
constructing a PSM and to guide the construction of a knowledge-acquisition tool
for the method.

Mechanisms implement techniques for solving design problems. Two mechanisms
may perform the same function (e.g. part selection), but may differ in the algorithm
or knowledge structures they use. Each mechanism is implemented by a code
fragment, and is associated with a procedure for acquiring the task-specific
knowledge required for that mechanism to operate, i.e. a MeKA (discussed more
fully in Section 3). Each mechanism is characterized by a set of task features that
describe when it should be used, and a description of its inputs and outputs. For
example, Figure 2 shows the pseudo code and input and output parameters for a
mechanism that performs part selection. Mechanism parameters are represented in
the form: ({ parameter-type parameter-name) . . .).

To be useful, mechanisms must be combined within a control structure, thereby
forming a PSM. For example, Figure 3 shows a PSM generated by DIDS to perform
a bicycle-design task. The mechanisms are highlighted in boldface, and the

select_candidate_parts(<Abstract-Part nid>, <Abstract-Parts candidates>)
Get nd's children in the functional hierarchy;
Tor each of child, ch, of nd
if ch satisfies the constraints on nd then
add ch to candidates;

FIGURE 2. An example mechanism to select parts from a hierarchy.



KNOWLEDGE ACQUISITION IN THE SMALL 227

Abstract-Parts undesign-functions; //Qnicue of functions, called abstract parts,
//ihat need 1o be designed.
DesignState ds; /{Data structure containing the artefact.
Abstract-Part current-function, //The current function being designed in this
}Jiteration of the PSM.
newpart; //The part or abstract parts selected as the design of
//the current function.
Abstract-Parts candidate-subfunctions; //Set of parts or abstract parts that implement the
/fcurrent function and satisfy all the constraints.
load_kb({“bicycie.dids.kb™); /{Loads the KB created by the KA tool.
initialize_queune{undesigned-functions); //Puts the first abstract-part *‘bicycle” into the
while (not_empty_guene(undesigned-functions)}  //queue.
{ apply_to_queue(compute_spec_values, undesigned- [/ Applies compute_spec_values
functions); J{mechanism 1o each function in the
/{queue
//Gets the first function in the queue.
get_next_function(undesigned-functions, current-function); // Adds the function to the design.

add_to_design{ds, current-function);
if (is_an_AND_NODE(current-function))
//8elects all the current-function’s
select_all_parts(current-function, candidate-functions); /Fsubfunctions
/fand adds them to the queue.
add_to_quene(undesigned-functions, candidate-functions); //selects the subset of the current-
/ffunction’s children that satisfy the
else if (is_an_OR_NODE(cwrent-function)) {{constraints

{
select_candidate_parts(current-function, candidate-functions};
select_best_part(candidate-functions, newpart), //Selects the part with the least cost.
add_to_quene(undesigned-functions, newpart); //Adds the part to the queue.

|5

FIGURE 3. The bicycle configuration PSM.

outermost WHILE loop defines the loop over which the problem solver iterates.
Mechanisms that execute conditionally are contained within the IF and WHILE
statements inside of the outer WHILE loop.

The mechanisms in this PSM maintain 2 queue of functions (the abstract-part
knowledge structure is used to represent these functions) that are needed in the
bicycle, but that have not been completely designed. The PSM assumes that the
library of parts in its knowledge base has been organized into a functional hierarchy
consisting of or and and nodes. The PSM begins each design cycle by computing the
values of the attributes of all the abstract parts in this queue. The compute_spec_
values mechanism, which uses constraints associated with attributes, calculates the
attributes’ values. During each design cycle, the PSM designs the first abstract part
in the quene, called the current-function. If the current-function is an gnd node,
then the select_all_parts mechanism adds all of the current-function’s children 1o the
queue. If the current-function is an or node, then the select_candidate_parts
mechanism determines the subset of the current-function’s children that satisfy the
constraints, Then, the select_best_part mechanism selects the child that has the
lowest cost. Finally, this abstract part is added to the queue.
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Bicycle im
Value: rim1
Weight: .7

Bicycle Total_Weight = Frame Domain: {fim, rim2, rim3}

Chain, weight +
N . . Value:
Frame.wengt_u + Rim.weight frame23 ‘\\
Weight: 14

Height: 23
Domain:
{frame21, frame23, frame25)

Frame value.weight =
Frame. weight

Ke

QO Varjables
Domain: {cbainl, chain2} D Constraints

FiGURE 4, Constraint network model representation of a knowledge base.

