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INTRODUCTION

According to classical invariant theory a covariant is a rational map from
the space of projective hypersurfaces of certain degree n in P’ to the space
of hypersurfaces of some degree m in P’ that is equivariant with respect to
the group of projective transformations. The best known example of a
covariant, from which the invariant theory originates, is the discriminant of
quadratic forms. It vanishes on the set of singular quadrics. Composing the
(r — 2)-iterated polar map ¢ — P,... P (F) with the discriminant map we
obtain the Hessian covariant F— He(F). It is the locus of points ae P’
such that the Hessian matrix of ¥ of second partials at the point « is not
invertible. Here the polarization P,(F) of a polynomial F(x,, .., x,) with
respect to a point a=(ag,..,«,) is defined by the usual formula
P,(F)=3 a;F/Cx,. This gives some general construction of covariants:
take a known invariant of forms of smaller degree and compose it with the
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polarization map. Another example of this construction is the Clebsch
covariant S of plane quartic curves. Here we compose the first polarization
map a — P,(F) with the Aronhold invariant of plane cubics I that vanishes
exactly at the locus of anharmonic cubics. The value of this covariant at a
quartic F is the locus of points x such that the first polar P (F) is
projectively isomorphic to the Fermat cubic or its degeneration. A natural
question arises: what is the degree of the obtained map from the space of
quartics to itself? The answer is 36, as was shown by Gaetano Scorza in
1899 [Sc2]. An expert in the theory of curves immediately recognizes this
number as the number of even theta characteristics on a curve of genus 3.
In fact, Scorza shows that the covariant quartic S(F) carries naturally such
a characteristic 3, and the map F— (S(F), $) is a birational map from the
space of quartics to its cover of degree 36 parametrizing the pairs consisting
of a non-singular quartic and an even theta characteristic on it. This leads
to a natural birational equivalence between the corresponding moduli
spaces .#; and .# %, a rather surprising result, although both spaces are
expected to be rational. There is an analog of this for cubic curves: the map
that sends a cubic curve to its Hessian is a rational self-cover of degree 3
whose fibre over a non-singular cubic is naturally identified with three non-
trivial 2-torsion divisor classes ( =even theta characteristics in this case).
The initial plan of this work was to give a modern proof of the result of
Scorza. As it turned out, the original argument of Scorza that depends
heavily on his earlier work in the theory of apolarity of plane quartic
curves [Scl] does not explain clearly the injectivity of his map. In this
paper we give another proof that is independent of the theory of apolarity.
As is customary today we pay great attention to analyzing possible
degenerate cases by studying throrougly the set of definition of the Scorza
map. In particular, we extend the Scorza isomorphism to the larger set of
what we call weakly non-degenerate quartics. A non-degenerate curve of
even degree is defined by non-vanishing of the catalecticant invariant, a
certain analog of the discriminant for forms of higher degree. A weakly
non-degenerate curve is allowed to have vanishing catalecticant but to be
a general curve with this property in some precise sense. Another beautiful
characterization of such curves is given by a theorem of G. Liroth. The
equation of a weakly non-degenerate but degenerate plane quartic can be
written as a sum of five (six if non-degenerate) powers of linear forms.
A degenerate curve with ths property is called a Clebsch curve in honor of
A. Clebsch who was the first to observe that the five, suggested by counting
constants, is not enough for a general quartic. The problem of presentation
of a form as a sum of powers of linear forms is one of the main applications
of the theory of apolarity. As is well-known for binary forms (see [Ku-Ro]
for a modern account), it is much less known in the case of forms of larger
numbers of variables. We give an account of this theory in the present
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paper. The covariant quartic of a Clebsch quartic is a Liiroth quartic that
is characterized by the condition that it can be circumscribed around a
complete pentagon. The relationship between Liiroth quartics and rank 2
vector bundles on the projective plane was discovered earlier by W. Barth
[Ba]. Extending the Scorza result, we prove that the restriction of the
Scorza map to the locus of Clebsch quartics is injective.

A possible extension of Scorza’s result to curves of higher genus is very
promising. Based on an idea of E. Ciani [Ci2], Scorza himself gives a
beautiful construction of a certain quartic hypersurface in P* ' attached to
a pair (X, 9), where X< P# ' is a canonical curve of genus g and 9 is an
even theta characteristic on it [Sc3]. In case g =3 this gives the inverse of
the Scorza map. Scorza’s construction depends on three assumptions on
the pair (X, 8) that he failed to verify for a single curve of genus g>3;
they are fulfilled for a general curve of genus 3. Although we succeeded
in showing the latter we still cannot verify the former. So, the Scorza
construction remains conditional. What are these mysterious quartic hyper-
surfaces of Scorza?

Notations. The following notation will be most frequently used in the
paper:
V: a complex vector space of dimension r+ 1; V*, its dual space;
P"=P(V)=|V|: the projective space of lines in V;
P"=P(V*)=|V*|: the dual projective space of hyperplanes in V;
H,: the hyperplane in P’ corresponding to a point xe P’;
H,={aeP’:aeH,): the hyperplane in P’ corresponding to a point

r

aeP’;
PGL(V): the group of linear projective transformations of P(V);
S"(V), §"(V*): the symmetric powers of V and V'*;
[S"(V*)|, |S"(V)|: the projective spaces associated to S"(V*), S"(V);
Nin)=dim [S"(V*)| =("]") - 1;
P,(F): the polar hypersurface of F with respect to a point ae P’;
P, (F): the polar hypersurface with respect to a hypersurface @ in P’;
#,.. the linear system of polar hypersurfaces;
(@, F: the apolarity pairing between @ e S"(V'*) and Fe S"(V),
V(@; F)={® eS" “(V). (PP, F)=0};
X,(F): the variety of polar s-polyhedra of a hypersurface F;
He(F): the Hessian of a hypersurface F in P,
St(F): the Steinerian of a hypersurface F in P’
s, the Steiner rational map He(F)--— St{(F);
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Cat(F): the catalecticant matrix of a hypersurface of even degree in P”;
C: the catalecticant invariant F — det(Cat(F));

I,: the Aronhold invariant of degree 3 of plane cubics;
S.: the Clebsch quartic covariant of plane quartics;

S(F)=S,(F)if S4(F)=8,(F),.q # P2 the Clebsch covariant quartic of F;
T(F): a symmetric correspondence on S(F) defined by polohessians;

I': the Clebsch contravariant of class 6 of plane quartics;

I'(F): the image of T(F) in P? defined by the map (a, b) — P, P,(F);
3: a non-effective theta characteristic on a curve of genus g;

T,: a symmetric correspondence on a curve of genus g defined by $;
d(9): half of the degree of the mapping T, — I'(3).

1. POLARS OF HYPERSURFACES

(1.1) Let V be a vector space of dimension r+ 1. Recall that its
symmetric power S”(V) is defined to be the quotient of the tensor power
V' ®" by the subspace spanned by the tensors ¢ — a(¢), where ¢ runs through
the group Perm, of permutations on # letters. The symmetrization map

verLyen s Y al(h),

g € Perm,;

factors through S”(V) and defines the polarization map.
pl*. S"(V)-> Ve

Its image consists of symmetric tensors. Replacing V by its dual space V'*,
we obtain the map

Pli S"(V*) = V*® = (VO)*,

whose image equals the subspace Sym, (V) of symmetric n-linear forms on
the space V. The later space is naturally isomorphic to the space S"(V)*.
Restricting the projection map V*®”— S"(V*) to the subspace Sym,(V),
we obtain the restitutution map

r,: S"(V)* = Sym, (V) - S"(V*).

It is easy to verify that the compositions pl,-r, and r, pl/, are both equal
to a! times the identity map. Thus, if the characteristic of the ground field
is zero (as in our case), the polarization map is bijective onto S"(V)*. We
redefine the polarization map by multiplying it by 1/n.
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(1.2) By choosing a basis u,, ..., u, in V, and its dual basis x,, ..., x, in
V*, we will identify the spaces S"(}V') (resp. S"(V*)) with the space of
homogeneous polynomials of degree n in uy, .., u, (resp. x,, ... x,). The
image of the tensor w, ®...®u, € V®" in the quotient space S"(V) is the
monomial u, ...u,. The set of zeroes of any non-zero polynomial
Fe S"(V*)is a hypersurface of degree n in the projective space P(V) =P’
associated to V, an element @€ S"(V) defines a hypersurface in the dual
space, called an enveloping hypersurface of class n. Abusing notation, we
will often identify a hypersurface with the corresponding homogeneous
polynomial that it defines.

The polarization p/,(F) of a polynomial FeS"(V*) is the unique
symmetric multi-linear function Flx, ¥V, 2)on V7" such that for all xe V'

Flx)=Fl(x, .., x).

By fixing the first k variables a, b, .., ¢ in F, and making equal the
remaining ones, we obtain the kth mixed polar of F with respect to the
points 4, b, ..., ¢,

Py AFUx)= Fla, b, ... c, x. .., x).

Note the symmetry of this notation in the subscripts. We use P, (F) to
denote i-times repeated polar with respect to a point a. Clearly,

p AFY=P(Py(--AP(F))))

ach

One easily verifies that the first polar of F with respect to the point
a=dyliy+ --- +a,u,eV is equal to

Therefore

T I

Y ayby e, Fex, - 0x

ik

n! G

(1.3) In coordinate-free terms one can define the mixed polars as
follows.
There is a natural inclusion:

Sym,(V)e V*®* @Sym, (V) V*®",

Composing the polarization map pl/, with the map 1®r, ., we obtain a
linear map

SUV*) - V@S K(V*), (%)
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or, equivalently, a linear map
Pl s VEE@ S (V*) - S"X(V'*).
We will call it the kth polarization map. 1t is immediately verified that
Pl (a@b® - @c®F)=P,, . (F)
When & = n, we get the linear map
SUV*) - V*®n

which is, of course, our polarization map p/,,.
Composing the map plF®1:SYV)®S"(V*)—> VO @ S*(V*) with
pl ., we obtain a linear map

sple » i SK(V)®@ S™(V*) - S K(V*).

It is easy to see that the polarization maps are equivariant with respect
to the natural representations of the general linear group GL(V) on the
source and the target of the maps. In particular, the linear system #(F) of
polars P,(F) is PGL(V)-invariant. For every point ae P’

P, (FYnF={veF:aeT(F),},

where T(F), is the tangent hyperplane to F if v is a non-singular point of
F, or the whole space otherwise. Each singular point of F is a base point
of 2(F); the corresponding ideal is the adjoint (or Jacobian) ideal of F at v.
The image of F under the rational map defined by #(F) is the dual variety
of F.

