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A theoretical development is presented for the parametric resonance of layered aniso-
tropic circular cylindrical sheils. The shell’s ends are clamped and subjected to axial loading
consisting of a static part and a harmonic part. The shell is modelled by using linear shell
theory; classical lamination theory is used to determine the stiffness of the overall composite
shell structure. The shell’s response is divided into a pre-instability (unperturbed) part and
an incremental perturbation—which can be dynamically unstable. Rather than assuming
the unperturbed state to be a static membrane state of stress, here unperturbed response
inertia and spatial variations are retained, A successful solution strategy is developed by
employing several Fourier expansions. By means of it, the equations of motion of the
perturbed response are reduced to a system of Mathieu equations. The stability of such a
system can be determined by known methods. Numerical results are presented in part II.

1. INTRODUCTION

A theoretical development is given for the parametric resonance response of a layered
circular cylindrical shell with clamped supports. The layers are comprised of orthotropic
material with arbitrary directions of orthotropy; the ordering of the layers is arbitrary.
The governing equations and solution methodology are developed here; numerical results
are given in part II {1].

Parametric resonance of a structural component refers to an unstable dynamic response
brought about by periodic loading. This instability is of concern because it can occur at
load magnitudes much less than the static buckling load, so a component designed to
withstand static buckling may fail in a periodic loading environment, Also, the instability
occurs over a range of forcing frequencies rather than at a single value.

Early work on dynamic stability of structural components ¢can be found in the text by
Bolotin [2], and the survey article by Evan-lwanowski [3].

More recent work on composite plates has been reported in references {4-7]. Theoretical
and experimental studies were recently made [8, 9] for non-linear isotropic plates.

The parametric resonance of isotropic circular cylindrical shells has been thoroughly
studied. See, for example, references [10] and [11]. For anisotropic shells, the subject has
received little treatment, but at the present time interest in the area is increasing and works
are beginning to emerge. A fairly early study is described in reference [12]. There, the
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solution is obtained for symmetric and asymmetric cross-ply shells, neglecting axial and
circumferential inertia. In reference [13], the parametric resonance of a composite shell
due to harmonic pressure loading was studied. In it the shell was taken to be layered in
such a way that the resulting structure is at most orthotropic. Recently, the problem (for
harmonic axial loading) has been considered in reference [14] for a simply supported,
shear deformable specially orthotropic thick shell.

In the present study, the shell is modelled by linear shell theory and classical lamination
theory. Analogous to buckling theory, a shell element in the deformed configuration is
used to derive the equations of motion. This approach yields a non-linear radial equation
of motion. Linearization is achieved via a perturbation technique in which the response is
separated into two parts. The basic assumption in this approach is that the shell’s response
is stable and axisymmetric up to the point of instability. At this point, the shell’s response
is assumed instantaneously to become unstable. The unstable response can be non-axisym-
metric. The response prior to instability is termed the unperturbed response. The non-
axisymmetric perturbation is termed the perturbed response. The linearization technigue
results in a radial equation of motion which has as coefficients of some of its terms the
unperturbed response variables.

It has been shown in conjunction with static buckling of circular cylindrical shells (see,
for example, reference [15]) that spatial variations of the known unperturbed response are
frequently confined to regions near the shell ends. Thus, these deformations are often
neglected ; the unperturbed response variables are taken to be spatially constant. This was
the approach taken in references [12-14] and [16].

The validity of such an assumption for a particular shell is highly dependent on its
geometry and anisotropy. For isotropic shells, it is possible to relate the importance of the
unperturbed response effects directly to a non-dimensional parameter (see reference [11]).
For composites, because of the large number of laminate configurations possible, such
precise trends are difficult to obtain. However, a study of the works of Jones and Hennem-
ann [17] and Booton and Tennyson [18] reveals some slight tendencies as to the effects of
unperturbed response spatial variations for the case of static buckling of composite shells.
For example, the effect tends to be more important for clamped supports than for pinned
supports. Also, Jones and Hennemann [17] have shown that for static buckling of pin-
supported shells, the effect tends to be more important for isotropic shells than for compos-
ite shells. For clamped supported composite shells, the effect is significant, giving static
buckling loads lower by as much as 15% than those obtained by neglecting the effect. To
the authors’ knowledge, the effect of such pre-instability spatial variation on parametric
resonance of composite shell structures has not been studied before. Nor have the effects
of unperturbed response inertia been studied for composite shells. In the present study,
both the foregoing unperturbed response considerations have been included.

