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1. INTRODUCTION

According to the classical result of P. Lévy and A. Ya. Khinchin, a real
random variable V, or its distribution function G{x) = P{V <x}, x € R,
is infinitely divisible if and only if its characteristic function ¢(t) =
E(e) = [Z " dG(x), t € R, is of the form

o’ 0 .
e(t) = exp(it@ - —2—12 + f {e”" -1- }dL(x)

1+x?

+[°°{e“x o }dR(x))
0 1 +x? ’

where § € R and ¢ > 0 are uniquely determined constants and L{-) and
R(-) are uniquely determined left-continuous and right-continuous non-
decreasing functions defined on (—,0) and (0, »), respectively, such that
L(—x) = 0 = R(») and

0
[’ x?dL(x) + [x*dR(x) <= foralle > 0.
—€ 0
Actually, this is Lévy’s formula (cf. [6, p. 84]).
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Let ¥ be the set of all non-positive, non-decreasing, right-continuous
functions ¢ defined on (0, ®) such that [*y*(s)ds < « for every ¢ > 0 and
introduce

¥, (s) = inf{x < 0: L(x) > s}, s> 0,

and

Yr(s) :

where the infimum of the empty set is taken to be zero. Since L(-) and
¥, (+) uniquely determine each other and the same is true for R(-) and
Pr(+), the set A= {(§,,Yg,0): ¥, , ¥z € ¥, o = 0} of triples describes
the class of (infinitely divisible) distributions of all infinitely divisible
random variables ¥ — # modulo the additive constant 8 € R. The motiva-
tion for introducing the ¢ functions is the following. For any ¢ € ¥ and
for two independent standard (intensity one) left-continuous Poisson pro-
cesses N,(s), Ny(s), s = 0, introduce the independent random variables

inf{x <0: —R(—x) > s} s> 0,

W) = flw(zvj(s) — s)dus(s) + j:Nj(s)dd;(s) +0(y), Jj=1,2,
where [ = [, , forany0 <a <b <  and

‘ 1 ¥(s) = §(s)
@(lﬂ) = '—df(l) + fg md&‘—fl mds,

and consider the random variable

V(. dg,0) = —W(¥,) + 0Z + W,(¢R),

where Z is a standard normal random variable such that Ny(-), Z, and
N,(+) are also independent. (The integrals of the centered Poisson pro-
cesses on [1, ) in the definition of W,-(z/;) exist almost surely as improper
Riemann-Stieltjes integrals by the square-integrability condition on ¢r(-).)
Then by Theorem 3 in [2] (cf. also pp. 291-292 in [3]), V(¢,, ¥, o) + 6 Z
V, i.e., the random variable V(¢,, ¥z, o) + 6 has the distribution of V
above, or, analytically, the characteristic function of V(¢ , ¢, o) + 0 is
¢(+) given above.

The above stochastic representation of an arbitrary infinitely divisible
random variable V' was obtained in the framework of a new unified
approach to what is one of the most classical problems of probability
theory, the problem of the asymptotic distribution of sums of independent
and identically distributed random variables and of lightly trimmed vari-
ants of such sums. This “probabilistic approach,” presented in [2, 3], is
based upon the asymptotic behavior of the uniform empirical distribution
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function in conjunction with the tail properties of the underlying quantile
function.

Let X,, X,,... be a sequence of independent random variables with a
common non-degenerate distribution function F(x) = P{X, <x}, x € R,
and quantile function

O(u) = Qp(u) = inf{x: F(x) 2u}, O0<u<l.

(We see that any non-decreasing left-continuous function on the interval
(0, 1) is a quantile function of some distribution on the line R.) Suppose
that there exist a subsequence {n,J; _, of the sequence N = {1,2,...} of
positive integers, diverging to infinity as k — , a sequence {A4,);_, of
positive constants and two, necessarily non-decreasing and right-continu-
ous functions, ,(-) and ¢x(-) defined on (0, ) such that