2.3. THE PROCESS MODEL

The process model provides both a mapping from knowledge structures to data
structures and basic inference techniques to support a PSM. The model provides a
set of data structures that can be used to represent each knowledge structure. The
inference techniques support mechanisms, but are not usefully represented as
mechanisms because they do not reguire task-specific knowledge for their operation,
and they rely on a particular knowledge representation that is not portable.
Currently, DIDS has two alternative process models: tables (Haworth er al., 1992)
and a constant network. Tables are best used for problems where parts are easily
organized as a hierarchy, and finding parts to cover high-level functions is the
primary consideration. The constraint network is applicable to problems where
problem solving is dominated by constraint satisfaction. The table and network
representations of the knowledge base in Figure 1 are shown in Figures 4 and Table
1. In the constraint-network process model (Figure 4), abstract parts such as frame,
chain, and rim become variables in the network. The domains of these variables are

TABLE 1
Table-based model representation of a knowledge base

Chain Frame Rim
Chain 1 1
Chain 2 1 1
Frame 21 i
Frame 23 1
Frame 25
Rim 1 1

Rim 2 1
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the parts that can be used to implement them, i.e. the parts below the abstract part
in the knowledge-structure graph. The constraints between abstract parts in the
knowledge structure are transformed into constraints between variables in the
process model, and are used to restrict the assignment of parts to variables.

In the table process model (Table 1), the parts form the rows of the table and the
abstract parts become the columns of the table. Numbers in the cells, which
correspond to the solid lines with arrow heads in Figure 1, indicate the number of
functions that are implemented by each part. The constraints, which are not shown
in the figure, are applied after a set of parts that covers all the necessary functions
has been selected.

Each process model has supporting inference methods associated with it. For
example, the constraint-network process model has node-consistency and arc-
consistency (Mackworth, 1977) inference methods. As node- and arc-consistency
operations are tightly linked to a particular model, they are not especially reusable
for other process models. Hence, inference methods of this type are not cast as
mechanisms.

3. Mechanisms for knowledge acquisition

In the next two sections, we describe how a model-based knowledge-acquisition tool
is constiucted by using the MeKA library. This section motivates and describes
MeKAs, and presents an example of their use. This example demonstrates the need
for a construct to control the sequencing of these MeKAs. The next section presents
this sequencing construct, called a knowledge-acquisition method (KAM).

3.1. MODEL-BASED MeKAs

Model-based KA tools provide powerful support by exploiting the knowledge
structures used by PSMs and the roles that these structures play during problem
solving. This enables the tools to acquire knowledge in a order that facilitates
effective acquisition, to find incompleteness and inconsistency errors, to generalize
knowledge, and to acquire knowledge using task specific interfaces (Birmingham &
Klinker, 1993). These capabilities are not found in either more general-purpose
tools or task-specific tools that do not assume a particular method.

In order to exhibit these same behaviors, each MeKA uses both the knowledge
structures and roles assumed by its associated mechanism to drive the acquisition
process, and a five-step process for acquiring knowledge. Each of the steps
corresponds toughly to one of the tasks performed by model-based KA tools. This
five step process is shown below:

1. If possible, infer new knowledge from previously acquired knowledge.

2. Present information that the user is likely to want to review before entering the
new knowledge.

3. Ask user for new information, and acquire it.

4. Verify that the knowledge provided by the user meets the mechanism’s
requirement.

5. If possible, generalize this knowledge to populate other areas of the knowledge
base.
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A MeKA begins the acquisition process by determining if it can use already
acquired knowledge to infer new knowledge. If so, the MeKA performs the
inference. Otherwise, the MeKA must acquire the knowledge from the domain
expert. The MeKA presents the portion of the knowledge base that the domain
expert would likely want to review during acquisition, and then asks the domain
expert for the new knowledge. Once knowledge has been acquired, the MeKA
verifies the knowledge, ensuring that it is both consistent and complete, and, if
possible, generalizes this knowledge to cover other areas of the knowledge base.

A MeKA has five components—infer, present, acquire, verify, and generalize—
that correspond to the five steps above. The infer component uses a MeKA-specific
inference procedure to automatically derive the necessary knowledge. The present
component of a MeKA presents the relevant sections of the knowledge base to the
domain expert. The information displayed provides enough details to give the
domain expert the appropriate context for the knowledge being requested without
overwhelming him with the complexities of the knowledge base. The acquire
component either asks the user to modify the section of the knowledge base
displayed by the acquire component, or asks the user for some additional
information about this section. This component uses the knowledge roles of its
mechanism to address the expert with a meaningful question.

The present and acquire components use a variety of interface styles to acquire
knowledge from a user. These interfaces include:

1. interactive dialog: A text-based strategy where the user is asked a question,
and responds by selecting from a menu or typing a response.