Since the shell’s layering is assumed to be general, the equations of motion do not admit
a solution in the form of single trigonometric functions (such as were used in references
[13] and [14]); nor are some of the boundary conditions satisfied by such functions. Here
a successful solution strategy is developed by means of Fourier series expansions with
respect to the axial co-ordinate, and a complex periodic form with respect to the circumfer-
ential co-ordinate, This permits the governing equations to be reduced to a system of
Mathieu equations. The dynamic instability regions may be determined from this system
by any of a number of methods. Details and numerical results are given in part I1.

2. EQUATIONS OF MOTION

The co-ordinate system used is shown in Figure 1. The origin is at the shell’s geometric
middle surface, the radius of which is denoted by a. The displacement components in the
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Figure 1. Shell geometry.

x, @ and z directions are denoted by u, v and w, respectively. Axial loading of the form
P*=(1/2ra)(Py+ P,cos §2¢} is applied to the shell’s ends.

The shell is comprised of arbitrarily ordered orthotropic layers. The Love-Kirchhoff
hypothesis, linear strain displacement relations, and the shallow shell approximation are
used to model the shell’s kinematics. The stifiness properties of the overall composite shell
structure are determined by classical lamination theory (see, for example, reference [19]).

Following standard buckling theory, an element of the shell in the deformed configura-
tion is used to derive the equations of motion in terms of stress and moment resultants
(see, for example, reference [15]). The resulling equation in the radial direction is non-
linear and is linearized by a perturbation procedure in which the response is split into two
parts. One part, the unperturbed response (denoted by a subscript p), represents a stable
axisymmetric motion of the shell. The assumption of axisymmetry in the unperturbed
response is taken to be reasonable so long as large bending-stretching coupling does not
exist in the composite (which is the case in the numerical examples treated in part IT). The
second part, the perturbed response (denoted by a subscript 1), represents a perturbation
of the unperturbed state and can become unstable. By using this procedure, the equations
of motion of the shell’s perturbed response can be shown, after some manipulation, to be

DY+ DPui+ Dy = w3, DPuy+DWo+DPw =m oy /or%, (1,2)

D®uy+ D P+ D)+ (3Nyq,/0x) w1 /00 + 2N g, Fw: /00 Bx
+ (3w, /oxH{DVu, + D Dy, +DPw )+ a(ONx,/0x) 0w, /0x + (1 /a)Nge, FPw, /00°
+aNy, w1 /05" +a(Fw, /05D Puy + D0 + D Miwy)
+MEqg 8uy /01 Ox+MEq 80, /017 0x=m &w, /017 (3)

Here the N’s denote the usual stress resultants commonly employed in shell theory, and
# is the shell’s mass per unit length. The differential operators D‘"-D"" are given in
Appendix 1, where 4;, By, and Dy are the well known material stiffnesses as derived from
lamination theory [19]; C; and E; represent material and geometric constants and are given
in Appendix 2.

Note that equation (3) basically stems from applying Newton’s law in the radial
direction. However, in arriving at the final form, expressions for @’u,/6x’ and &°v,/8x°
were used which were obtained by taking the derivative with respect to x of equations (1)
and (2). This leads to a form better suited to the Fourier series manipulations which
follow.

The unperturbed response variables appear as coefficients of perturbed response vari-
ables in equation (3). Thus, the unperturbed response must be determined before the
perturbed response equations of motion can be solved.



314 A. ARGENTO AND R. A, SCOTT
3. UNPERTURBED RESPONSE

The equations of motion governing the shell’s unperturbed axisymmetric response can
be shown to be:

adn azu,,/ax" +C, &v,/0x" —aBy, Fw,/0x’ — A\, 8w,/8x=0, )]
Cy Fu,/8x° + C3 8,/ 0x% — Cy W, /0x° — Cs 3w, /x=0, (5)
Eny 0*w,/0x" + Ezq 8w,/ 0x" + A3 8u,/8x+ Cs 8v,/0x = Cow, =1 8w, /017, (6)

For a clamped shell, one possible set of boundary conditions to be satisfied by the
unperturbed response at x==/ are

WPZO, awp/a-’C:O, Up:o’ Arxx,,=_P*- (7_10)

After some manipulation and application of boundary condition (10), equations (4),
(5) and (6) can be shown to give

Fy 8*w,/8x* + F, 3w, /0x7 + Fyw, + Fy=1m 8w, /817, (11)
where Fy, F, and F; are constants given in Appendix 2, and
F4=_F|2P*+F|3K2. (12)

Fi; and F); are constants given in Appendix 2 and X is an undetermined function of time
which arises from integration of equation (5}.