Q(x/n +) (1 - y/n)
Jim =S — (), Jim —S S =) (1)

at each x > 0 which is a continuity point of ¢,(-) and at each y > 0 which
is a continuity point of y,(-), where for a monotone function f(-) we use
the notation f(t+ +) = lim,, f(s) and f(t+ ~) = lim,,, f(s). Assume fur-
ther that for the same sequences {n,J;_, and {A4,};_, as in (1.1) and for
some number o > 0 we also have

ynio(h/n v o(h/n
tim timing LT 1imsup——"—(———"—), (1.2)
h—o ko« k h— o k —» o0 Ak

where for 0 < s < 3 and u A v = min(u, v),
o2(s) = [ 77w A v - uv) dQ(u) dQ(v)

~ 5{Q*(s) + Q*(1 - 5)} + fsl_sQZ(u)du

2

_(s{Q(s) +Q(1 -5)) + [1 sQ(u)du) . (13)

s

The last equation is well known and can be proved by a standard, if
somewhat lengthy, integration procedure. Since the finite or infinite limit
lim, , , o(s) exists (it is finite if and only if E(X}) < «), condition (1.2)
implies that lim, _,,, 4, = . Hence ¢,(-) and yg(-) in (1.1) are necessar-
ily non-positive and it also follows from Lemma 2.5 in [2] that they are
square-integrable on any half-line e, ), ¢ > 0. Thus ¢, , ¢, € ¥, if condi-
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tions (1.1) and (1.2) hold, and then Theorem 1* in [3] and Theorem 2 in [2]
imply that for some constants C,,

1 [ & 2
k\j=1

where 3 denotes convergence in distribution. In fact, for all k large
enough, C, can be taken as

C, = nkfl"l’”*Q(u) du — 6A,.

/ny

According to classical terminology, this says that under (1.1) and (1.2) the
distribution determined by F or Q is in the domain of partial attraction of
the type of infinitely divisible distributions pertaining to the triple
(¢, Y, o) € £. In fact, by Theorem 7 in [3] conditions (1.1) and (1.2) are
also necessary for (1.4).

Furthermore, Theorem 5 in [2] implies that if for some n,, 4, > 0, and
C,, k € N, the left side of (1.4) converges in distribution as & — » to
some limiting variable W, then W must be equal in distribution to
V(i , Yr, 0) + 8 for some (¢, , ¢z, 0) € # and 6 € R; that is, the limit
must be infinitely divisible. This was first proved by Bawly [1] and Khinchin
[7]. “The incomparably deeper converse proposition,” as Gnedenko and
Kolmogorov [6, p. 184] describe it, is provided by

KHINCHIN’S THEOREM.  Every infinitely divisible distribution has a non-
empty domain of partial attraction.

Khinchin’s original proof is based on the characteristic function method
and is reproduced in [6, pp. 184-186). Pruitt [8] has given another
construction for the proof of Khinchin’s theorem that produces an F in
the desired arbitrary domain by using the central convergence criterion in
{6, p. 116]. One of the aims of the present note is to give a rather explicit
inductive construction of a quantile function Q and sequences {n,} and
{A,} such that (1.1) and (1.2) are satisfied for any previously given
(Y, ¥g,0) € £ This is done in the next section, proving Khinchin’s
theorem.

Khinchin’s theorem is in fact a special case of a famous observation of
Doeblin (4], that even the intersection of the domains of partial attraction
of all infinitely divisible distributions is non-empty.
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DogesLiN’s UNIVERSAL Laws. There exist distributions that are in the
domain of partial attraction of every infinitely divisible distribution.

Doeblin’s original construction was also given in terms of characteristic
functions. In Section 4 we modify the basic construction of the next section
in a straightforward fashion to give a universal quantile function Q in still
quite an explicit form. In fact, a whole family of universal quantile
functions is constructed.

Feller [5] has introduced the class % of all stochastically compact
distributions: F € # by definition if there exist 4, > 0 and C, € R,
n € N, such that every subsequence of (X7_,X; — C,)/A, has a further
subsequence which converges in distribution to a non-degenerate (in-
finitely divisible) limit. One of the three quantile equivalents of his
beautiful analytic characterization of % (cf. Corollary 10 and Section 5 in
[2D is this: F € & if and only if for the corresponding Q = O, we have

s{Q*(s) + Q°(1 — 5)}

lim sup < oo, (1.5)

w0 (70w du

Pruitt [8] has given an equally beautiful characterization of the class of all
possible subsequential limiting laws in (1.4) when F is restricted to the
Feller class #. The following is the sufficiency half of the quantile version
of Pruitt’s theorem.