(1.4) DEFINITION. Let &€ S“(V) and Fe S"(V*). The homogeneous
polynomial

Po(F) i=sply (P, F)e S"~*(V'*)
is called the polar of F with respect to ®.

In the case when &= (X a,u,)...(¥ c,u,)=H,...H. is the product of k
linear polynomials the polar of @ with respect to F is equal to the kth
mixed polar P, _(F).

(1.5) DeFmiTION. The pairing
spl, . S"(V)@ S"(V*) - S°(V*)=C,

is called the apolarity pairing.

607/98,2-6
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For any @€ S*(V) and Fe S"(V'*), we set
spl, (@, FY= (D, F).
Note that the apolarity pairing can be viewed as the map
SUV*) - S"(V)*,

which is, of course, the polarization map p/,. In particular, it is non-
degenerate.

The apolarity pairing is the keystone of the theory of apolarity between
hypersurfaces in P” and enveloping hypersurfaces in P". Of course, when
n=1, this is just the usual pairing

Vevr*-C, (v f)-f(v),

between the space V and its dual space V'*.
Explicitly, if @ =u'=u@...u" and F=xi=x{ ... x/ are monomials of
degree », then

N (L
Py — i
Q' X {0 otherwise.

This extends, by linearity, to an explicit formula for the apolarity pairing.

(1.6) LEMMA. Let t=tyuo+...+t,u,eV, and H,e S'(V*) be the
corresponding linear function on V. Then for any Fe S"(V'*)

CHY Fy=FQ).
More generally, if a,, ..., a, €V, then
(H,..H, F>=Fa,,..a,),
where FeSym, (V) is the total polarization of F.
Proof. This follows immediately from the definitions.
(1.7) PROPOSITION, Let @ e S5(V), @' € 8" “(V), and Fe §"(V*). Then
(D', Py(F))=LPD', F>.

Proof. Since P,(F) is linear with respect to @, it suffices to verify this
for

d=H .. H

ay

- >

’
s &' =H,..H, .
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In view of Lemma (1.6), the right-hand side is equal to F(a,, .., a,.
by by i) Inits turn, Po(F,)=P, . (F)=Fa, .. ax,..,x), and
the left-hand side

(Hy...H, . Fa,..a,x.,x)>=Kay, ..a. b, ..b, )
equals the same.

(1.8) CoroLLARY. Let @ SK(V), Fe S"(V*), and let
V(d; F)={@ e S" X(V): (PP, F>=0.
Then Ge S" *(V*) is equal to the polar P4(F) of F with respect to @ if and
only if for any @ € V(®; F)
(P, G>=0.

Proof. The apolarity pairing is non-degenerate, so by Proposition (1.7)
the dual subspace of V(®; F)=S" “(V) is spanned by P,(F).

(1.9) CorROLLARY. Let @eS*V), FeS"(V*). Then
Po(F)a)=0< <D, P k(F)>=0.

Proof. Let @ =H" * Then Px(F)= Py (F). Applying (1.7) twice, we
obtain

(P, Pu(F)y=CH, YD, F)=CHY F PolF)).
It remains to use Lemma (1.6).

(1.10) DeFINITION.  An envelope @ of class n—k is called a kth anti-
polar of a hyperplane H with respect to Fe S"(V*) if H* = P,(F).

(1.11) CoroLLARY. @ e SX(V) is a k th anti-polar of a hyperplane H with
respect 1o Fe S"(V*) if and only if H" *e V(d; F)* (see (1.8)).

(1.12) ExampLes. The first anti-polar of a hyperplane H with respect to
a quadric F is the hyperplane H,, where ae P is dual to H with respect
to F (= intersection of all polars P (F), here xe H).

The first anti-polar of a hyperplane H with respect to a cubic F is the
quadric @ in P’ that is apolar to polar quadrics of F with respect to all
points on H. The second anti-polar of a hyperplane H with respect to a
cubic F is the hyperplane H,, where b is the point of intersection of all
double polars P, ,(F), ue H.
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2. APOLARITY

(2.1) DEFINITION, An envelope @ e S*(V) is called apolar to a hyper-
surface Fe §*(V*) if for all &' e S"~*(V)

(DD, F>=0.

Equivalently (1.7), & is apolar to £ if and only if
Po(F)=0.

(2.2) ExampPLE. Let F={(agxo+...+a,x,)"=H". Then ®eS"(V) is
apolar to F if and only if

D(a)=0.

This follows from Lemma (1.6) (where we replace ¥ by ¥*). For example,
H_ is apolar to H,<acH, < xc H,.

Similarly @ = H" = (ayuo+...+a,u,)" is apolar to Fe S"(V*) if and
only if F(a)=0.

(2.3) Let FeS"(V*), and let
AP (F) < S5(V)

be the linear space of apolars of F of degree k. By definition, it is equal to
the kernel of the linear map

ap(F). SK(V) - 8" X(V*), @D — Py(F)

Thus we expect that AP, (F) is of dimension N(k)— N(n—k);, hence F
always admits a non-zero apolar of class k if N(k)> N(n— k). As is easy to
see, the latter is equivalent to the inequality k£ > Jn. If n= 2k, AP (F) is the
kernel of a linear map between two spaces of the same dimension; hence it
is not zero if and only if a certain determinant vanishes. If k < in, we expect
that AP, (F)={0}.

(2.4) DeFINITION. The matrix Cat(F) of the linear map ap,(F) with
respect to a basis of monomials u' of S*(V') and a basis of monomials xI
of §" k(V*) (ordered in some way) is called the kth catalecticant matrix
of F. If n = 2k, the determinant of this matrix is called the catalecticant of F.

Note that, up to the sign, the definition of the catalecticant does not
depend on the ordering of monomials «' and x.
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Explicitly, if @ =ul=u} --.u/ then
. n—k ;
apk(F)(ul)zpq)(F):Z i Cii X

hence, by (1.7),
i if k=i

i}
0 otherwise.

ud*i Fy = (u¥, P.p(F)>=Z<n;k) ey <ut, ui)Z{

So, we obtain that the (i, j)}-entry of the catalecticant matrix Cat(F) is
equal to

cy=utL Fy=a

Pi+j?
where F=3 (})a.x". Notice the symmetry c; =c;.

(2.5) Remark. The function
C: S*(V*)-C, F — det(Cat(F))

is a polynomial function of degree N(k)+ 1 on the space S*(V*). It is non-
zero [la] and is invariant with respect to the natural action of the group
SL(V) of matrices with determinant 1. We will call it the catalecticant
invariant (of level 2k and dimension r).

(2.6) EXAMPLE. Let r=1, n=2k, F=ayxj+ ({)a,x} 'x;+ ...+ a,x".
The catalecticant determinant det(Cat(F)) is equal (up to a non-zero
numerical factor) to

ag 4, ... a
a‘ a2 o ak+1
a, i,y ... 4,

The determinant of this form is called the catalecticant determinant of order
k+1.

(2.7) EXAMPLE. Let r=2, n=4,
F = o000 Xg + 4000, X3 X1 + 480002 X3 %2 + 60011 X5 X + 6a0022 X3 X3
+ 1200012 %5, X2 + 44011 X0 X] + 4dyy22 X X3
+ 120,12 X0 X5 X5 + 12ag120 %0, X3

4 2.2 3 4
+ayy X4, X X0+ 6a,15, X X5 +4a,50, %, X5+ a0 X5
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Then the catalecticant determinant of F is equal (up to a non-zero
numerical factor) to

Aoooo oot ooz dooor ooz door2
oonn A 922 4o Gonz Ay
Qoo driz2 Aoz dor22 Aoz 4y
Qooo1 Qornn 90122 Qoort Qo012 o1z
Aooor oz Aoz dooiz Gooz dorz2

dporz Q2 dy222 dorpa dojaz dyg2z

Here we order the monomials by (x], x7, x3, x4, XoX,, X, X5).
This determinant is an invariant of degree 6 for ternary quartics, denoted
by Bin [Sa2, p. 167].

(2.8) DERINITION. A polynomial Fe S*™(V*) is called non-degenerate i
det(Cat(F)) #0, or, equivalently, if AP, (F)=1{0}.

(2.9) Remark. The catalecticant matrix Cat(F) is the matrix of the
symmetric bilinear form

B,: S*(V)x S*(V)— C,

whose values on u*, v e S¥(V) with u, ve V are
B (5, v")=F(u, .., u, v, ..., v).

Let O, € S*(S*(V)*) be the corresponding quadratic form on the spaces
S*(V). It is non-degenerate if and only if F is non-degenerate. For example,
if Fis a quadratic form, i.e., kK =1, then the notion of non-degeneracy coin-
cides with the usual one employed for quadratic forms. So, the catalecticant
is a generalization of the notion of the discriminant for forms of even
degree greater than 2.

In the projective space |S*(V)| we can view Q, as a quadric. Its
pre-image under the Veronese map,

POV) = Gy (K * = 1S5V

is equal to the hypersurface F.

(2.10) EXAMPLE. Let (x,,.x,,%5) = (x2, x3, x3, 254, 2x4x5, 2X,X5) =
(15, ..., t5) be the Veronese mapping from P(V) to |S°(V)|. Then our
quartic F is equal to the pre-image of the quadric
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Qoooo e+ 280011 Loty + 20022 Lo 2 + 280001 Tol3 + 280002 Lo 1a + 2a0012 101 s
+aynt+2a00 0+ a0, 1 1+ 2001158 1+ 2a, 1204 s
+ a3+ 200100513+ 200005 15 14
+2a150 1515+ dopi 13 + 2000121314 + 200122 1315 + Aoona 1
+2a0,22t41 s+ ay12215=0.

The determinant from (2.7) is equal to the discriminant of this quadric.

3. HESSIAN AND STEINERIAN

(3.1) Let FeS"(V*), and let FeSym, (V) be its full polarization. With
each ve V one associates a symmetric bilinear form H(v) defined by

H(v)(a, b)=Fla, b, v, .., v)= P, ,(F)v)= P"~*(F)a, b).

In other terms, H(v)e Sym,(¥ )= S*(V)* is the composition of the linear
maps

SH VY- S" H(V*)-C,

where the first map is ap,(F), and the second one is obtained by evaluation
of the polynomial at the point .