Whitney and Sun [20] in a work on static buckling of composite shells used a Fourier
series method to satisfy spatial dependence. This is also the approach used in a later section
to reduce the perturbed response equations of motion to a system of Mathieu equations.
This is done by expanding the perturbed response variables in terms of Fourier series in
the axial co-ordinate, leading to an infinite system of equations in terms of trigonometric
functions and the associated Fourier coefficients. For the equations to be satisfied,
coefficients of like trigonometric functions are separately equated.

The terms in equation (3) which involve products of unperturbed response quantities
with perturbed response quantities present a problem when the unperturbed response is a
function of space—as it is here. Products of the unperturbed response solution functions
with the trigonometric functions of the perturbed response would prevent the grouping of
coefficients of like terms as described above.

This problem can be circumvented if the products can be expressed in terms of Fourier
series. This is accomplished by first expressing the unperturbed response solution in terms
of a Fourier series, as opposed to using the exact analytic solution (which exists in this
case). The products in equation (3) are then each a product of Fourier series. These can
each be expressed in terms of one Fourier series by means of a theorem for the product
of two infinite seties.

The details of determining the product of Fourier series will be described later. Here the
solution of the unperturbed response in terms of Fourier series is given.

The solution of (11) is taken in the form

f"+ y (f cosT+gnsnTx) (13)

n=1

where f;, f, and g, are time dependent.

As discussed by Green [21] (see also reference [20]), the derivative of the Fourier series
of a function defined on a given interval can be determined term by term only if the
periodic extension of the function is continuous. If this is not the case, then the derivative
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of the Fourier series depends on the values of the function at the endpoints of the interval
(see reference [22]). In the present case, the derivatives of equation (13) are given by

ow, 2 (mr nrx nmw o, mrx)

Do 3 (g, cos T2 1 gin 2X), 14

ax L\ ST s (14
T § {—(ﬂ)zf cosﬂ~(’£)2 sin E] (15)
P A RN M R WU L |

3
_Lo, e i (%) nrx nax
PRI +Z,{[ (l)g"+( e ] T ( )f" sin 1} (19
Twp_ ‘4’+z {[(ﬂ) ﬁ,+(—1)"ca?’]cos"—”5
6x !

+[(”;T) g,,—-—( 1)’*&3’] sin ’;x} amn

& =/Hwi)—wi(=D), =1/ —wl (1), (18,19)
where the prime symbol (’) denotes partial differentiation with respect to x.
Note that since equation (11) involves only even derivatives, g, and ci’ are zero in
subsequent steps. Substitution into equation (11) gives
IR+ 3B fot Fa= 3o (20)
Fi(=1P + [F(nm /1Y = Ex(nr /1Y + E) f, =, n=1,2,3,..., 21
where an overdot denotes time differentiation.

Since g,=0, the boundary conditions (8) are identically satisfied (see equation (14));
substitution into the boundary conditions (7} gives

where

1 ht Ef,,(—l)"=o. (22)

To satisfy boundary conditions (9) v, is first expressed in terms of w, by using equations
(4) and (5). This gives

Qg K
= wh+— | w, dx+ P*x+=2x+Kj, (23)
&s s A“a5 as

where K; is an unknown function of time. Substitution of equations (13) and (14) into
equation (23), followed by application of the two boundary conditions (9}, can be shown,
after some manipulation, to give

K3=0, Ky=—(C\/4,)P*— (a¢/2)fs.
Then equation (20) can be expressed in the form
%Flﬂ‘{:)"‘ %(FS"FUH(S)ﬂ)— (Fip+ FiaCi/A, I)P‘r = %mfo (24)

Equations (21), (22) and (24) form a system of 2n#+ 1 ordinary differential equations
for the unperturbed response quantities f;, ¢’ and f,. Upon elimination of f; and ¢’ from
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the system, the steady state solution is readily determined to have the form
Ji=A; Py+ B; P,y cos 24, (25)

where A; and B; are constants. Substitution into the # governing equations leads to the
following two systems of algebraic equations for 4; and B;:

a(mA,—4F|(—1)" § An(—D"=2FiP(—1)", n=1,2,3,..., (26)

m=1

Bu(a(n) —m2%) — (2ms* + 4F))(—1)" E B.(—1)"=2FiPA-1)", n=1,2,3,....
m=1 (27)
Here F}| and F? are constants given in Appendix 2, and
a(n)=Fy(nr /1Y = Fs— F(nx /D"

Equations (26) and (27) can be solved numerically for 4, and B,. It should be noted
that equations (26) and (27) depend on the forcing frequency, £2. Upon solution, for a
given £2, the unperturbed response is described by equation (13) with g,=0 and f, given
by equation (25), and then f; is given by equation (22). In addition, the unperturbed
response stress resultants can be shown to be

N_x.x =_P*s Nx9p=F|9 azwp/ax2+F20wP—F§P*+F£K2’ (28’ 29)
Nog,= Fay @w,/3x*+ Fyyw,— FLP*+ FLK;, (30)

where Fi, Fi, F3, Fk, Fis, Fa, Fa; and F,; are constants given in Appendix 2.