Pruitt’s THEOREM. Suppose that for (f,, s, o) € F there is a con-
stant C > 0 such that

s{wZ(s) + ¥i(s)} < C(a2 + j;m{wf(t) +yi(n)}dt], 0<s<e.
(1.6)

Then the domain of partial attraction of (§r;, Y, o) contains a stochasti-
cally compact distribution.

When put together with the last statement of Corollary 10 in [2] (note
also the small correction in the proof pointed out on page 301 in [3]), this
result provides an extension of the quantile variant of Pruitt’s [8] full
theorem for possibly lightly trimmed sums. Pruitt himself proved his
original sufficiency statement by checking that his construction for
Khinchin’s theorem is automatically in % when his original version of
(1.6) is satisfied. In general, we have to modify our simple quantile
construction for Khinchin’s theorem to obtain a new construction in which
(1.6) implies (1.5). This is done in Section 3. The difference between the
original and the stightly modified version is quite instructive.
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The constructional problems solved in the present note were mentioned
on page 328 in [2] and the paper itself has been promised in [3]. So our
aim here is to fully round out the quantile theory of, or probabilistic
approach to, the asymptotic distribution of sums of independent and
identically distributed random variables as presented in those two papers.

2. ConsTRUCTION FOR KHINCHIN'S THEOREM

Consider any triple (§,,¢x, 0) € #. We have to construct a non-
decreasing and left-continuous function, i.e., a quantile function Q on
(0, 1), a subsequence {n,);_, € N and constants 4, >0, k =2,3,..., to
satisfy (1.1) and (1.2). The Q to be constructed will be of the form

Q,(u) + Q,(u), O<u<3i,
Q(u) = { " : : (2.1)
Qr(u) + Q,(u), ;<u<l,
where Q; and Qf do not depend on ¢ > 0 and
o 1 0 < .
- <!
72 Ve us 3,
Qo (u) = o 1 (2.2)
= =, Leu<1.,
V2 V1 —u z

As an initial step in the construction of Q, and Qp, set a, == 3, b, == 3
and n, =4, so that n,a, = 3 and n,b, =2, put A, :=2ylog4, and
define

Q. (u) :=A2{‘I’L(”2“ -) - %} if ue [“2’%]
and (2.3)
Qr(u) = Ay{—tp(n, — nyu) + 3} ifue(i,1-ay.

Then Q is well defined, i.e., it is non-decreasing and left-continuous on
the interval [a,,1 — a,]1 =3, Z].

Suppose now that for some k > 3, the function Q is already defined on
the interval (@, _;,1 — a,_,], where 0 < a,_, < 3, and that n, < --- <
n,_, and A, < --- <A,_, have also been defined. Our task will be to

choose n; > n, _, large enough to make the following definitions proper:
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Let A, > A,_, and 0 < a; < b, < a,_, be defined by

A, = Vi logn, , n.a, = 1/k, ngb =k, (2.4)

and set
1

Ak{%(”k“ o i Z}' u € lag, bl
Q(u) = 1

Ak—x{‘/’L("k—lak—1 =) - Z_:-_l—}’ u €(by,a,_i]
and (2.5)

1

Ak—l{_d’R(nk—lak—l) + k= l}’ uel-a,_,;,1-b.],
Qn(n) = 1

Ak{_'ﬁk("k“”ku)‘f;}, ue(l—b,1—-al.

Of course, if n, > n,_, then A, > A,_, and 0 <a, < b, in any case. If
we choose n, large enough so that n,/n, _, > (k — Dk, then b, <a,_,.
Furthermore, by the definition of 4,_, and A4,, we can choose n, large
enough to make