Composing the map v— H(v) with the discriminant map H(v)—
discr(H(v)), we obtain a polynomial function on V of degree (r + 1}(n —2).
It is called the Hessian of F, and is denoted by He(F). By definition,

He(F)(v)=0<> H(v)is degenerate

< Fla, x,v,..,v)=0for some ae ¥ and any xe V.
In coordinates, the matrix of H(v) in the basis u,, ..., 4, is equal to

1 &°F
n(n—1)0dx, ix;

»

(v)|

and the Hessian is equal to the functional determinant

(n2—n) * 'det

}ﬁx, ax; |
(3.2) The Hessian matrix is the Jacobi matrix for the map

grad(F): P"— P’,



228 DOLGACHEV AND KANEV

given by the partials of F. If ve Fn He(F), then each a e Ker(H(v)) belongs
to the tangent space T(F), at the point v. In fact, F(a, x, v, ..., v) =0 for all
x implies, by taking x =v, that P,(F)(v)=0. This shows that every point
of intersection of He(F) and F is an inflection point of F (ie., points xe F
for which there exists a line that intersects F with multiplicity = 3). Conver-
sely, every inflection point of F lies on the Hessian.

(3.3) LEMMA. Let Fe S"(V*), veV, and let F be the full polarization
of F. The following properties are equivalent:

(1) v is a singular point of F,
(1) veP,F)forall aeV,
(i) Fla,v,..,v)=0 for all ae V;
(iv) P. (F)=0;
(v) v is a singular point of P.(F).

Proof. v is a singular point of F if and only if all partials of F vanish
at v. The latter is equivalent to (ii) and (iii). Obviously (iii) is equivalent
to (iv). Applying (i) <> (iii) to P (F)x)= K, x, .., x), we obtain that

veSing(P(F)) <« F(v,a,v,...,v)=Fla,v,v,..,0)=0 forall aeV.

This proves the equivalence of (iii) and (v).

(3.4) PROPOSITION. Let ve V. The following properties are equivalent:

(i) He(F)(v)=0;
(i1) there exists ae V, a#0, such that P.. :,(F)=0;
(ii1) the polar quadric P, (F) is singular;
(iv) there exists a€ P such that the hypersurface P (F) has a singular
point at v;
(V) there exists ae V, a#0, such that H,H " 2 js polar to F,
(vi) P, :F) has a non-zero apolar of class 1 (= H, for some ac V).

Proof. Let F be the full polarization of F. Then for all a, xe V
H(v)a, x)=F(a, x, v, .., v) = P +(F)(a, X)= P 2 (F)(x).

Clearly (i) holds if and only if there exists ae V such that H(v)(a, x)=0
for all xe V. The equivalence of (i), (i), and (iii) follows from this
immediately.
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By (3.3), P (F) has a singular point at v if and only if F(a, x, 1, ..., v) for
all xe V. This yields (i) < (iv). Finally, by (1.7), for any xe V

Po (F)a, x)=0< (H,H  P.AF)) =0 (H,H. H, , F>=0.

This shows the equivalence of (v), (vi), and (i).

(3.5) Let FeS"(V*), and set
X(F)={(v,a)eP"xP" P2 (F)=0}.

Its image under the first projection is equal to the Hessian of F. It is either
empty, or a hypersurface in P’, or the whole space. The first case may
happen only if »=2; this is the only case when He(F) is a constant
polynomial. The image of X under the second projection is called the
Steinerian of F. We will denote it by St(F). By (3.3):

St(F)={aeP": P (F) is singular }.
Moreover, for any a € St(F):

Sing(P,(F)) = {ve Hess(F): P,.-» ,(F)=0}.

One can consider the family of polars

P={(a,x)eP xP:xeP,(F)}—P, {a, x}—>a,

then interpret the Steinerian as the discriminant locus of this family, that
is, the locus of points parametrizing singular fibres. Since the discriminant
of any family of hypersurfaces is either empty, or a hypersurface in the base
of the family, or the whole base, we obtain that St(F) is either empty (this
may happen only if He(F)= J, ie., if n=2), or a hypersurface in P’, or
the whole space.

By the above, we can view X(F) as the correspondence between the
Hessian He(F) and the Steinerian S¢(F):

X(F)={(v, a)e He(F) x St(F) : ve Sing(P,(F)}.

We wil call it the Steiner correspondence.
By Proposition (3.4), for given ve He(F)

Py '(v)={aeP":veSing(P (F))}
={aeP": H(v)(a, x)forall xe V} = P,

where ¢(v) = corank(H(v)) — 1.
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Similarly, for given a € St(F)
p, '(a)=Sing(P (F)).

For generic F we expect that ¢(v)=0 for a Zariski open subset of He(F).
This allows one to define the Steiner rational map:

8§y He —— St(F), v+ a such that v e Sing(P,,(F)).

If general polar P (F) has only one singular point, the Steiner map is
birational, and its inverse is given by the formula a+ Sing(P (F)).

The next result is a more precise statement about the locus of the set of
definition of the Steiner map.

(3.6) LEMMA. Assume He(F)#0, and let v be a non-singular point of
He(F). Then

corank H(v)=1.
Proof. Let
H(F)y={(0,v)eP xP": Hv) (v, v')= Fo', e, e, ) =0}.
Then the first projection
p: H(F)-Pr

is a quadric bundle over the open subset U of points ve P’ such that
H(v)#0 (see [Be]). This means that its generic fibre is isomorphic to a
non-singular quadric (in an appropriate embedding into a projective
bundle over P"; in our case it is the trivial bundle). The image of the map

LP S [SUVH)L vop, (),

intersects the discriminant hypersurface %, of singular quadrics trans-
versally at the point f(v). In particular, f(v) is a non-singular point of &,.
It 1s known (loc. cit., p. 322) that

Sing(%,) = {Q € |§*(V'*)| : corank @ > 1}.

This proves the assertion.

(3.7) PROPOSITION.  Assume r = 2. The following properties are equivalent:
(i) Su(F)=P?%

(ii) F has a singular point of multiplicity 23, or F=G? where G=0
is non-singular.
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Proof. The implication (ii) = (i) can be checked by direct computation.
Let us prove the converse. By Bertini’s theorem, the general member of a
linear system of hypersurfaces has singular points in the base locus of the
system. We apply it to the linear system #,. of polars of F. Its base points
are singular points of F. If %, has a fixed irreducible component G, then it
is an irreducible multiple component of F. If it is singular, or its multi-
plicity is greater than 2, of F has another irreducible component, F has a
singular point of multiplicity >3. Otherwise F=G?, where G=0 is non-
singular. Assume now that the polar linear system has no fixed com-
ponents. Then there exists a singular point of F where all polars of F are
singular. This implies that the adjoint ideal of the local ring of F at this
point is generated by polynomials of multiplicity >2. This easily implies
that the multiplicity of this point > 2.

(3.8) PROPOSITION, Assume r=2 and F is of degree <4 with He(F)=0.
Then F is the union of concurrent lines.

Proof. Uf F=G’ where G is smooth conic, then the singularities of
P,(F) lie in G, so He(F)+#0. Assume this is not the case. Since He(F)=0
every smooth point of F is an inflection point. As is well known, this
happens only if every irreducible component of F with multiplicity 1 is a
line (cf. [Kl, p.174]). This implies that F=/,.../,, where /, are linear
forms. Suppose F has multiple components. They are concurrent lines
unless F=/21,1,. One easily shows that the Hessian of x2x,x; is not zero,
so the proposition is true for non-reduced F. Now suppose F is reduced. If
the assertion is false for F, we can reduce it to the form x,x,x, if n=3, or
to the form x,x,x,(av,+ bx, +cx,) if n=4. In the first case the Hessian
is not zero. In the second case the explicit computation of the Hessian
shows that its equation has the coefficients 1a*, 1h°, and 3c¢* at the
monomials x{x,x,, x,X]x,, and x,x,x3, respectively. This is absurd.

(3.9) PrROPOSITION.  The following conditions are equivalent:

(1)  The dimension of the linear system of polars P, (F), ae P’, is less
than r;

(it) F is a cone.

Proof. (1) implies that all partial derivatives of F are linearly dependent.
After a change of coordinates, we my assume that ¢F/dx,=0. This implies
that the equation of F is independent of x,; hence F is a cone. Conversely,
if (ii) holds, then we may assume that F is independent of x,; hence
OF/dx,=0.
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4. PoLAR POLYHEDRA

In this section we discuss some applications of the theory of apolarity to
the problem of representing a homogeneous polynomial as a sum of powers
of linear forms.

(4.1) DEFINITION. We say that s hyperplanes H,, .., H, in P” form a
polar s-polvhedron of Fe S"(V*) if

F=I"4.. +1",

where H, are given by equations /;,=0, and //, ..., /7 are linearly independent
in the space S"(V'*).

(4.1.1} This can be interpreted geometrically as follows. Let

v, P | SV )| = PN

be the Veronese map that sends a hyperplane H to the hypersurface H”, or,
in coordinates:

n mY i
v, (g Xp+ ..o, )= (2Xo+ ... +o,x,)' =) LSS

We can view F as a point in the space |S"(V*)|, and each H/ = {I? =0}
as a point in the Veronese variety V, ,=v,(P") in |S"(V*)|. Then H,. .., H,
form a polar s-polyhedron of F if and only if F lies on the secant (s~ 1)-
plane of V, , containing the points HY, .., H".

Obviously, the “right definition™ of a polar polyhedron must include the
degenerate case, when the (s — 1)-secant is tangent to the Veronese variety.
We sketch this very briefly. The exact definitions require introducing
some technical constructions that are out of scope of the present paper
(see [Sch]).

Let (PV")) be the sth symmetric product of the space |S*(V*)|, let U
be its open subspace corresponding to linear independent s-tuples, and let

J U= Gls— 1, PY™)

be the map to the Grassmannian that sends an s-tuple to the projective
{s — 1)-subspace spanned by it. Let f be the restriction of f* to (V, )" n U,
and let (V,_,)™ be the closure of the graph of fin (V, ,)**' x G(s — 1, P¥™),
The first projection defines a birational map

PV, )0 = (V, ) = (P,



POLAR COVARIANTS 233

which is an isomorphism over (¥, ,)*’ n U. The second projection
pZ: (Vr,n)(x - G(S— 1’ IPNM))

is equal to f when restricted to (V, )’ ~ U. The pull-back p¥(P(%)) of
the projectivized universal subbundle P(%) over the Grasmannian defines
a projective bundle of rank s— 1,

n: Sec, , = (V, )%

its fibre over a point of (¥, )’ n U is the (s — 1)-secant spanned by it. Let
ry:P(F)— PN,
ry: P(£L)—G(s— 1, PV

be the canonical projections of P(%). Recall that the fibre of r; '(F) is
mapped isomorphically by r, onto the variety of all (s — [)-planes in P~
containing F. They define the two compositions:

©,:Sec, , = P(F)—= P,
@,:Sec, ,—> P(FL) - G(s— 1, P¥™).

The fibre ¢, '(F) is mapped under n to a closed subvariety X, (F) of
(V. ). Its intersection with U n (¥, ,)** is equal to the variety of polar
s-polyhedrons of F that we denote by X (F)°. Thus we may call the points
in the complement X (F)— X (F)° degenerate polar s-polyhedra of F.