2. graphicel: A graphical presentation strategy where the knowledge base is
presented to the expert who modifies or extends it.

3. table: A cross between interactive and graphical strategies where a partially
complete table is presented to the domain expert who fills in the missing
elements.

For example, Figure 5 shows an interface that uses a combination of interactive
dialog and graphical styles, and examples of table-based styles are given in Section
3.3.

After the knowledge has been acquired, the werify component performs the
model-based consistency and completeness checks described above and the
generalize component attempts to generalize this knowledge. If a problem is found
in the verification step, the user has the option of either revisiting the present and
acquire components, or postponing the MeKA until a later time.

Every MeKA has an argument, called the focus, that is an instance of knowledge
structure determining what concept the MeKA will inquire about. This is the object
that is operated on by the MeKA’s five components. Figure 5 shows the interface
presented by the select-candidate-parts MeKA when acquiring knowledge about the
frame abstract part. In this example, frame is the focus of the MeKA.

The select-candidate-parts MeKA (Figure 6) acquires for an abstract part, its
focus (D), the set of parts that may be used as the design of this abstract part (A, B
and C) and a constraint used to select one of these parts. This MeK A does not have
an infer component, so all knowledge must be acquired from the user. The present
component filters out a large portion of the knowledge base, and just displays the
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Frame
Attributes:
weight
height

Y

21 inch frame 23 inch frame 25 inch frame

Attributes: Attributes: Attributes:
height: 21 height: 23 height: 25

Enter the constraint used to select the frame from the possible designs
(21 inch frame, 23 inch frame, 25 inch frame):

FIGURE 5. Interface generated by a select-candidate-parts MeKA.

focus and the parts related to the focus by the subfunction relation. The diagram
shown next to the present component in Figure 6 depicts an example of how these
knowledge structures are displayed to the user. For example, if the knowledge base
is as shown in Figure 1 and frame is the focus, then the present component would
display a two-level hierarchy with frame at the root and with leaves consisting of
21-inch-frame, 23-inch-frame, and 25-inch-frame (Figure 5). The acquire component
allows the user to modify the hierarchy displayed by the present component, and
asks the user to supply a constraint that can be used to select a frame. An example
of a selection constraint would state that the type of the bicycle must match the type

Select-Candidate-Parts MeKA

Infar: | None.

Present:

Enter a constraint that determinas when to select

Acquire: parts A, B, or C, as the design for D.

Verity: | Warn if constraint does not relate D to A, B, and C.

Generalize: | Ask if constraint should be generalized to D's
parents or applied to D's siblings.

FiGUre 6. The MeKA for the select-part mechanism.
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of the selected frame. The verify component checks to ensure that the acquired
constraint can be used to select one of the parts, i.e. it defines a relationship
between the focus and the parts. Finally, the generalize component asks the domain
expert if this constraint can be used elsewhere in the knowledge base. For example,
if the domain expert had entered a constraint specifying that the least expensive part
should be selected, then he may want to use this constraint e¢lsewhere,

3.2. NON-MECHANISM-SPECIFIC MeKAs

Not all MeKAs use model-based procedures to acquire knowledge for specific
mechanisms. A class of MeKAs, called non-mechanism-specific MeKAs, which are
present in every KA tool, allow a user to describe the global structure of the
knowledge base. The goal of these MeKAs is to gather a high-level picture of the
knowledge base that shows its organization and that lists all the domain concepts
that must be acquired. The global structure includes the list of all the parts and
abstract parts, as well as the subfunction and required-function relations. These
MeKAs do not acquire any detailed information about the parts or abstract parts,
such as their attributes and constraints among them, just their names. Figure 7
shows an example of a functional hierarchy created by the non-mechanism-specific
MeKAs. The interior nodes of this hierarchy represent the abstract paris used to
represent a bicycle, and the leaf nodes (not shown in the figure) represent the
bicycle parts.

The global structure is not acquired by the model-based MeKAs because they
have a local perspective; they describe how to acquire the knowledge for just one
mechanism. Since mechanisms operate on a small section of the knowledge base at
one time, their MeKAs do not help the domain expert organize the knowledge base.
The model-based MeKAs, however, acquire the additional knowledge structures
describing the concepts, such as attributes, constraints, and preferences, that are
necessary for the mechanisms to operate.