1 1
A, _"’L(k—1—)+k—1
A = 1 ’
k-t _¢L(k’)+;
( 1 1
- +

A, Ur k—l) k—1
1 = 1 .
k-t —llfk(k)+;(“

This implies by (2.4) that Q,(u) < Q,(b, + ) for all the points u € [a,, b,]
and Q(1 — b,) < Qgu) for all u € (1 — b;,1 — a,]. Hence, with such a
choice of n, and by (2.1), Q is a non-decreasing and left-continuous
function defined on [a,,1 — a;]. Letting k — o, our Q will now be
inductively defined on the whole interval (0,1) as a proper quantile
function. Note that Q is continuous at ¢, and 1 — g, forall k = 2,3,... .
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Furthermore, for every x € (n a,,n,b,) = 1/k, k), k=2,3,..., we
have
)
— +
Q(nk ) 1 a 1
= x —_— —_— — ———————————
a, ) T T By Jioen,
and (2.6)
) x
Q( nk) 1 a 1
— = X) — — — ——= .
A, Vr(%) k  V2x \logn,

Hence (1.1) follows trivially at all continuity points x > O and y > 0 of ¢,
and g, respectively.

We will now impose further growth conditions on the sequence {n,}
to also satisfy (1.2). These conditions will be asymptotic in_nature, aris-
ing from the behavior of \/n_ka(h/nk)/Ak =og(h/n,)/\logn,. For a
sequence of positive numbers w,, the symbol o,(w,) will denote a se-
quence of functions of h > 0, indexed by k =2,3,...,such that
lim, _,,lim, _, 0,(w,)/w, = 0. The asymptotic behavior of a*(h/n,) will
be determined by investigating the terms on the right side of (1.3) after
substituting s = i /n,.

First note that since ¢, , ¥z € ¥, we have

2 L V(1
il (7 vioras) =5,

and similarly, |¢x(h)| = o(1/Vh) as h — . Since for every fixed A > 0
and all & large enough, a,n, = 1/k <h <b.n, =k, so

of i)~ adnrr -5} - T
Q(l - ni,() =Ak{—¢R(h) + %} N ‘_;2_\/?

and
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by (2.4) we have

h h
2ol ot 2]
ny ny ny
h 1 h 1
= ﬁ(n_ko(ﬁ)nk logn, + n_ko(T)‘/nk log nk).
Hence
h z " 2N - , = 0,(1 2.7
;l‘kQ o +0 - = 0,(log n;) (2.7)
is automatic. Similarly,
h h 1 h yn,
Z:{Q(z) ~ofi- “)} 'ﬁ(av"k ool ) o )
hence
h h h
~<Q(—) + Q(l - —)} = 0,(/log n ) (2.8)
ny Ny uy

is also automatic.

On the other hand, for all fixed & > 0 and k large enough, using (2.4),
(2.5), (2.1), and (2.2),

[ e = [ (o) ldu + [T10(u) | du
h/ny hy by

i

+ [ 0w | du

1-b,

= (A {lw(h —)| +|wr(R)]})
+ é’(Ak_l{ m(;i—l —)| + ‘”R(k%_x)l})

ky/log n,
= ﬁ(""‘ﬁ:—{'d’l_(h _)I +|‘/’R(h)l})

ool I )

+ &
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since the contribution of Q,(-) is only

1—h/n, 12 1 12 1
u)|du = V2 —du < V2o —du =20.
/h/nk |Q0( )‘ a‘/;l/nk\/—u— j;) \/17 7

Thus

f“"/"*|Q(u)1du = o,(Viog ;). (2.9)

h/n,

provided that the sequence {n,} grows fast enough, depending on how fast
Y, (s — ) and ¢g(s) go to —o, if at all, as s | 0. Putting this together with
(2.8), we see that

2
(i{Q(—h—) + Q(l - i)} + fl_h/"kQ(u) du) = o,(log ny)
Ry ny ny h/n,
(2.10)

if {n,} is chosen to grow fast enough.
Finally, to analyze the behavior of [, /,1/"Q%(u) du, we first look at

[0y du = [ Q2(u)du + [* 02wy du + [ V7Q*u) du,
h/n, h/n b, %

where for any fixed & > 0, k is taken large enough to make h/n, < 1. By
(2.4) and (2.5) we have

fhb/knsz(u)du = (log nk)fh"(%(s) - %) ds

k5 1
= (log n,)&| [ ¥ (s) ds + — | = o,(log n)
h k
automatically since ¢, € ¥. Also, from (2.2) and (2.4),
2 2
b o byn, o k
fh/"nka,(u) du = - log Py log 7= o,(log ny)

if {n,) grows fast enough. By (2.1) the last two relations imply that
be oy
f Q%*(u) du = o,(log n;)
h/ng

if {n,} grows fast enough, so the first term will not count.