Under p, the variety X (F) is mapped to the subvariety Y (F) of the
Grassmann variety. The restriction of this map to X, (F)" assigns to any
polar s-polyhedron the (s — 1)-secant plane spanned by it.

{4.1.2) ExampLE (cf. [ACGH, p. 136]). Assume r=1, i.e., we deal with
binary forms of degree n. In this case the Veronese variety V| , is a rational
normal curve R, of degree n in P”. The symmetric product (V, )" is
isomorphic to the projective space |S*(V*)| = | (s)| = P*. Its points can
be viewed as effective divisors D=3 n,x, of degree s on R,. The open sub-
set Un (V, )¢ is equal to the open Zariski subset parametrizing reduced
divisors 3" x, on R,. The map (¥, ,)*'nU— G(s— 1, P") can be extended
to the whole (¥, )" as follows. If D=7} n;x,, where x,, .., x, are distinct,
then /(D) is the (s — 1)-plane in P” spanned by osculating (n, — 1)-planes
of the points x,. This easily implies that (V, ,)® = (¥, ,)** in this case. By
explicit computation of osculating spaces of a rational normal curve, it is
easy to see that

f(D)y=span {I7 " o, ., 17 "1,
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where x; corresponds to the powers /! of linear forms, and ¢, are binary
forms of degree n,+ 1. So, a polar s-polyhedron (resp. degenerate polar
s-polyhedron) of Fis a reduced divisor (resp. non-reduced) of degree s such
that Fef(D).

(4.2) DEFINITION. A set of points £ = {a,, .., a; } in P’ is said to be in
general position with respect to hypersurfaces of degree # if the projective
dimension of the linear system |C..(n)— 2| of hypersurfaces passing
through X2 is of dimension N(n)—k.

(4.2.1) LeMMA. Let X=la,, ..,a,} bhe a finite set of points in P
The following properties are equivalent:

(1) X is in general position with respect to hypersurfaces of degree n,

(i)  the enveloping hypersurfaces H we =1, .., k, are linearly independent.

Proof. We know that ae F if and only if (H", F) =0. Thus the space

of hypersurfaces passing through X is dual to the space of enveloping

hypersurfaces spanned by ﬁjj‘, i=1, .., k. This simple remark proves the
assertion.

We shall give some useful conditions for powers /7, ..., /” of linear forms
to be linearly independent.

(4.2.2) LeMMA. Suppose no k<r+1 of the linear forms I,, .., 1 e V*
are linearly dependent. Then [, .. 1" are linearly independent whenever
s<ar+1.

Proof. Suppose
F=a\lV+.. . +all=0,
where all a,#0. If s<r+ 1, we should show that this is impossible for all
a2 1. Since /,, ..., [, are linearly independent, we can find a point at which
all /,, except one /;, vanish. Plugging this point into the left-hand side, we

get that a,=0. So, the assertion is true for s <r+ 1. Now we use induction
on s. Suppose s >r+ 1. Let x be the point with

I, (x)=...=1(x)=0.
Then
P(Fy=a l,(x)I" "+...+a, I, (x)I" =0

Since s—r<(n—1)r+1, by the induction hypothesis /,(x)=0 for each
i=1,..,s—r. Thus each set of r+1 linear forms /; has a common zero;
hence it is linearly dependent. This contradicts the assumption.
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(4.2.3) LeMMA. Suppose [, .., I, are s linear forms no two of which are
proportional. Then 17§, ..., 1% are linearly independent whenever s<n+ 1.

Proof. The same argument as above that uses induction on s.

(4.2.4) LEMMA. Assume r=2 and n=2. Let I, ..., [, be linear forms no
two of which are proportional, and let H,, ..., H, be the corresponding lines.
Assume s<2n+2. Then 1, .., 1" fail to be linearly independent if and only
if szn+2 and either n+2 of the lines H, are concurrent or s=2n+ 2 and
all H, lie on an enveloping conic.

Proof. By Lemma (4.2.1), /], ..., [ are linearly independent if an only if
H,, .., H, impose independent conditions on |@s:(n)|. This easily implies
the sufficiency. One immediately verifies the necessity in the case n =2 and,
by the preceding lemma, in the case s <n+ I. Now suppose that no n+ 2
of the lines H; are concurrent, and neither s =2n+ 2 nor H, lic on a conic.
We prove the lemma by induction on n. Let n >3 and

F=a/l1+...+a,l’=0,

where all a,#0 (i.e., we take a linear combination with minimal number of
summands). Let & be the maximal number of concurrent lines. It does no
harm to assume that /., ., ,(x)=...=/(x)=0 for some point x. As in the
proof of (4.2.2):

P(F)y=a ()7 "+...+a, 1, .(x)" =0

Since k=2 we have s—k<2(n—1)+2. Furthermore k<n+1 and
s—k>1 by assumption and by (4.23). If /7' ., 17"} are linearly
independent then /,(x) = 0 for all 1 < i< s which contradicts the assumption
that no n+ 2 of the lines H, are concurrent. So, by induction, s—k 2n+ |
and either n+1 of the lines H,,..,H, , are concurrent or
s—k=2(n—1Y+2=2nand all H,, .., H,, lic on an envelopping conic @.

Suppose the former case occurs. Then k=n+1 and s=2n+2

since otherwise s—k<(n—1)+1 and /] ', ., 17" would be linearly
independent by (4.2.3). Thus s—k<n+1 and H,, .., H, lic on a reducible
enveloping conic (H,,.., H,,, lic on one of its components and the

remaining ones on the other component). If the second case occurs we
polarize F with respect to & to obtain

Py(F)=a, |¢(I,\u l)lf,i]z+ax¢(l.\-)[; 2:0-

By hypothesis, at least one of @(/, ) or ®(/,) is not zero. Therefore either
a, , or a, is zero. This contradicts our assumption that all a,# 0.
We leave it to the reader to state the dual assertions of the previous



236 DOLGACHEV AND KANEV

lemmas that give some conditions for a set of points to be in general
position with respect to hypersurfaces of degree n.

(4.2.5) ExaMPLES. Any set of s distinct points a,, .., a, in P' is always
in general position. The linear system |Cp(n)—a,—...—a, consists of
divisors D +a, +... +a,, where deg(D)=#n—s, and has dimension n—s.
A set X in P’ is in general position with respect to hyperplanes if 2 spans
a (k—1)-plane in P". Three points in P? are always in general position
with respect to curves of any degree n>>2 (4.2.3). Four points in P? are in
general position with respect to conics if and only if they are not collinear
(4.2.4). Eight points in P? are in general position with respect to cubics if
and only they are not on a conic (4.2.4). If two cubics intersect trans-
versally at 9 points, then the set of these points is not in general position
with respect to cubics.

(4.3) PROPOSITION. Let Y= {a,,.,a,}<P’, FeS"(V*). Then £ is a
polar s-polyhedron of F iff

(i) Hi. ... H are linearly independent forms of degree n;
(i) |Opln)—ot, — ... —a,| = AP (F);
(i) (|Cp(n)—X'| & AP (F) for any proper subset X' of X.

Proof. Let us first prove the sufficiency. Assume (i) and (ii) hold. Then
dim |Op (n) — o, —... — | = N(n) —s;

hence the dimension of the linear system of hypersurfaces of degree n
apolar to {Cy(n)—a, —...—a i1s equal to s. Since H) belong to this
system (see (2.2)), and are linearly independent,

F=Y A"

i=1

for some 4,e C, where H,;:/;=0. If some 4,=0, then F is apolar to any
e |Cs(n)—2'| for some proper subset X' of X which contradicts (iii).
Replacing /; by /, \’/Z, we obtain that 2 is a polar s-polyhedron of F.

Conversely, let 2 be a polar s-polyhedron of F. By Example (2.2) for any
De|lp(m)y—a,—...~a), and @' €S" (V) we have (PP’ H} ) =0.
This gives (PP’, F> =0; hence F is apolar to @. This checks (ii). Property
(i) holds by definition. If (iii) does not hold for some proper subset 2 of
2, then by the first part of the proof 1" is a polar s'-polyhedron of F. This
obviously contradicts (i).

(4.4) LEMMA. Let H,, .., H, be a polar s-polyhedron of F. Assume
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D e |S™(V)| passes through the first k <s hyperplanes and does not pass
through any of the remaining hyperplanes (considered as points of P).
Furthermore, suppose that 1}.7,..,11"™ are linearly independent. Then
{H,,\,. H} is a polar (s —k)-polyhedron of the polar P4(F) of F with
respect to P.

Proof. Let
F=IT+...+1"
Then
Po(Fy=Po(l7)+ - +PolU7) =P M T+ +@U)T ™)

Clearly this proves the assertion.

(4.5) ExaMPLE. Assume r= 1, i.e.,, we deal with binary forms of degree
n. Let H,, .., H  be a polar s-polyhedron (better, an s-tuple) of F. Then any
envelope @€ |S"(V)| passing through H,, .., H, is represented in the form
H,...H. @' Thus Fis apolar to such & if and only if (H,... H.®', F)>=0
for any @' |S"*(V)|, ie, @"=H, ... H, is apolar to F. Conversely, if
@" ¢ |S°(V)| is apolar to F, and @” has only simple roots, then the set of
its roots is a polar s-tuple of F. Since AP (F)+# {0} for s> n/2, we obtain
that a general F admits polar s-tuples for any s>n/2 (and, of course,
s<n+1). If n=2k, Fadmits a polar k-tuple if and only if the catalecticant
of F vanishes. It follows from the construction that the variety X (F) of
polar s-tuples (including degenerate ones) is isomorphic to the projective
space P(AP,(F)). For general F its dimension is equal to 2s—n—1. In
particular, we see that a general Fe|S?**'(V*)| admits a unique polar
(k + 1)-tuple. It corresponds to the zeroes of the unique apolar of F of class
k + 1 (see [Ku-Ro, El] for details).

In the next two sections we shall study the problem of representation of
ternary forms of degree <4 as a sum of powers of linear forms. We refer
to [Ri, Di-St, Di] for some results in the case of ternary forms of higher
degree.

5. QuaDRICs AND CUBICS
Here we shall study all the previous notions in the case n < 3.
(5.1) The polarization of a quadric Q € S*(¥*) is the associated bilinear
form

bpeSym, (V)= S*(V)*,

607-98°2-7
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which can be defined by the formula:
bola, b)=3(Q(a+b)— Q(a)— Q(b)).
The polar P,(Q) is the linear form:
b bpla, b).

In coordinates,

Q(x)=) h;x;x;,

where ||4,]| is a symmetric scalar matrix equal to H(v) for any ve V, and

P.(Q) =Z a,a;x;,
He(Q) =discr(Q) = |A,|.