3.3, AN EXAMPLE

The following example, where a bicycle-design system is to be generated (Runkel et
al., 1992), demonstrates acquisition power of MeKAs and the need for an intelligent
strategy for sequencing them. In this scenario, a domain expert begins by describing
the bicycle-design task. Through an interactive dialog, DIDS automatically gener-

bicycle

FONEVONEAN
PN X AAAANA

FiGuRE 7. Functional hierarchy for bicycle scenario.
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ates both the PSM and the KA tool (Balkany et al., 1993b). The domain expert uses
the KA tool to construct a small, representative knowledge base so that the PSM’s
performance can be evaluated. During knowledge acquisition, the MeKA’s verifica-
tion components may find situations where acquired knowledge does not match the
assumptions made by the PSM, and other shortcomings are found by running test
cases. If problems are found, they typically require modifications to the PSM,
causing a new KA tool and PSM to be generated. This process continues until the
PSM performs to the designer’s expectations.

The PSM used in this scenario, shown in Figure 3, requires the following
task-specific knowledge: a part library organized into a functional hierarchy,
constraints on the attributes of each abstract part and part that can be used to either
generate information needed for further design activity (arc-consistency) or to select
among (abstract) parts, The KA tool built to acquire this knowledge is shown in
Figure 8. It was generated from the MeKAs associated with the mechanisms in the
PSM and begins by invoking the non-mechanism-specific MeKAs. (The MeKAs in
this KA tool are shown in Figure 9.) Using these MeKAs, the user describes the
structure of a bicycle and the parts that compose it by building a functional
hierarchy like the one shown in Figure 7.

Once the functional hierarchy has been built, the KA too] orders the model-based
MeKAs in the same order as the mechanisms in the PSM. The first node designed
by the PSM is the bicycle node, so it becomes the focus for the first sequence of
MeKAs. The first mechanism executed in every design cycle is compute spec_
values. Therefore, the compute_spec_values _MeKA interviews the expert first. The
MeKA displays the oot node in the hierarchy, in this case the bicycle node, using a
table format, and prompts the domain expert for the specification attributes of a
bicycle. The domain expert adds a new row to the table for each attribute of a
bicycle. (Table 2 shows the completed table.) The verify component of this MeKA
requires that each attribute have either a value or a constraint to compute its value.
In this case, the constraints are questions put to the user to get the design
parameters.

get_parts_non-mechanism_specific_MeKA

construct_hierarchy_non-mechanism_specific_MecKA

initialize_queue_MEKA

\{whﬂe (more parts in hierarchy to process} / examine each node in the hierarchy
apply_to_gqueue_MEKA,;
get_next_function_MEKA,;
add_to_design_MEKA;
compute_spec_values MEKA:
if Node is AND

hthis and the next two MeKAs will canse redundant questioning

{
select_all_parts_MEKA;
add_to_queue_MEKA;

else ]
{
select_candidate_parts_ MEKA;
select_best_part_MEKA;
add_to_queue_MEKA;
]

/! unnecessary MeKA
#/ unnecessary MeKA

Fi1GURE 8. The bicycle configuration KA tool.



234

J. T. RUNKEL AND W. P. BIRMINGHAM

Mechanism
compute_spec_valnes{ Abstract-Part part)
{

For cach attribute, att, of part
if att does not have a value then
compute atl's value using its constraini
}

Abstract-parts must have attributes related by
constraints,

MeKA
compute_spec_values-MeKA ( focur)
Knowledge used:

Attributes

Consiraints

Inference: none
Acquire:

Prompt("Use the following table to define the
attributes of <name of focus>. For each attribute
define either a value or a formula hat can be used
to compute the value of the attribute.”)

{
for all atributes, att, of focus
ensure that att either has a valoe cr att has a
formula
!

select_all_parts(Abstract-Part nd,
Abstract-Parts candidates)
{

Get all of nd's children in the functional hierarchy
and return them in the candidates set,
}

The hicrarchy must contain and nodes

setect_all_parts_MeKA(focus)
} 1* no knowledge required ¥/

select_candidate_parts( Abstract-Part nd,
( Abstract-Parts candidates)

Get ad's children. in the fimctional hierarchy;
For each of child, ck, of nd
if ch satisfies the constrainis nd then
add ch to candidates sets;
Retumn the candidates set.
H

Task-Selection Features:

The hierarchy must contain or nodes.

select_candidate_parts_MeKA { Abstract-Part focus)
Knowledge used: Constraints
Present:
present_attributes(focus);
present_attributes(children{focus));
Acquire:
prompi{"Enter the constraint used to select from
the possible designs <aame of focts>:
<children of focus>"Y,
Verify:
{
The constraint acquired constrains the: focus and its
children.