236 CSORGO AND TOTIK
Next, using (2.4) and (2.5) again,

V0 (u) du = ﬁ(Ai_,wz(zi—l —)) — o(log n,)

by,

by the choice of {n,} for (2.9), and thus we also have
1/2
fwai(u) du = o(log n,),
k

and by (2.2) and (2.4) again,

V2000 4 Uzl 1 o’ n |
fwaa(u) u = B3 ogz—b}(-/-,; < ﬁlog—k— = o(logn,).
Hence
1/2

Q*(u) du = o(log n},)

bl *

if {n,} is fast enough, so the third term will not count either.
As to the middle term, by (2.2) and (2.4),

|
|
Nlll S

[ Q2 () du
bk

o
=5 log n, + o(logn,).
On the other hand,

o 1 o

inf u)| = — ——(
bksusb,{/lea( ) 2 bi/k V2 Lk

wimi )

Hence we can choose {n,} to grow fast enough to ensure that

ny )1/(2k)

while

sup lQL(u)t = ﬁ(Ak~1

bysus<bl/*

1
;|Q¢,(u)| >|Q(u)| forallu € [by, by¥].
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With such a choice,

2
02wy du = (1 + o(1)) [*" 02(u) du = 5’-2— log n, + o(log n,).
by by

Collecting the three estimates,

0_2
— log n, + o,(log n;)

[0 u) du =
h/n, 2

if {n,} is chosen to grow fast enough. Since the construction of Q on the
intervals (0, 3) and (3, 1) is completely symmetric, except that we use i,
and ¢z on these intervals, respectively, we see that the sequence {n,} can
be chosen so fast, depending on the behavior of ¢, that we also have

ol
— log n, + o,(logn,).

[0 w) du =
1/2 2

Hence, if {n,} satisfies both criteria, then

fl_h/""QZ(u) du = o logn, + o,(logn,). (2.11)
h/n,

The last estimate along with (2.7) and (2.10), when substituted into (1.3),
now gives

h

02(;—) =allogn, + o,(logn,) (2.12)
k

if {n,} grows fast enough. Therefore, by the definition of A4, in (2.4), the
second requirement in (1.2) also follows.

3. ConsTRUCTION FOR PRUITT’S THEOREM

Let (¢, , Y, o) € # be given such that (¢, , g, o) #+ (0,0,0) and (1.6)
holds for some C > 0. We need to construct a quantile function g on
(0,1), a subsequence {n,} c N and constants 4, > 0, k € N, such that
along with (1.1) and (1.2) we also have (1.5).

It will be clear from the first case below that our construction for
Khinchin’s theorem in Section 2 actually works for Pruitt’s theorem,; i.e.,
for the constructed 0 we have (1.5) along with (1.1) and (1.2) if (1.6)
holds, whenever o > 0, that is, when the infinitely divisible limit in Pruitt’s
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class has a non-degenerate normal component. However, when ¢ = 0 the
validity of (1.5) is generally violated even under (1.6) in this construction
because (setting 4 = 1, say) the ratio of the two o(log n,) terms in (2.7)
and (2.11) may go to infinity. We now introduce a simple general modifi-
cation of the basic construction that will make the o,(log n,) term in (2.11)
“large enough.”

Let y(u), 0 < u < 3, be an arbitrary continuous, non-negative function
such that lim,  , y(u) = 0 and that the function y(u)/Vu is non-increas-
ing on (0, 11. The modification consists in redefining Q_(-) in (2.2) as

o 1 y(u)
“E T W
1 y(1 —u)
Z o ioe  ica

0<ucx<i,

Q,(u) = (3.1)

I <u<l.

With this new Q_ we define Q in (2.1) as before, where Q, and Qg
remain defined by (2.3)-(2.5) exactly as before. The inductive choice of
{n,} goes through word for word just as well, with trivial adjustments
concerning the new term in Q_, so we have (1.1) and (1.2) for any y(-) as
described above.