4, PERTURBED RESPONSE

The equations of motion describing the perturbed response of the shell will now be
reduced to a system of Mathieu equations by means of Fourier series expansions of the
perturbed response variables. A technique similar to the one used here has been used to
solve static stability problems by Green [21] for isotropic plates and, as mentioned before,
by Whitney and Sun [20] for composite shells. Very recently, the method has been described
in reference [23] in the context of static response of anisotropic doubly curved panels.

The solution of equations (1), (2), and (3) is assumed in the form:

ul(xs 95 t) AD(‘) w© An(t) Bn(t)
vi(x, 8, 1) =% Gy |+ T 4| Gy Jeos ZZE+| Do) | sin ZZEDr e, (31)
wi(x, 6, 1) S/, D gn(?)

where k is the circumferential wavenumber and i is the imaginary unit. The time parameters
Ao, A,. B,, Co, etc., are, in general, complex. This choice of solution form is motivated
by the following factors. Since the shell is circumferentially closed, the displacement
functions must be periodic with respect to 6. Also, the generality of the shell’s anisotropy
does not allow the equations of motion to be satisfied by any solution involving only single
trigonometric functions in each displacement component.
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As described in the previous section, the required derivatives with respect to x are
determined according to the theorem given in reference [22] and are given below:

ui(x, 8, t) el B.(1) M
vitx, 0,0 =L [0 )4 5 7 ey |+ =1y ) [ cos P
wi(x, 0,1) ¢y =t £.(0) cf"’ !
A0
—— Cy() sinw , (32)
Jo(D)
uj(x, 8, 1) e\ 2 Au(8) c?
oi(x, 0,0 |=e*{~ 2|+ ¥ —(ﬂ) C1) |+ (~1y" @ cosf’;E
wi(x, 8, f) @/ JAG) ¢
nm | nx B.(1) &’ nax
_T T D,,(f) ‘F‘("‘l)" C(vl) SIHT R (33)
ga(1) !

2
wi(x, 0, t)=e"‘"{-c“’+ D {[ (1)( [ gt (—1)c (1))+( Iy'e (3)]%3?
_nlrr[ (,;) e (2)]sm Ix}} o
wi"(x, 6, t)=ei"9{%c$.‘?’+§{[—(¥)( ( )f +(=1)c (2))+( 1y (4)] ?
_nr il okl n_(3) nwx
1|: (l)(lgn+( 1)'cy, )+( l)c]n l}} (35)

Here
et | (D =m(=D 2 | [ —uit=l)
a’ =7l o -0 |, | =—{ s -1 |, (36, 37)
e will)—wi(~1) @ wi(l) —wi(—1)

@=/HWO=WED),  dO=ADEID-WI=D). (38,39

Note that the derivatives of the Fourier series of the functions require the endpoint
values of the functions. These values are either related to the boundary conditions in a
specified way or are treated as unknowns. Since the solution is assumed in complex form,
each of the boundary constants, c.”, ¢\, etc., are, in general, complex.

The boundary conditions to be satisfied by the perturbed response at x==+/ are

Wy =0, 6w./6x=0, My =0, D) ={, (40—43)
Applying condition (40) gives c’=0 and

Lfot 3 A-1Y=0, (44)
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Likewise, applying condition (41) gives ¢.>=0 and

oo

nm .\
Py Tgn(-l) =0. (45)
n=1
Applying conditions (42) and (43) gives ¢’ =0 and ¢\’ =0,
$dot+ ¥ A(-1)'=0  and 3G+ Y Cu(—1)"=0. (46, 47)
n=1 n=1

. Since the time parameters 4g, 4,, etc., are in general complex, each of the conditions
(44)-(47) has a real and an imaginary part. Thus, these conditions represent eight
equations.

The coefficients in equation (3) are functions of x in the form of Fourier series, and 1.
Thus, when one writes w, in the form of equation (13) products of Fourier series arise.
Each product can be re-expressed as follows.