The Hessian of Q is the whole space if Q is degenerate, and empty
otherwise. The Steinerian of Q is the singular locus of Q (note that we
consider the zero linear form as a singular linear form!).

The catalecticant of a quadratic polynomial is equal to its discriminant.
The apolar linear envelopes He P” of a degenerate quadric Q correspond
to points ae P’ contained in the singular locus of Q.

(5.2) From now on in this section we assume that n=3. Let
FeS}V*)

be a cubic form. Its first polar P,(F) is a quadratic form, and its
second mixed polar form P, ,(F) is a linear form. The total polarization
F=P,, (F)is a trilinear symmetric form

FeSym, (V)= S (V)*,
that can be given by the formula:
Fla,b,c)=i[Fla+b+c)—Fla+b)— Fla+c)
—F(b+c)+ Fla)+ F(b) + F(c)].

In coordinates, write F in the form

F= Z (iajs k)Jhijkxixjka

ijok

where h,; is symmetric in the subscripts i, j, ke {0, .., r}, and (i j, k),
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takes the value 1 if all indices are equal, 3 if oniy two indices are equal, and
6 if all indices are distinct. Then

P(F)=Y hjax;x,
P, o(F)= Z hijkaibjxk9

Pa. b,r(F)=z h,j,(a,-bjck.

(5.2.1) The Hessian He(F) of a cubic hypersurface is equal to its
Steinerian St(F). This immediately follows from Proposition (3.4). The
Steiner correspondence

X(F)={(a,b)eP" xP": P, ,(F)=0}
is symmetric. In other words,
b e Sing(P,(F))<>aeSing(P,(F)).

By Lemma (3.3), the Steiner correspondence X(F) has no united points
(ie., points on the diagonal) if and only if F is a non-singular hypersurface.

(5.3) The set of lines <{a, b), where ae Sing(P,(F)) is an (r — 1)-dimen-
sional subvariety of the Grassmanian variety G(2,r+ 1). It is called the
Caylerian variety of F. One can view this variety as the quotient of the
Hessian by the involution s.. Each such a line can be characterized by the
condition that the linear system of polar quadrics P,(F), a€ P’, containing
this line is of codimension >2 (instead of codimension 3 for a general line).
Indeed, P, ,(F)=0 if and ony if P, ,(P.(F))=0 for all xeP"; hence
P (F)a)=P (F)(b)=0 implies that P, (F)}c)=0 for all ce {a,b). In
other words, if a polar quadric P (F) passes through the points a and b,
it contains the whole line {a, ). For every r-dimensional linear system of
L of quadrics in P the variety of lines satisfying this property is called the
Reye variety of L. For example, if r=3, and L is general enough, the Reye
variety is isomorphic to an Enriques surface (cf. [Co]).

(5.4) Assume r=2, i.e., Fis a cubic curve. Its Hessian is a cubic curve
or the whole plane. Applying (3.8) we find that the latter happens if and
only if Fis a cone, i.e., consists of three concurrent lines (some of them may
coincide).

(5.4.1) LEMMA. Assume P,(F)=1? is a double line. Then

(1) if H(a)#0, F is either a cone, or a cuspidal cubic, or F is
projectively isomorphic to the Fermat cubic x}+ x3 + x3=0;
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(1) if {a)=0, F is either a cuspidal cubic, or the union of a smooth
conic and its tangent line, or a cone with a double irreducible component.

Proof. (i) Changing coordinates we may assume that a=(1, 0, 0) and
/= x,. Then

P(F)=3"'0F/0xo=x}.

This implies that F—x}=G(x,, x,) is independent of x,. By further
coordinate change we may assume that one of the following cases occurs:

G=x}+x3, or x3x,, x?, or0

(since three points on a projective line do not have moduli). Hence

2 3 3 .3
F=x3+xi+x3, orxix,+xj,  orxg+xy, or x;,

i.e., the Fermat cubic, a cuspidal cubic, or a cone.

(ii) In this case, by changing coordinates, we may take a = (1, 0, 0),
/= x,. Therefore

P, (F)=3""'0F/0Fx,=x?,
and

F=3x,x1+G(x, x,),

where G is a homogeneous form of degree3, or 0. The point (1,0,0) is a
double point with the tangent cone equal to x;. Now the statement follows
from the known classification of cubic curves.

(5.4.2) PROPOSITION. Let F be a non-singular cubic curve not isomorphic
to the Fermat cubic x}+ x;+ x3=0. Then its Hessian is non-singular, and
the Steiner involution has no fixed points.

Proof. The first fact can be verified by direct computation after
reducing the cubic to its Weierstrass form, or better, to its Hesse form

F=x}+4+ x4+ x5+ 6Axyx,x;=0
(see [We, p.399]). Here the cubic is non-singular if and only if 84% # —1,

and is isomorphic to the Fermat cubic if and only if A* # 4. Computing the
Hessian, we easily find

He(F)= —A(x)+ x3+ x3)+ (1 +24%) xox,x, =0,
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which is always non-singular, unless A= 4. The second assertion follows
from Lemma(3.3).

(5.4.3) By explicit computation, it is easy to verify directly the following
facts. Assume F is irreducible but singular. Then its Steiner map is defined
everywhere if it is a nodal curve, and is not defined at the cusp point, if it
is a cuspidal curve. The Hessian is a nodal cubic curve in the first case, and
the union of a line /, and a double line /3 in the cuspidal case. The line
1, joins the cusp and the unique non-singular inflection point. The line /,
is the cuspidal tangent. The polar of the cuspidal cubic with respect to the
cusp is /3. The polar of the cubic with respect to the point of intersection
of the inflectional tangent with /, is equal to /7.

(5.44) Assume F is non-singular, and is not isomorphic to the Fermat
cubic. Then its Hessian is a non-singular cubic C together with a fixed-
point-free Steinerian involution s.. As is well known, the latter is defined
by a 2-torison pomt 5 € Pic(C). By fixing a group law on C, this involution
is a translation ¢, by a non-trivial point of order 2 corresponding to .
Thus for any point ae C the polar P,(F) is the union of two lines inter-
secting at the point b=, (a)€ C. The line {a, b is a Reye line (5.3); hence
it is a component of a singular conic P (F) for some ce C. One can show
that ¢ is the intersection point of the tangents of C at the points a and b,
respectively. The singular point of P (F) is the third point of intersection
of (a,b> and C.

(5.5) Let W be a linear space of dimension k + 1 and Ne V* ® SH(W*),
One can view N as a linear map N: V — S%(W*); the image of each point
aeV is a quadric N(a) € S*(W*). Abusing the notation we shall denote the
projectivization of N by the same letter and call it an r-dimensional hyper-
net of quadrics in P(W). If N is injective this defines an r-dimensional
linear subsystem of |(,.,(2)]. Let

X(N)={(a, b)e P" x P* : be Sing(N(a))}.

We call X(N) the Steiner correspondence of N. The hypernet N is given by
a symmetric matrix 4 of size k + 1 whose entries are linear forms on V. The
Hessian subscheme H(N) of P’ is defined by the equation det(A4)(v)=0.
We assume that H(N)#P’, and H(N} is reduced. Then H(N) is equal to
the image of X(N) under the first projection p,: X(N)— P". We define the
Steinerian variety S(N)cP* as the image of X(N) under the second
projection p,: X(N}— P* . Note that this terminology is opposite to the
one used for polars, but agrees with it if deg(F)=3. We refer to [B, Ty]
for the theory of linear systems of quadrics. If a is a non-singular point of
H(N), the quadric N(a) is of corank 1 (see (3.6)). This allows one to define
the Steiner map s,: H(N)™ — S(N) on the set of non-singular points of
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H(N); it sends a point a to the vertex of the quadric N(a). If ae H(N)™ is
a nonsingular point of H(N), the coordinates of the vertex of the quadric
N(a) can be given by the complementary minors of any column of 4. One
can deduce from this that the Steiner map is given by a linear system
L c | D|, where the linear span of L + L in |2D] is cut out by a linear system
of adjoints of H(N) of order k corresponding to k-minors of the matrix 4
[Be, p. 367].

Assume now that W=V. We want to characterize linear systems of
quadrics N: V' — S*(V'*) which arise from polars P,(F) of a cubic hyper-

surface.

(5.5.1) PROPOSITION. Let Ne V*® S*(V*) be an r-dimensional linear
system of quadrics in P(V)=P" with reduced Hessian hypersurface and let
NeV*®Sym,(V) induce N. Let s: HINY® = P(V) be the Steiner map
defined above. Then N is equal to the linear system of polars of a cubic
hypersurface F if and only if the equality

N(w, a, s(a))=0 (*)

holds for any ae H(N)Y* and any we V. Moreover F is non-singular if and
only if the correspondence X(N) is without united points.

Proof. 1f N=F, where F is a cubic form, then for any ae H(N)™ we
have by the symmetry of F and by the definition of the Steiner map

F(w, a, s(a)) = F'(a, s(a), w)= ]V(a, s(a), w)=0.

Now suppose that condition (*) holds. It suffices to prove that

N(p,q,r)=Nl(q, p,r) (%)

for arbitrary r and for every sufficiently general p,geV. Let W=
{p,qy<V and let £ =P(W). We can suppose that the line / intersects
H(N) transversally in r+ 1 points pg, ..., p,. It is shown in [Be, p. 368],
that the points s(pg), ..., s(p,) are linearly independent. Let us choose
coordinates xq, ..., x, such that x,(s(p,;)) =0 for i # . Then (see loc. cit.) by
restriction N induces a pencil of quadrics N,e W*® S*(V*) which has
diagonal form

No(u, x)=Y a,(u)x},
i=0

where o, are non-zero linear forms vanishing at p,. Abusing the notation let
us denote by {p,}, {s(p,)} some non-zero elements of V' that generate the
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corresponding lines in P(}) and such that {s(p,)} forms a dual basis to
{x,;}. Let

r

No(u, x, y)= Y o w)x, y;

i=0

be the polarization of N, with respect to x. Both sides of (#*) are linear in
r, so it suffices to verify it for any r = s(p;). Let §; be the restriction of the
coordinate x, to W. The formula for N, shows that N,(u, v, s(p,)) is
symmetric with respect to u, ve W if and only if §, is proportional to «,. So
we have to prove that x,(p;)=0 or, equivalently, that for every i the
hyperplane {s(p,), ..., s(p;_ ), s(p;+ ), - s(p,))> contains p,. We have for
every ue W

No(u, pis s(pi)) = a(w) x.(p)).

The left-hand side equals 0 by hypothesis and a,(#) # 0 for general ue W.
Thus x,(p;) =0. Finally, we use {3.3)(v) to verify that F is non-singular if
and only if X(N) is without united points.