To prove (1.5) it clearly suffices to show that there exist a constant
C, > 0 and an s, € (0, 3) such that

max(sQ2(s), sQ2(1 — 5)) < CO(UZ + jHQZ(u) du), 0<s<s,
and

s{Q2(s) + Q3(1 - 5)} < C0(02 + fsl_sQZ(u) du), 0<s <s,.
(3.2)

Since

g

2
sQ2(s) =sQ%(1 - s) = (\/E + 7(S)) <C,, 0O0<s<?,

for some constant C, > 0, the first of these two requirements is trivially
satisfied for all & > 0. Hence we have to work only for (3.2). In order to
establish (3.2) for our construction it is encugh to consider the case when
s € (a,, b,] for some k= 2,3,..., because if s € (b,,,a,] for some
k=2.3,..., then sQ%s) < a,Q¥a,) and sQ3(1 —s) < a,Q2(1 — a,),
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following from (2.5). However, we now separate the two cases when ¢ > 0
and o = 0.

Case o > 0. In this case we claim that (3.2) and hence (1.5) hold for
any admissible function y(-) in (3.1); in particular they hold when y(-) is
the zero function as in the original construction.

In order to see this, suppose that for some k = 2,3,...,

s €(ay, bl = (—3—— —1—) U [L f—]

s 3
knk n, n, nk

If s e [1/n,,k/n.], then s = x/n, for some x € [1, k] and hence by (2.4)
and (2.5), with equality for s < b, = k/n, and a possible inequality for
Qz(1 — b,) when s = b, in the first line,

1 2
{0F(s) + OR(1 - 9)) = = (ny lognu{(m(x -4

1 2
+(—‘1’R(x) + Z) }
2
< 2x{U2(x =) + 0R(x) + 13|l ni (33
Since x¢(x — ) — 0 and xy2(x) = 0 as x — =, we obtain
2
s{OF(s) + Qa(1 —5)} < Z{xdff(x =) + xgi(x) + —]—(—}log n,

<Klogn,

for some constant K > 0. But in the derivation of (2.11) we have actually
chosen {n,} to grow fast enough to ensure the asymptotic equality

-b
[7Muydu~ o logn,  ask -,
by

that is, that (2.11) is also valid with the formal choice A = k. Hence there
exists an integer k, > 2 such that

2
s o
/! Q*(uydu> —logn, ifsc(anbl. kzk. (34)

Putting together the two bounds, we see that (3.2) holds for some C, > 0
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and s, € (0, 3). In this part, on the second interval [1/n,, k/n,], we did
not even have to use condition (1.6).

If, on the other hand, s € (a,,1/n,) and hence s = x/n, for some
x € (1/k, 1), then again by (2.4) and (2.5) we have (3.3) with an equality in
the first line. Therefore, if s € (a,,1/n,) is a continuity point of Q,(+),
then

{QL(S) +Qx(1 - S)} <s[x'//L(x) + xipp(x) + }log ny,

while by (3.4),(2.4),(2.5) and by changing variables twice,

[0y du = [TQNw) du+ [QR(u) du+ [ 03(w) du
K by s 1-bi
2 1 2
b3 {32— + j;k(lllL(u) - ;) du

ng—x 132
+f ) (—(IJR(nk -v) + ;) du}log n,

n;—

qu

{3
(3

{07 + fj[wf(y) + yi(y)] dy}log ny

+ k('/’L(Y) - —) dy

k

+ (¢R(y) - —) dy}log "

M]Q

+ [Fl0R() + 03] d)’}log "

%

[\

1 o
ot [l + vl whogn, 69

provided that k > &, for some k, > k, large enough, where we used the
square-integrability property of ¢, and ;. Using now the upper and
lower bounds and condition (1.6) for the upper bound, we see that (3.2) is
true again for some C; > 0 and 0 <s, < % for every continuity point
s € (0, sy) of Q. But then the left-continuity of Q, implies the same for
all s € (0, sg).