1

select_T)esl_pal’t(Abstract-Parts candp_arts,
Abstract-Part best)

(
Set best equal to the abstract part or part in the
set, cand_paris, that has the cost attribute with the
smallest value,

}

All parts and abstract parts must kave cost aitribute.

select _best_part_MeKA(Node focu)
Knowledge acquired:

Attribute: "Cost"
Inferences: none

prompt("Enter the cost in dollars or a constraint for
computing the cost in dollars of the part
<name of focus>",
Merify: cost is preater than 0;

FiGURE 9. A few of the MeKAs in the bicycle design system.

TaBLE 2
Table for acquiring attributes of bicycle

Attribute Value type Units  Value range Formula
type STRING none mountain, ‘‘Enter the type of bicycle
touring, you want to design:”
racing
person_height INTEGER inches 48 ...84 “Enter your height:”
performance STRING nomne low, “Enter the type of bicycle
moderate,  performance you desire:”

high
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TARBLE 3
Table used fo acquire the attributes of a frame

Attribute Value type Units  Value range Formula
size INTEGER inches 19...27 bicycle.person_height/4
type STRING none mountain,  bicycle.type

touring

racing

The next step during problem solving is to determine whether the focus is an or or
an and node. Since bicycle is an and node, the sefect_all_parts_MeKA is invoked.
This MeKA does not acquire any knowledge, so the KA tool proceeds to the
children of the bicycle node.

The next several steps of the KA tool operate on the frame abstract part.
Compute_spec_values_MeKa asks the domain expert to define the attributes of a
frame. Table 3 depicts the attributes acquired. At this point, however, the
performance of the KA tool degrades due to the simplicity of MeKA ordering. Since
frame is an or node, the next MeKA is selecr_candidare _parts _MeKA. It acquires a
constraint used to select the children of its focus. This constraint compares the
attributes of the focus to the attributes of its children, and determines which
children can be used in the design. Problems arise because the attributes of the
children of frame have not vet been acquired. Therefore, the expert will be unable
to give the needed constraint; the KA process can no longer continue. Figure 10
shows the display presented to the user by the select_candidate_parts_MeKA.

By rearranging the MeKAs, however, the acquisition process will not have this
problem. A better way to construct KA tools is discussed next,

4. Exploiting properties of the knowledge structure

As shown in the previous section, simply integrating a set of MeKAs does not
produce a tool that coherently interacts with an expert. Thus, we need to establish a

Frame
Atiributes:
size
type

>

Mountain Touring Racing
Attributes: Attributes: Attributes:
<nones <none> <none>

Enter the constraint used to select the Frame from the possible designs
{Mountain, Touring, Racing):

FiGURE 10. Interface presented by select-candidate-parts MeKA to acquire a constraint.
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set of acquisition strategies that provide the proper sequencing information. These
strategies are derived from the knowledge structures. In this section, we propose a
set of strategies.

4.1. INHERENT PROPERTIES OF THE KNOWLEDGE STRUCTURE

The knowledge structures assumed by DIDS are highly related, and these
relationships can be exploited for knowledge acquisition. As shown in Section 3,
some knowledge structures define relationships among other structures, and,
therefore, it is necessary to acquire one knowledge structure before¢ another. In
addition, the preferences of domain experts must also be taken into account when
acquiring knowledge. A reasonable order for acquiring the configuration-knowledge
structures is listed below. DIDS uses this ordering information to determine the best
order for invoking the MeKAs in a KA tool. The ordering is called a knowledge-
acquisition method (KAM).
A strategy for sequencing MeKAs is given below:

1. Acquire parts. Parts form the foundation of any design system, and are easily
acquired from catalogs. Parts also determine the types of attributes needed.
There are a variety of methods to acquire parts, including user query by forms
and optical scanning.

2. Acquire functions, subfunctions and abstract parts. Depending on the type of
problem solving used, a functional hierarchy may be required. This hierarchy
is formed out of abstract parts. These abstract parts must be specified by the
user, which can only be done once the physical part library has been acquired.
The abstraction process used to define abstract parts will, by definition, use
subfunction relationships, resulting in a hierarchy. The non-mechanism-specific
MeKAs are designed specifically for this purpose. These MeKAs support both
top-down and bottom-up hierarchy specification styles, as designers have
different preferences.

3. Acquire required functions, arrangement, and connection knowledge. These
knowledge structures usually go together, and thus should simultaneously be
acquired. In addition, they can help to define sections of a hierarchy, so they
are often acquired simultaneously with abstract parts. Again, the non-
mechanism-specific MeKAs are useful here, as this knowledge is normally
graphically specified.