(5.6) From now on we assume that r > 2 and that N is general enough
so that H(N) is a normal hypersurface. We assume also that s, (H(N)™) is
not contained in a quadric in P*. This condition is satisfied in the case r = 2
[Be, Ty]. By the above remark about adjoints of H(N), we have an
injective map:

sk ISHWH*)| - |SK(V ).
We denote by p, one of its linear liftings:
pu: SHW*) - SK(V*),
(5.6.1) LEMMA. The tensor

T=(1®pn)IN)eV*® S“(V*)

defines the linear system of polars of the Hessian H of N. Eguivalently,
TeSym,, ,(V)c V*@®S¥(V*), and r,, (T)= H. Any two linear systems
of quadrics satisfying the conditions imposed above, and which have the same
Hessian and the same Steiner map, coincide.

Proof. The proof is a straightforward generalization of the case r=2
considered in [Be, Ty]. Let xe H™ be a non-singular point of H. Then
the points of the hyperplane tangent to H at x correspond to the quadrics
from N that contain s,(x) [Be, p.364]. This immediately implies that



244 DOLGACHEV AND KANEV

sn{x) is not a base point, and also that for a general point pe P’ such that
sy(x)e N(p), the line {p, x) is tangent to H at x. Thus, by (1.3)

sy ' (N(p)nH" =P,(H)yn H™.

Now, by the argument from above we find that the base locus of the linear
system s¥%(N)c|O,(k)| is contained in Sing(H(N)); therefore it has no
fixed components since H(N) is normal. So, the general member of s}(N)
on H(N) is reduced by Bertini’s theorem. We have

SHN(p) =P, (H)- H

and therefore

sv(N(p))=P,(H),

since H is normal of degree £ + 1. The uniqueness property follows from
the injectivity of (1® py).

(5.6.2) Remark. In the case r=2 the linear system s¥% |C.(1)] is
complete and equals |L +3,|, where L is the hyperplane section class of
H(N) and &, is an even non-vanishing theta characteristic of H(N) (ie.,
289y=K, and |8,|=). The pair (H(N), $5) is called the Hessian
invariant of N, and it determines N uniquely up to PGL(W)-isomorphism.
Conversely, given:

(i) a non-singular plane curve H < P? of degree k + 1;
(i1) a non-vanishing even theta characteristic 9;
(iii) a map s: H —» P*=P* = P(W) with s* |C.(1})| =L+ 9|,

one obtains an isomorphism p=s*: (W*)— §%(V), and defines the net
N=(1®p) 'T, where T is the polar net of H. Then the Hessian hyper-
surface and the Steiner map of N coincide with H and s, respectively (see
[Be, Ty]).

(5.6.3) Remark. In view of (5.6.1) one could ask whether the conditions
that the Steiner map transforms H(N )™ to H(N) and is a birational involu-
tion are sufficient for a linear system of quadrics Ne F*® S*(V'*) with
normal Hessian to be the system of polars of a cubic hypersurface. This is
not true in general as the following example shows. Consider a cubic
hypersurface F has a projective involution ¢ and, moreover, the Steiner
map s: H(F)™ — H(F) which is a birational involution. Define a linear
system of quadrics by

N(x, y)=F(o(x), y, y)=0.
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One easily shows that H(N)= H(F) and the Steiner map of N is
s;=06:5=s00. Now, one has N(w, x, s(x))=0 for every wel, so if N
were symmetric one would have N(x, o(s,(x)), w)=0 for every we V' and
every xe H(N)™. Thus s, =g -5, which is impossible.

(5.7) Let us return to plane cubic curves (r =2). Denote by M the open
subset of |S*(V*)| that consists of non-singular cubic curves, and let
M'< M be the complement to the subset of cubics that are projectively
isomorphic to the Fermat cubic. Let A — M be the étale covering of degree
3 parametrizing the pairs (C, ), where C e M and # is a non-zero 2-torsion
class in Jac(C). We have constructed a map

M — M,

that sends a cubic F to the Hessian invariant (Hess(F), n,) of its net of
polar conics.

(5.7.1) THEOREM. The map h: M’ — M is an isomorphism.

Proof. Let h(F)=(C,n). By (5.4.4), the Steiner map s,: C— C of the
net of polars of F equals #,. for some 2-torsion point n'. We claim that
7' =n.In fact, let L=x,+x,+ x3€|C(1)]. Then s¥(L)e|L + p| by defini-
tion, and we obtain

SE(L)=sp(x)) +5p(0x2) + 50(x3)
= tn'(xl ) + tﬂ'(-\.?.) + tr]'('\‘l) ~ L + ,7,'

Therefore 7 =1n". By Lemma (5.6.1) this shows that #: M’ — M is injective.
To prove the theorem it suffices to construct the inverse map A .
Let (C,n)e M. The translation map 1,:C—>C, c¢—|c+n(, defines an
isomorphism:

15 G2 = |0p(2)] = 1€ (2)] = [Cra(2)).
Indeed, if D=x,+...+ x, is a divisor on C cut out by a unique conic, then
x4 xg)={x )+ .+ (X)) ~x+ ...+ X

is also cut out by a unique conic. Let p, be a lift of ¢} to a linear
isomorphism:

Py SHV*) = SHV*).
Let Te V*® S*(V*) be the first polarization of the equation of C, and let

N=(1®p T)eV*@S*(V*).

607:982-8
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We shall show now that the tensor N defines a net of conics with Hessian
C and Steiner map ¢, ; furthermore it coincides with the net of polars of a
unique cubic curve F. We define the inverse map 4 ' so that it sends (C, 1)
to F. Following [Be, pp.374-375], let us consider p, as an element of
SAV*)® S*(V). It defines a quadratic system of conics in P(}V'*). Then as
shown in /oc. cit. the dual system of conics is determined by a product of
N,e V*® 8*(V*) and a power of the cubic form that vanishes on C.
The net of conics N| has Hessian equal to C and the Steiner map is 1,.
By Lemma(5.6.1) we conclude that N=N,. Now let us show that
Ne V®Sym,(V) is symmetric. Indeed, by the proof of Proposition (5.5.1)
one has to verify that for every line 7 that intersects transversally C in
P, P2, and p, the points ¢,(p)), ¢,(p:), and p, are collinear. This holds
since

L(p)+t,(p)+ps~pr+tn+pa+n+pi~pi+p,+piell(1)].

(5.7.2) COROLLARY. The variety M of plane non-singular cubics together
with an even theta characteristic (= a non-trivial 2-torsion divisor class) is
rational.

(5.7.3) Remark. The isomorphism M’'— M is PGL(V)-invariant. It
descends to a birational isomorphism of the moduli spaces of elliptic curves
.#, and the moduli space ‘R, of pairs (£, n), where E is an elliptic curve
and # is a 2-torsion point. Both of these spaces are rational curves (the
modular curves H/I" and H/I',(3), respectively), so the existence of such an
isomorphism is not surprising. However, our isomorphism is canonical.
More explicitly, if we employ the Hesse form

Xy x]+ X34+ 6Av,x,x,=0,

for a representative of an isomorphism class of an elliptic curve F, then, as
we noticed already in (5.4.2), He(F) is given by the equation:

—2(xg+ X7+ XD+ (1L +247)xx, X, =0.

Thus the three cubic curves F; which define the three nets of conics with the
Hessian equal to F are

Il

Fiix3+ x4+ x5+ 67,x,x, 5, =0, i=1,2, 3,
where 7, is one of the three roots of the equation:
29+ 672+ 1=0.

(5.8) We will need more facts about the polar system of conics of the
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non-singular cubic F projectively isomorphic to the Fermat cubic. It is
clear that F can be written in the form

Fll+D+13=0, (%)

where /;=0 are the equations of three non-concurrent lines H,. The
Hessian of F is the union of these three lines. For every point ae H, the
polar conic P {F) is the irreducible conic given by the equation:

1 (@)l +1,(a)l3=0.

It becomes the double line H3 if ae Hyn H,. The Steiner map sends each
line H, to the opposite vertex H,~ H,. Conversely, let N be a net of conics
whose Hessian is a triangle of non-concurrent lines /,/,/; =0, and the conic
corresponding to any vertex is equal to the double opposite side. Then N
is equal to the polar net of a curve given by the sum of the cubes of some
linear forms defining the sides H;. Indeed, without loss of generality we
may assume that the Hessian is given by xyx,x,=0. Then

[N

1

N((1,0,0)) =Aox2,  N((0,1,0))=4i,x2,  N((0,0,1))=4,x
where 1, are some non-zero scalars. This implies that
N((ay, ay, a»)) = agAo X2+ a4y x5+ asiy X3
which is equal to the polar of the cubic
F=ioXi4 iy X34 ayxi=(xo Vo) + (%, Y2 +(x2 V4,7 =0
with respect to the point a = (4y, 4,, ;).

{5.9) We see that a non-singular cubic F whose Hessian is equal to a
given triangle /,/,/, =0 of non-concurrent lines H,, i=0, 1, 2, is determined
by three non-zero constants 4,, 4,, 4, such that its equation can be given
in the form:

dold 4+ 23 + 4,03 =0,

Let N, be the pencil of binary quadrics that assigns to every ae H,
the intersection H, - P,(F). Let us see that these three pencils determine
the coefficients /,, and hence determine uniquely the cubic curve F. For
example, the pencil on H, is given by

Qula) =i, 1\ (a) 2+ iyl (a)[2=0,  ae H,,

where /; denotes the restriction of the linear form /, to H,. So, it determines
uniquely the ratio d,,=4,/4,. Similarly the other two pencils determine
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uniquely the ratios &,,=4,/4, and &,, = A,/4,. Thus the three pencils
determine (4,, 4, 4,) uniquely up to a scalar factor. As we observed in
(5.8), the Steiner map of each N, interchanges the two vertices p and ¢ of
the triangle lying on H,. The lincar subsystem of |¢';:(2)| determined by N,
is reconstructed by this property by observing that the latter implies that
any non-singular member {r,, r,} is harmonically conjugate with respect
to {p, q}, ie., the cross-ratio of (r,, p, r,, g) equals — 1. Thus, given three
non-current lines H,:/,=0, {=0,1,2, and two pencils on H, and H,
whose Steiner map is as above, we define a pencil of quadrics on H, so
that 85,0,,0,0=1. Then there is a unique cubic F whose Hessian is
Hyu H, v H, and the given pencils on each H, coincide with the restriction
of the pencils {P,(F)},cn to H,.
We shall now study polar polyhedra of quadrics and cubics.

(5.10) Assume n=2. A quadratic form F of rank k admits a polar
k-polyhedron. This follows from the diagonalization process. Conversely, if
F admits a polar k-polyhedron with & <r+ 1, then its rank is at most &.