Case o = 0. In this case we will chose the function y(-) in Q,(-)
given in (3.1) is a suitable way. In fact, we let y(-) to be any continuous
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non-negative function on (0, 3] such that y(«)/Vu is non-increasing on
(0, 3] and lim, , o (&) = 0, for which

y(u) = v, >0 forue[b,bl/*], k=23,
where the sequence {y,} converges to zero as k — « slowly enough to

satisfy the inequalities

- 4 8
2 2 2 —
yi 2 max(4fﬁ/z[¢L(u) + y2(u)] du + oAl k=i

(3.6)

where C > 0 is the constant from condition (1.6) with o = 0. Functions
v(-) satisfying all these properties clearly exist.
Presently, for all £ = 2,3,...,

fl ka( )du>fbk Qo(u)du+f QO u) du

bk 'Yl%
= 2]; —du

., U
1 n,
=2vyZ|1 — - |log —
’Yk( k)ng
n
?_y,flog—k.

k

Since {n,} grows faster than {k}, there exists an integer k, > 2 such that

2
[ 70wy duz Trogn, itse(anbl,  kzke (37)

a lower bound that will play the role of (3.4).

Now we break (a,, b,], k = 2,3,..., in the following way:
, 1 &k 1 vk vk k
(anb] = kn, n,|  \kn, n, n n,

If se [\/E/nk,k/nk], so that s = x/n, for some x € [Vk, k), then for
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such an x we have (3.3) and hence

X 1
s(01(9) + Q31 =) < 4{ 3 [42(x ) + ()] + ¢ o,

IA

x 1
4{];/2[¢,f(u) + dd(u)] du + ;}log n,

® 1
< 4{fﬁ/2[¢£(u) + yi(u)] du + Z}log ny

< yi log ny,

where the last inequality is by (3.6). This and (3.7) together give (3.2) for
some s, € (0, 1), o = 0, and C, = 2. Again, we did not need (1.6) here.

If, on the other hand, s € (a,, vk /n,), then s = x/n, for some x €
(1/k,vk ) and we again have (3.3) for such an x. Therefore, if s is a
continuity point of Q,(-) then, using (3.6) and (1.6),

2
{01(5) + 031 = 9)) = 2{ x0E(x) + xuE(x) + 13 Jlow

2
< 2C{f [wi(y) + va(y)] dy + yf}log Mg

while, using (3.7), the argument in (3.5) now yields
1-s ')'l% k
[ oM w)du = {7 + [[wE(y) + vi(»)] dy}log M

2 {77 SAGORE) dy}nognk

whenever k > k,, where the last inequality is by (3.6) again. Hence (3.2)
follows again for C; = 2C and some s, € (0, %), for every continuity point
s € (0,s,) of @, and hence for every s € (0, 54).

4. CONSTRUCTION OF DOEBLIN’S UNIVERSAL Laws

We will construct a quantile function Q, a subsequence {n,);_, € N and
asequence 4, = A, >0,k =2,3,..., such that for each (¢, ,¢g,0) e A
there will exist a subsequence {nkj}j‘;l C {n.J;_, so that (1.1) and (1.2)
hold along this subsequence as j — x. Hence the law defined by this
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quantile function Q will be in the domain of partial attraction of every
infinitely divisible law. This construction is also a direct modification of the
basic one in Section 2. Having one such universal Q, we will point out at
the end of the paper that there are in fact many.

First we note that there exists a sequence ¥, = {,, ¢¥;,...} € ¥ which
is dense in ¥ with respect to weak convergence: for every ¢ € ¥ there is
a subsequence {/;J°_; € N such that ¢, = ¢ as j — «; ie, l!l,(x) - (x)
as j — o at every contmulty point x of . For example as can be seen by
any standard proof of Helley’s selection theorem, ¥, can be chosen as the
countable set of all step-functions ¢ € ¥ which have only a finite number
of jumps (and hence by the square-integrability condition are zero for all
large enough argument), each taking place at a rational point and which
have only non-positive rational values. Now let

CJ D CJ {(;, ¥, 0,)}

j=2k=21=2

where {o,, o3, ...} is the sequence of all non-negative rational numbers in
an arbitrary listing, and let

((¢m.1.:¢m,R’ "'m)}:=2 =%

be an enumeration of _#,. Thus the sequence .#, is dense in the “space”
F: for every (i, Yz, 0) € £ there is a subsequence {m ., c{2,3,...}
such that

U L= ¥p, U, R

R = Ur, o, >0 as j— oo, (4.1)

ki

Finally, let =: {2,3,...}—{2,3,...} be any mapping such that
card(mr~'(k)) = « for every k € {2,3,...); the inverse image of every
k € N\ {1} is of infinite cardinality; i.e., k is the image of an infinite
number of integers in N\ {1}.