4. Acquire constraints and preferences. These are always defined relative to
(abstract) part attributes, so the parts must be given first. It is possible,
however, to intersperse the acquisition of parts, abstract parts, and constraints
and preferences. That is, some parts may be given, then some constraints, and
then some more (abstract) parts, and so forth. Under some circumstances,
interspersion may be preferable, as it could assist verification. This
knowledge can be acquired through a dialog with the domain expert.

5. Acquire ordering knowledge. Most often, tasks are associated with parts [e.g.
design part X with specification (sy, 55, ..., s;)). The ordering knowledge
usually acquired here is some specific partial ordering on tasks themselves
(design X before Y), or a partial-ordering heuristic (e.g. design big things
before small things). In either case, the structure of the hierarchy should be
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known before task knowledge is acquired. Note: this knowledge can be
acquired anytime after the hierarchy is established.

6. If a MeKA is used to acquire control knowledge, remove it from any loop.
Many MeKAs will need to acquire knowledge solely for controlling the PSM.
In general, this knowledge requires only a simple heuristic, and is not
dependent on the particular state of the design, or a part in the library. Thus,
it can be removed from any loops in the KAM.

4.2. KAMs

The KAM plays the same role that the PSM plays in the problem solver; it
determines how to sequence the MeKAs. The purpose of this sequence, however, is
to facilitate acquisition by producing meaningful dialog with the domain expert to
extract task-specific knowledge for the knowledge base. In order to fulfill this
purpose, a KAM has two responsibilities: it must determine the sequence for
invoking the MeKAs and it must select the focus of each MeKA when it is invoked.
The MeKA sequence is determined using a set of heuristics, described above, that
exploits the dependencies in the knowledge structures. The focus for each MeKA is
also determined using a set of heuristics.

A KAM determines the focus of the acquisition process by using one of four
strategies. These strategies are tried successively until one is successful. The four
strategies are listed below:

1. Current context. In order to prevent the KA tool from jumping randomly from
topic to topic, the focus of acquisition is kept as consistent as possible.
Whenever possible, the focus of the previous MeKA is used as the focus of the
next McKA.

2. Inconsistent knowledge structure. Inconsistencies in a knowledge base hinder a
user when describing concepts related to the inconsistent concepts and hinder
the reasoning processes of the KA tool. Therefore, it is desirable to remove
these inconsistencies as soon as possible by making the focus of the next
MeKA an inconsistent knowledge structure.

3. Incomplete knowledge structure. Incomplete knowledge structures occur when
the user has failed to provide all the information about the structure required
by the PSM. This prevents the PSM from performing some of the necessary
reasoning steps involving the concept.

4. Present overview, then refine. Unlike the other strategies, this one encourages
the user to select the portion of the knowledge base to define. It presents a
high-level picture of the knowledge base, and then allows the domain expert to
successively zoom in on a smaller area. The knowledge structure selected
becomes the focus of the acquisition process.

4.3. AN EXAMPLE

The KAM in Figure 8 is reorganized into Figure 11 according to the strategies
outlined in the previous section. The non-mechanism-specific MeKAs are used to
acquire parts and hierarchy knowledge. The other MeKAs are also reorganized.
Those performing program control are moved to the end of the acquisition session,
and the information they require is asked only once. The first three MeKAs in
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get_parts_non-mechanism_specific_MeKA
for each part: i/ Acquiring attributes here climinates problems described in Section 3.
compute_spec_values_MeKA  // uses inheritance to reduce questioning
construct_hierarchy_non-mechanism_specific_MeKA
while {more parts in hierarchy to process) /f examine each node in the hierarchy

if Node is OR
{
select_candidate_parts MEKA;
select_best_part MEKA;
}

}

initialize queue_MEKA
apply_to_queue_MEKA;
get_tiext_function_MEKA;
add_to_design_MEKA
add_to_queve_MEKA;

FIGURE 11. The bicycle configuration KAM.

Figure 8 have this property, and can be safely removed from the part-inspection
loop. In addition, the add_to_queue_MeKA, which is visited for each node, has
been moved to the end of the KAM.

Finally, the inner loop remains virtually the same, except as noted in the preceding
paragraph. The constraint information for each part is still acquired in the loop.
Since ali the attributes have been acquired, however, the problems noted in Section
3 will not occur.

The result is a KA process that flows much more smoothly. The same type of
knowledge is acquired at the same time, and in the correct order. Furthermore,
redundant questions are eliminated.