In general, the product of two Fourier series,

f(x)=529+ Y (a,, cosMTx-}-b,, sin n—?)
1

n—

and
o
Fi(x) =@+ ¥y (A,, cos f'ff+ B, sin m)
2 .0 i i
can be expressed as a single Fourier series

FOOF(x) =%+ 5 (a,’, cos $+ BLsin 5’;—") (48)
n=1

where (see reference {22])

A o
aa=?+ Y. (auAn+b,B.), (49)
n=1
r_aoA" 1 <
an_ 2 +2 z [am(Am+n+Am—n)+bm(Bm+n+Bm—n)}7 (50)
m=1
J_aOB" 1 -
ﬁn_ 2 +3 Z [am(Bm+n_Bm—n)_bm(Am-#-n_Aan)]- (51)
m=1

In equations (50) and (51) the following two relations apply:
A = Ag, B =—B,. (52, 53)

The assumed solution form (31), and appropriate derivatives are substituted into equa-
tions (1), (2) and (3). Upon analytical re-expression of the products as described, this
results in three equations in terms of the Fourier time parameters, each having a real and
an imaginary part. Separating out the real and imaginary parts of each equation results
in six equations. In each of these six equations, coefficients of sines, coefficients of cosines,
and constant (in x) terms are equated separately, giving a total of 12# + 6 equations. These
manipulations, which involve many terms and so can become lengthy, are performed by
using a REDUCE symbolic manipulator program.
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The resulting infinite sequence of equations is of the form
m d’f/de* + (R— Py S, — P45, cos Q1)f=0, (54)

where m is a mass matrix, R, §) and S, are matrices containing material and geometric
constants, and f is the vector of unknowns. Included in equations (54) are the eight
equations (44)-(47) (real and imaginary parts) reflecting the boundary conditions. Thus
there are 127+ 14 equations for the 127+ 14 unknowns.

By using this system, the static buckling loads and free vibration natural frequencies of
the statically loaded shell can be calculated through the solution of eigenvalue problems.
In addition, the instability regions of the shell can be determined by any of the methods
previously described. Specific details of the numerical procedures, results describing the

shell’s stability, and a study of the various unperturbed response effects are given in part
I [1].

5. CONCLUSIONS

A theoretical development has been given for the parametric resonance response of a
layered anisotropic circular cylindrical shell having clamped supports. Pre-instability iner-
tia and spatial variations have been retained in the formulation leading to a system of
equations of motion having coefficients dependent on space and time. Solution methodol-
ogy involving Fourier series expansions in the axial co-ordinate and a complex periodic
form in the circumferential co-ordinate has been used to reduce these equations to a system
of Mathieu equations.
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APPENDIX 1

Differential operators used in the text are as follows:
P Ay & & & Cs & &
DV=ad —+— —=+24u——, D¥=C —=S+=-5+E——,
PN T 0 a0 ox ‘o a 36 90 ox
& 8 By & Ay 0 i &
——dp— -2 3+ E—— =3B, ——,
x> Pox 2 80° a 30 Co0tox  “oBaxt
D®=C; 7/0x*+ Eg */00* + E; 6*/00 ox,
D®=—C, 3 /0x*~ Cs 8/0x+ Fy 3 /00° + E; 8/00 + Es 8 /28 0x*+ E4 8°/06° ox,
D®'=E, 8/56 8x* + Ea5 0°/06% 0x+ A5 8/0x+ (Bas/a?) 0°/00° + (Azs/a) /09,
DV =FEy /06 0x*+ E35 8° /067 dx+ Cs 8/0x + Ex 8°/89° — E; 8/0,
D(s) =E33 34/5x4+E34 62/5x2+E3-,- 64/693 6x+E33 62/39 3x+E4| 64/682 5x2
+Eqy 8/00 0x° — Cy— (Dyy/a’) /00 — 2By, /a?) #/66°,

D(9)=A|,£+415 _‘2_, D“U)=(ﬂ_312)i+9 _Q_’
dx a 80 00 a ox

DV =—(d1s/a) =~ Byy /0x* = (B1z/a’) /06" ~ 2Bua/a) 720 Ox.

D(3)= -aB“

a 02

APPENDIX 2
Constants used in the text are as follows:
Ci=(ad;s— By), Cs=(aAy— 2Bu+ Dys/a), Ca=(aBis— D\4),
Cs={(A2— B/ua), Czy=Az/a, Ey=A;;— (Byz/a) + Aws— (Bas/a),
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Ey=—(Bn/a)—(2Bu/a),

_3824
a

—A
E,=_22

3Dy

3 ot
a

E4 =

+

JBa
a
c?
En=C——,
ad,

Es=E;—

Ew=E —

E2| =E5+
a

Ay

Ep=———+C —,
a

Az

Ex
En=—E+C -2,
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