We are now ready to define Q, {n,Ji_,, and {4, =4, J;_,. Let
n,,a,, b,, and A, be as in (2.3) and set

Q. (u) = { Yy, (nau —) - %}, ue [aZ’%]’
Qr(u) :=A2{_'Jl1r(2),R(n2 —nyu) + %}, u E(%’l - az],
and

Qu(u) +Q, (u), a,<u <y,

Q(u) = Qr(u) + @, (4), i<u<l-a,,
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where Q_(-), for any o > 0, is given in (2.2). As in Section 2, for k > 3
define inductively a,, b,, and A, by (2.4), set

1
Ak{lpw(k),L("k“ =) - ;}’ u € [a,b],
Q.(u) = 1
Ak—l{d/rr(k),L(nk—lak—l =) - 7{"_—1}’ u €(by,a,_4],
and
1
Ak—l{_‘//w(k),R(”k—lak—l) + k — 1}’
uell —a_,1-5,],
Qnlu) = |
Ak{“‘f’w(k),R(”k —nu) + Z>’
ue(l-b,1-a],

and finally put

Qu(u) + 0,  (u), a4 <U=<a;

Q) Or(u) + 0, (u), 1~a,_,<ux<l-a,.

The function Q is left continuous on (a,,1 —a,], and the values
Qa,_, +) and Q(1 —a,_,) depend only on the finite sequence
Wiy, 13 Yariy, mo Twil=2'- Therefore, n, can be chosen large enough,
depending on the whole triple (¥4, 1, ¥ k), g Tuixy)> to make Q(-) non-
decreasing on the whole (a,,1 — a,]. It is no longer continuous at a, _,
and 1 — a,_,, in general, and in this step we also ensure, by choosing »,
even larger if necessary, that b\/* < a, _, instead of the earlier require-
ment that b, < a,_,. The procedure inductively defines a proper quantile
function on the interval (0, 1).

In this construction (2.6) becomes

X
Q(—”—k_ +) 1 T (k) 1
AT T Yoo, (X)) = £ m‘ 75y
and (4.2)
x
_Q(l ) ”—k) 1 Tk 1

e = Ty, rR(X) — % ﬁ\/ﬂ
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for every x € (nga,,n,.b,) = QQ/k, k), k=2,3,.... Following through
the rest of Section 2, we see that the sequence {n,} can be chosen to grow
fast enough, depending on the behavior of the whole infinite sequence
(W), 1> Uiy, R» Fwx)Vi = 2» tO €nsure instead of (2.12) that

h/n,
i) i s

as k = » and then h — o,

We now claim that the Q constructed is universal. Let (y, , /g, o) be an
arbitrary triple in #. Then there exists a subsequence {m ", €{2,3,...}
such that (4.1) holds. Let k, € 7~ '(m,) be fixed arbitrarily. Then choose
k, € w~'(m,) such that k, > k,, and in general, if k, < --- <k;_, are
already chosen, pick k; € 7w~ '(m,;) so that k; > k;_,. This is always
possible by the property that card(w~!(m)) = = for every m € {2,3,...).
Since 7(k;) = m; for all j € N, (4.2) and (4.3) give that

1 X 1 a.mj 1
— - + == s ——
Aka ny, 'l’m,.L(X) k,~ M V2x
and
: (1 u ) (x) - .
A,U.Q n; Vi, R k; ‘/lognkj V2x

for every x € (1/k;,k;), j = 1,2,..., and
ny

Ak-

!

. [ A
a(—) =0, + 0,(1)

nkl

as j — o and then h — o, since k; — o as j — ». For the same reason,
using (4.1), these imply

1 .
=¥,("), Z;Q(l—;;):llfn(‘)

as j -» oo, and

7y h \/”k, h
lim lim inf o|— 1 =0 = lim limsup 1 o|l—]|,

howo jowx k nk} h—w jorw k;

proving the claim.
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We note in conclusion that a whole family of universal quantile func-
tions can be obtained if in the construction above we use at each step
Qo,,(k,’ k=23,..., as given in (3.1), rather than (2.2), with a function
() satisfying the properties described there. Then for any such y(-)
the resulting Q is universal.
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