5. Preliminary results

An important aspect of the DIDS project, and particularly the work: discussed here,
is reusability. It requires significant, albeit a reasonable amount, of work to develop
a MeKA library. Thus, building this library makes sense only if it can be used for
many applications. We have applied DIDS to three distinct tasks, whose data was
supplied by parties outside our research group, to get a sense of the system’s
reusability and capabilities. We have not finished implementing systems for all these
tasks yet, but some initial results are available, Before discussing these resuits, the
tasks are described below:

« FElevator task: this task involves constructing an elevator system from a part
library that is consistent with a set of constraints and preferences (Yost, 1991,
pers. comm.). The task involves hundreds of constraints and parts. We have
fully implemented this system.

* Room assignment: for this task, a group of people are assigned offices consistent
with constraints and preferences (Linster, 1992, pers. comm.). The task is
relatively small, consisting of several constraints and about a dozen people, but
requires extensive search. This task has been fully implemented (Baikany et al.,
1993c).
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» Personal-computer configuration: in this task, the user presents to the system a
set of parts (disk drives, processors, memory chips, etc.) that he believes forms
a working personal computer. The system must verify that these parts can, in
fact, be combined to form a working PC using a set of constraints describing the
legal connections among parts. The task is large, involving thousands of
constraints and parts. We have partially implemented this system.

The knowledge structures have adequately represented all the knowledge needed
to perform each task. This is a significant finding, as the task-specific knowledge for
cach task is very different. Furthermore, the mechanisms used to solve these tasks
were reused. It is interesting to note that the PSMs for the elevator task and the
room-assignment task are very similar, differing in only a single mechanism.
Similarly, the KAMs for both tasks arc nearly identical. The same is true (so far) for
the PC tasks, although both the PSMs and KAMs are significantly different from the
first two tasks.

Table 4 compares the size of the three tasks, the amount of reuse, and the
development time required to automate them. The room-assignment task was
implemented first, when the mechanism library did not contain any mechanisms, so
there was not any reuse for this task and a large amount of time was spent building
its PSM. The clevator task reused all six of these mechanisms, but required an
additional one. Significant time was spent building the knowledge base for this task
because of the large number of complex constraints. Finally, the PC task only
required several of the mechanisms from the library and no new ones. The
knowledge base, however, was supplied by an industrial affiliate and the DIDS-
generated KA tool was used only for browsing.

Although the results are preliminary, two claims can be made. First, it appears to
be feasible to reuse mechanisms and MecKAs and this reuse saves development
time. Second, the large size of the VT and PC tasks has demonstrated that this
approach scales to large real-world knowledge systems.

TaBLE 4
Reusability of mechanisms and MeKAst

Development
Task size Reuse time

Man-

Number hours
Number of Man- for

Number Number of mechs. hours know-

of of mechs. from to build ledge

Task parts constraints used library PSM acquisition

Room Assign. 30 4000 6 0 10 2
Elevator 200 500 7 6 1 250
PC 1000 1000 3 3 1 —

+ Numbers in this table are estimates.
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6. Discussion

DIDS shares many features with systems that automate the development of general
software. DIDS falls between domain-specific program generators that automatically
create applications in a narrow domain, and systems that use massive code or
program schema libraries, which cover broad domains, to assist programmers
(Krueger, 1989). DIDS, like application generators, automatically generates source
code. DIDS, however, does not have the severe nmarrow-domain restrictions that
limit the usefulness of most application generators (Horowitz, Kemper & Narasim-
han, 1985). DIDS achieves this additional functionality by providing a library of
basic elements (knowledge structures, mechanisms, and MeKAs) that represent the
building blocks of a class of systems. The flexibility of the elements enables a broad
range of systems to be generated, and the well-defined uses of these elements
allows the generation process to be automated. Systems that reuse code or program
schemas resort to a semi-automated development process due to the large number
of elements in the library and small number of constraints restricting the selection
and combination of these elements (Rich & Waters, 1990).

Klinker et al. (1990) have created a system called Spark, Burn and FireFighter
(SBF), which is based on combining mechanisms, similarly to DIDS. The two
approaches differ in that SBF is geared towards non-programmers, the analysis of
user’s tasks is an integral part of system generation, and the task type is not
restricted. This makes it difficult to determine a prieri the knowledge structures and
the set of mechanisms required to construct systems. Instead, SBF assists a developer
with creating and updating a vocabulary that is shared among task activities and
mechanisms. The vocabulary is used as an indexing scheme into a library of
mechanisms; a more detailed description can be found elsewhere in this issue. Burn,
the component of SBF, construct tools by combining computational KA mechan-
isms, which are analogous to DIDS’s MeKAs. These mechanisms are ordered using
the sequence of mechanisms in the PSM, similar to the method discussed in Section
3.