(5.11) Let us assume that n =r = 2. Since the dimension of the space of
conics is 5, every conic admits a polar 6-gon. Let F be a conic of rank k.
If k=1, F=H? ie., it admits a 1-polygon. Assume it admits an s-polygon
H,, .., H, s>1 Then AP,(F) consists of all enveloping conics vanishing
at H. Therefore

|€s2(2)—H,—...— H| = |Cp:(2)— H, —...— H.— H|.

This shows that the lines H,, .., H,, H are not in general position with
respect to forms of degree 2. Assume s<5S. Applying Lemma (4.2.4), we
find that either s=3 and H,, H,, H,, and H are concurrent, or s=15 and
H,, .., Hs;, H are on an envelopping conic. These cases do occur as the
following examples show:

2 1 2 22 .32
xg=3(xo+x P —x7+3(xg— x4

x(z) = %(xo +x, ):— %(xl +x,)°— %(~\'| - -\'2)2 + »"% + %(-’(0_ Xy ).

A conic F of rank 2 has polar s-polygons for any s = 2. Since all conics of
the same rank are projectively equivalent, it suffices to give examples of one
such polygon. It is obvious for s =4 and s = 3, by adding x3 (resp. 2x7) to
the first example above. Finally the case s =35 is treated by the following
example:

2 2

X+ xI=(x0+x,)7 +(xXo+ X)) + (X, +x,)7 — (xg+ X, + x,)7— x3.

(5.11.1) Assume now that F is a non-singular conic, Then F admits oc*
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polar triangles. This can be seen in different ways. For example, reducing
F to the form

F=xi+x1+x3=0,

we may apply any orthogonal transformation of variables x; — /,(x,, x,, x,)
to obtain

F=I3+13+1;3.

This easily implies that the variety X;(F) of all polar triangles of F ( a sub-
variety of the symmetric product of P?) is isomorphic to the coset space
PO(3)/H, where PO(3) is the projective orthogonal group in 3 variables,
and H is its finite subgroup of order 12 consisting of permutations and
diagonal matrices. It is easy to see that PQO(3) is isomorphic to the
3-dimensional group PGL(2) (via the Veronese map); in its natural action
on {(;(6)| the group H is identified with the stabilizer of the polynomial
XoX (x4 —x%). This shows that X5(F) is isomorphic to the orbit of this
polynomial. Note the closure of this orbit is smooth and is isomorphic to
a Fano 3-fold of index 2 of degree 5 in P® (see [Mu-Um}).

Since all triangles depend on six parameters, we may find a triangle
{a,, %5, a;} = P? such that neither pair of its sides are the sides of some
polar triangle of F. We shall also require that any pencil in the net
|Cp2(2) — oty — oy, — a3} has four distinct base points. This happens for a
general triangle. The linear system AP,(F)n |Cp:(2) —a, —a,— ;] is a
pencil of conics. Let x, be its fourth base point. By Proposition (4.3),
{2, 23,235, 4} is a polar quandrangle of F. Conversely, every polar
quandrangle of F is obtained in this way. From this construction we easily
derive that the variety X,(F)" of polar quadrangles is of dimension 6.
A similar argument shows that F admits o® polar pentagons. Finally,
F admits oo'? polar hexagons. In fact, take any set of six points
{a,, .., as} = P? not on a conic such that no proper subset of it is a polar
polygon for F. Then the envelopes HZ, form a basis in the space |("5:(2)];
hence we can write F as a linear combination with non-zero coeflicients of
the corresponding conics /7.

(5.11.2) Remark. There is another way to see the variety X, (F)" of
polar triangles of F. As we have remarked in (4.1.1), it is birationally
isomorphic to the variety of trisecant planes of the Veronese surface
V < |S2(V*)| containing F. Projecting from F to a fixed P*c |S*(F*)|, we
get that X(F,) is isomorphic to the variety of trisecant lines of a projected
Veronese surface. This is a three-dimensional subvariety of the Grassmann
variety G(2,5) of lines in P* In the Pliicker embedding G(2,5)cP® it
is of degree 5, and is obtained by cutting out G(2, 5} by three hyperplanes
(cf. [Se-Ro, Mu]).
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(5.12) One can confirm the computation of the dimensions of the
varieties X (F)° of polar s-gons of a non-singular conic by counting the
dimensions of the fibres of the morphisms ¢, : Sec, , — [(},2(2)]| constructed
in (5.1.1). We use that, in general,

dim Sec, ,=rm+s—1,

and that ¢, is dominant if r=n=2, and s> 3. Similar computations can
be made in the case of non-singular quadrics of arbitrary dimension.

(5.13) Let us consider the case of plane cubic curves. If F has a polar
1-gon, it is a triple line, if F has a polar 2-gon, it is the union of three
concurrent lines. Assume F has a polar triangle {H,, H,, H,} and does not
admit a polar 2-gon, i.e., is not the union of three concurrent lines. If
H,nH,n H;# &, then, after coordinate change, H,=x,, H,=x,, and
Hy= —x,—x,; hence F=x}+x}—(xy+x,)® is the union of three
concurrent lines. Thus H,, H,, and H, are linearly independent forms,
forcing F to be projectively isomorphic to the Fermat cubic.

(5.13.1) Let FC<|S*(V*)| be the locus of cubic. curves projectively
isomorphic to the Fermat cubic F. It is the orbit of F with respect to the
natural action of PGL(3) on |S’(V'*). The isotropy subgroup of the
Fermat cubic is a finite group. Thus FC is an open Zariski subset of a
hypersurface in |S*(¥*)|. The polynomial of minimal degree vanishing on
FC is the Aronhold invariant 1, of degree 4 of plane cubics given by (see
[Sa2, p. 191].

1, = abcj— (bede + cafg + abhi) — j(agi + bhe + cdf')
+ (afi® + ahg? + bdh? + bie* + cgd? + cef?)
— 4+ 272 (fh +id + eg) = 3j(dgh + efi) — ([*h* + i°d’ + °g%)
+ (ideg + egfh + fhid),
where we write the equation of F in the form:
Fy=axj+bx]+cx3+3dx]x, + 3exix, + 3fx,x]

+3gx2x, 4+ 3hxg x4+ 3ix, X3+ 6jx v, xs.

In symbolic form
Ly = (xfy)afd)(xyd ) f3).

(5.13.2) PrROPOSITION. Let F bhe a plane cubic curve. The following
properties are equivalent:
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(i) L(F)=0;

(1) FeFC, or F is a cuspidal cubic, or a cone, or the union of a conic
and a line intersecting the conic non-transversally;

(iii) one of the polar conics of F is a double line;

(iv) F admits a (possibly degenerate) polar s-polygon with s <3.

Proof. By (5.4) we have already (ii) <> (iii). One verifies directly that
the Fermat cubic satisfies (i). This implies that 1,(FC)= {0}. Since the
closure FC of the Fermat locus FC is a hypersurface in |S*(V*)|, it must
be an irreducible component of the quartic hypersurface 1, =0; hence it
equals the set of zeroes of an invariant polynomial. However, it is known
from the theory of invariants that I, is an invariant polynomial of minimal
positive degree. This shows I, =0 is equal to FC. One verifies directly that
I, vanishes on every curve from (ii). On the other hand, the orbits of non-
singular curves are closed in the open subset of non-singular curves. This
shows that FC — FC consists of singular curves. The only singular curves F
which do not satisfy (ii) are nodal curves, the union of a conic and a line
intersecting the conic transversally, and the union of three non-concurrent
lines. One verifies directly, by reducing these curves to a canonical form,
that 1,(F)# 0. This verifies (1)< (ii).

Let ¢,:Secy ;—P° be the projection of the 2-secant bundle of the
Veronese surface of triple lines to the space of plane cubics. We know that
its open Zariski subset maps to the set FC. Since the image of ¢, is closed,
it must be equal to the closure of FC which is the hypersurface I, =0. On
the other hand, this image consists of curves admitting a (degenerate)
s-gon with 5 < 3. This shows the equivalence (1)< (iv).

(5.13.3) Remark. It is easy to verify by direct computation that the
singular locus of the hypersurface I, =0 consists of cones.

(5.13.4) Remark. Classically a non-singular cubic curve at which the
invariant I, vanishes was called an anharmonic cubic. The reason for this
name can be explained as follows. If F; is an irreducible curve, it can be
reduced to a Weierstrass form:

xX3xp+ X7+ px,; X3 +gxg=0.

Evaluating I, on this curve we obtain that I,(F)=0 if and only if p=0. If
F is non-singular, this means that F is isomorphic to a double cover of P'
branched over the four points p,, p,, p;, % where p}= —g. The cross-
ratio

R=(p,—p:)dps—2)(p,— xc)ps—p)=(p,—p2)(ps—p2)=p,

where p*= —1, p# — 1. Quadruples with this cross-ratio are classically
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called anharmonic. They represent one of the two possible PGL(2)-orbits
of quadruples on P' with non-trivial isotropy group. The other one is the
orbit of harmonic quadruples which is characterized by the condition that
the cross-ratio is equal to —1, 1, or 2. They correspond to elliptic curves
with the coefficient ¢ =0 in their Weierstrass equation. We will extend the
notion of a non-singular anharmonic cubic to all cubics contained in the
locus 1, =0.

(5.14) PROPOSITION. Every cubic curve F admits a (possibly degenerate)
polar s-gon with s < 4.

Proof. The assertion is obvious for cones, since every binary form of
degree 3 admits a polar s-gon with s <2. Assume F is not a cone. It follows
from our description of Hessians of cubic curves (5.4.3) that F contains a
non-singular point ae He(F)n F. If P,(F)= H? is a double line, we con-
clude by (5.13.2). We may therefore assume that the polar conic Q = P (F)
is of rank 2, and «a ¢ Sing(Q) (3.3). We can write Q in the form /; +/3=0,
where /,(a) and /,(a) are not equal to zero. Indeed P,(F)=0, so if
/,(a)=0, l,(a)=0 which is impossible since a ¢ Sng(P_(F)). Then

PAF—1(a) "I}=1a) '"13)=P(F)—1;—13=0.

Changing coordinates in order to have a={(1,0,0), we observe that
F—1,(a) '1?—1(a) "I} depends only on x, and x,; hence we can write:

Fy=1(a) "3+ 1,(a) 15+ Gs(x,, x3)

for some homogeneous binary form of degree 3. Applying (4.5), we can
write G5 as a sum of two cubes of linear forms (or its degeneration). This
proves the assertion.