PROTEGE 11 (Puerta, Tu & Musen, 1992; Eriksson e al., 1992) also utilizes a
mechanism-like model. It contains a library of both tasks and mechanisms. Links,
which connect tasks to mechanisms, suggest mechanisms capable of performing a
user’s task. PROTEGE II associates with each mechanism an arbitrarily complex
data model, instead of a standard set of knowledge structures like DIDS. Each
mechanism has a set of editors, similar to MeKAs, capable of acquiring its model.
Once the mechanisms have been selected, PROTEGE 1II generates a KA tool by
combining the editors associated with the mechanisms. The emphasis on building
KA tools that are model-based is not part of PROTEGE II.

KADS (Wiclinga, Schreiber & Breuker, 1992) establishes a methodology for
constructing knowledge-based systems based upon a model of expertise similar to
that of DIDS, but the components of the KADS model are not operational. The
KADS model contains domain knowledge, inference and task knowledge, and
strategic knowledge, which are concepts that are analogous to knowledge structures,
mechanisms, and PSMs, respectively. Like DIDS, knowledge systems are con-
structed by reusing computational constructs, and then encoding the domain
knowledge in a form usable by these constructs. The level of automation and its
scope distinguish KADS from DIDS. KADS is primarily a methodology, with some
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tool support. DIDS, on the other hand, provides a greater level of automation of
the process of building knowledge systems, but for a smaller range of tasks.

DIDS automates the process of building model-based KA tools for design tasks,
such as CGEN (Birmingham & Siewiorek, 1989; Birmingham, Gupta & Siewiorek,
1992) and SALT (Marcus, 1988). Like these tools, DIDS uses a model of both the
PSM and knowledge assumed by the PSM to derive its power. The knowledge
structures define the possible knowledge roles that must be acquired by the KA tool.
MeKAs associated with each mechanism determine which of these knowledge roles
are required, how to best acquire them, and how to generate code. The consistency
and validation checks performed by these model-based tools are also present in
DIDS-generated KA tools. The verification component of the McKAs implements
these checks.

The biggest drawback of DIDS is the large amount of time required to build a
mechanism and MeKA library. Analysing a task, such as configuration design, to
determine the necessary knowiedge structures, mechanisms and MeKAs, requires a
large amount of time (the analysis of configuration design presented by Balkany et
al. (1993a} required one to two man-years of effort), numerous iterations, and a
detailed understanding of existing knowledge systems that perform this task. In
addition, once these constructs have been identified, significant investment is
required to code and debug a set of process models capable of implementing the
mechanisms efficiently.

Another limitation of DIDS is that we have not, to date, discovered a means for
describing precisely the behavior and functionality of mechanisms and MeKAs.
Precise descriptions would facilitate the reuse of mechanisms and MeKAs outside of
the DIDS framework. They would enable other systems that reuse mechanism-like
constructs, such as SBF, PROTEGE II or KADS, to use DIDS mechanisms, We are
experimenting with describing mechanisms and MeKAs using Ontolingua (Gruber,
1992; see Gruber, 1993, this issue), but the results of this experiment are
inconclusive, at this point. We developed an ontology describing the knowledge
structures and a few of our mechanisms, and are now in the process of porting the
ontology to other user groups. From this experience, we will be able to more
accurately access the portability issues.

Although most of our experiments have been with configuration tasks, our
approach is not limited to configuration. Porting DIDS to new tasks requires that
these new tasks be analysed to discover the knowledge structures, mechanisms,
MeKAs, and process models that can be used to automate them. We are extending
DIDS into new tasks, such as diagnosis and scheduling.

7. Summary
In this paper, we have presented an evolving methodology for building model-based
knowledge-acquisition tools from pieces. These tools are constructed by assembling
reusable software components, which we call MeKAs, that perform well-defined
subtasks. The difficulty in building tools in this way is finding an ordering of MeKAs
that will produce a meaningful dialog with the user. We believe that this problem
can be overcome by exploiting dependencies in the knowledge structure assumed by
the MeKAs, and by using a set of high-level strategies that are specific to design, the
task we are exploring, but independent of a particular design task.

Our initial results have been encouraging. Several different configuration tasks
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have been attempted. The knowledge structures were adequate to represent these
problems, and the MeKAs were reusable. The strategies also proved helpful in
creating the KAMs.

Alan Balkany and Iris Tommelein have made significant contributions to the DIDS research.
In addition, the reviewers of this paper provided may valuable suggestions. This work was
funded, in part, by the National Science Foundation Grant MIPS-905781 and by Digital
Equipment Corporation. The views of the authors do not necessarily represent those of these
funding organizations.
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