(5.14.1) Let {H,, H,, H,, H,} be a polar quadrangle of a cubic curve
F. If three of the lines are linearly dependent, the polar of F with respect
to their common intersection point is a double line (the remaining one). By
(5.13.2) F admits a polar triangle. Assume the sides H; are in general linear
position. For each point ¢ on a side H, but not on the other sides, the
polar conic P,(F) admits a polar triangle whose sides are linearly inde-
pendent. Hence it is a non-singular conic. This shows that the Hessian of
F intersects the sides of the complete quadrangle {H,, H,, H,, H,} only
at the vertices; in other words the quadrangle is inscribed in He(F). In
particular, we see that an anharmonic cubic does not admit a polar
quadrangle whose sides are in general position. Indeed its Hessian is the
union of three lines or its degeneration, and cannot be circumscribed
around a complete quadrangle of lines in general position. However, it
admits a polar quadrangle with three linearly dependent sides.



POLAR COVARIANTS 253

(5.14.2) ExampLE. The cubic x4.x, x, =0 is not anharmonic, so it does
not admit polar triangles. However, it admits polar quadrangles; for
instance, we may write

—24xpx, %, = (xXg— X, + X3)" = (X + X, + x,)°

+(xo+ X — ) + (—Xo+ 3+ x2)

(5.14.3) The variety of polar quadrangles of a general cubic curve is
birationally isomorphic to the projective plane. This can be seen as follows.
Let a,, a,, a;, a, be points in P? (in general position). Then the linear
system of cubic curves through these points consists of curves of the form

Q|H1+Q2H2=O~

where Q, and Q, generate the pencil of conics through «,, .., a,, and
H,. H, are lincar forms. Let L be the two-dimensional linear system of
apolar conics of F. For any two conics @, @' in L that intersect trans-
versally, the linear system ®@H + &'H’ of apolar cubics is equal to the linear
system of enveloping cubics passing through the four points @, n @’. This
implies that these points form a polar quadrangle of F. Conversely, every
polar quadrangle of F is obtained in this way. Thus the variety of polar
quadrangles of F is birationally isomorphic to the variety of pencils of
conics from L, ie., the variety of lines in P>, We refer to [Re-Re] for the
geometry of its cover corresponding to ordered quadrangles.

(5.15) We now consider the case of cubic surfaces. If a cubic surface F
admits a polar s-polyhedron with s< 3, it is a cone. If F is not a cone and
admits a polar 4-polyhedron, it is projectively isomorphic to the Fermat
cubic. The PGL(4)-orbit of the Fermat cubic is of dimension 15, ie,
of codimension 4 in the space of all cubics. We do not know equations
defining this orbit.

(5.15.1) THeorREM (). Sylvester). Ler dim V=4. There exists an open
Zariski subset U in S*(V*) such that every fe U can be written in the form

F=UD+1+03+0+11.

Moreover the linear forms I, are determined uniquely up to permutation and
numerical factors which are cubic roots of unity.

Proof. See a modern proof in [ShB].

(5.12.2) CoROLLARY. Every cubic surface F admits a (possibly
degenerate) polar s-polyhedron with s <35.
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Proof. Consider the morphism ¢,: Secs ; = [(:(3)| from (5.1.1). By
Sylvester’s theorem this morphism is surjective (in fact, it is a birational
morphism).

(5.15.3) Counting constants, we see that for a general cubic the polar
pentahedron is in general linear position (ie., any of its four planes are
linearly independent). Then it has 10 vertices that comprise all singular
points of the Hessian (it is known that any normal determinantal quartic
has at most 10 singular points). The 10 edges /,= H,n H, of the penta-
hedron are contained in the Steinerian (= Hessian). Indeed, for every ae/,
the quadric P (F) is singular (it has a polar 3-polyhedron).

(5.154) Let
F=I13+..+1;
be a polar pentahedron of a cubic surface F. Let
Aol + ...+ Ay =0.

be a linear relation between the linear forms /,. If F is not a cone, it is
unique up to proportionality. For every point a = (a,, a,. a,, a;)€ P?, the
polar quadric P,(F,) is given by two equations in P*:

I(a@) s+ 1(@) 3+ (@) 5+ (@) 5 + 14(a) 5 =0,

dolo+ 20y + Asly+ iyly+ Agly=0

Thus P,(F) is a singular quadric if and only if the matrix

(Io(a)l0 li(a)l, L(a}, [i{a)l, 14(a)/4>

Ao i Js i Y

18 of rank 1 at some point x =(x,, .., x;). This can be expressed by the
equalities:
[(a) = A /LX), s 14(4) = A4 /l4(X).

¢

Since 3 4;/;(a) =0, we obtain the equation of the Hessian surface of F by
reducing the equation

Z A= Z Ad,=0
to common denominator:

He(Fy=231 1,031, + Al + Aslod I dy + A3l d 1+ 2211 150, =0
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[Sal, p. 176]. One immediately sees from this equation that the complete
pentahedron /y/,/,/,1,=0 is inscribed into the Hessian, its vertices /,=
{,=1,=0 are the 10 singular points, and its edges /,=/,=0 are contained
In 1t.

(5.16) Finaly we consider the case of cubic hypersurfaces of dimension
>3 Let % be the determinantal hypersurface in |S*(V*) = PV
parametrizing singular quadrics in P". It is well known that the subvariety
&' of & parametrizing quadrics of corank / is of codimension Li(i+ 1)
[ACGH, p. 102]. Thus, if r> 1i(i + 1), the Hessian of any cubic hypersur-
face in P” contains a point a such that P (F) is of corank =i (unless, by
(3.9), Fis a cone). Therefore, we can write:

PAF)=13+.. 41}

r—i"

Repeating the argument from (5.14), we may assume that

PAF—lyla) "I3—...—lda) "D =1},  +...+1}
for some k<r—i, where [, (a)=...=[,_,(a)=0. Let us change
coordinates in order to have a=(1,0,..,0). Then /,, , .., !, ; are linear
forms in x|, .., x,, and we can write:

F=lya) "I3+ ...+ L(a) "I} +xo(l;,  +...+12 )+G(xy, .., x,)
Let (H,, .., H,) be a polar polyhedron of the cubic hypersurface G in P" '
If k=r—i, which holds for a generic F, we obtain that F admits a polar
(r—i+ s+ 1)-polyhedron. If £ <, we may use Example (5.14.2) to repre-
sent each xo(/7 +17) as a sum of four cubes and to use the identity

6x1’=(x+y)P+(x—yp)P-2x3

to represent each x,/7 as a sum of three cubes. This shows that F admits
a polar N-polyhedron, where N=s+k+ 14+ (32 r—i—k) if r—i—k is
even, and s+ k+ 1+ (32} r—i—k—-1)+3if r—i—k is odd.

(5.16.1) ExampLES. Let r=4. 1t is known that a general cubic hyper-
surface does not admit polar s-polyhedra for s <7 (see [Ri, Re]). Using
the Sylvester theorem, our inductive argument shows that a general cubic
in five variables admits a polar 8-polyhedron.

If r=35, we obtain that a general cubic admits a polar 12-polyhedron.
We do not know what is the minimal number s such that a cubic hyper-
surface in P’ admits a polar s-polyhedron. The constant count shows
that s > 10.
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6. PLANE QUARTICS

(6.1) Let F be a plane quartic. We denote by Fe S*(V)* the corre-
sponding total polarization; thus F(.V):F(.r, x, x, x) for any xe V. For
every point € P?, the polar P,,(F)zF(a, X, x,x) is a cubic curve. The
linear system . of polars of F is a net of cubics (unless F is a cone, (3.9)).
Let ¢y < [S*(¥*)| be the discriminant hypersurface parametrizing singular
cubics. It is well known that %, is a hypersurface of degree 12 in P?; its
non-singular points parametrize nodal cubics. Its singular locus in
codimension 1 consists of two components R, and R,. The singularity of &,
at the general point of R, (resp. R,) is an ordinary cusp (resp. an ordinary
node). The degree of R, is equal to 24, and its non-singular points
parametrize cuspidal cubics. The degree of R, is equal to 21, and its non-
singular points parametrize the unions of a conic and a line intersecting it
transversally (cf. [KI27).

Therefore we see that the Steinerian curve St(F) is either the whole
plane, or a curve of degree 12 (counting with multiple components). By
(3.7) the first case happens only if F has a triple point, or is a double conic.
We expect that for a general F the Hessian He(F) is a non-singular curve
of degree 6 and the Steinerian St(F) ts an irreducible curve of degree 12
with 24 cusps and 21 nodes. This implies that any polar cubic P, (F) is
either non-singular, or a nodal cubic (¢ is a non-singular point of St(F)),
or a reducible cubic with two singular points (a is a node of St(F)), or a
cuspidal cubic (« is a cusp of S¢(F)). To show that our expectation is right,
it suffices to exhibit one quartic F with such properties. We do this in the
next example.

(6.1.1) EXAMPLE. Let
Fixix,+xix,+x3x5,=0

be the Klein quartic curve with the automorphism group G isomorphic
to the group PSL(2, F,) of order 168 (cf. [Bur, p. 310 and p. 363]). Its
Hessian curve is

2 2 2
He(F):5xixix; —xox; —xjXs—x,x;=0.

It is not difficult to verify that it is non-singular (the easy explicit computa-
tions are available upon request). To verify that the Steinerian has the
needed properties, we use that the group G acts on both He(F) and St(F).
In particular, we use the following elementary fact: the orders of cyclic
subgroups of G are 1, 2, 3, 4, and 7. This implies that any orbit of G on a
non-singular curve consists of 168, 84, 56, 42, or 24 points. Consider the
Steiner map s,: He(F)— Si(F). Since He(F) is non-singular, and the
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Steiner map is surjective, St(F) must be irreducible. Let s': He(F) — S’ be
the corresponding map to the normalization S’ of St(F). Any singular
polar has only isolated singularities, since otherwise He(F) is reducible.
The number of isolated singularities of a cubic curve is at most 3. This
implies that the degree of the map is at most 3. Since the genus of He(F)
equals 10, by Hurwitz’s formula, the ramification divisor of s’ consists of at
most 24 points. The ramification divisor R of s’ is G-invariant; hence we
obtain that R is either empty or consists of 24 points, in which case $' is
of genus 0. On the other hand, it is well known that G acts on P' only
trivially. This immediately implies that R= ¢, and s is an isomorphism.
Let € be the conductor of the normalization map He(F)=S" — §=Si(F).
We know that p,(S)=p.(S’) + 3 deg(%); hence

deg(€)=(d—1)(d—2)-20,

where d is the degree of S. Again, as above, since € is a G-invariant divisor,
its support %, is the union of G-orbits. An elementary computation shows
that this implies that either ¥ =0, in which case S is a non-singular sextic,
or deg(€¢)=90, d=12. Consider the former case. This means that every
singular point of St(F) has a cuspidal singularity (i.e., it is a double point
with the tangent cone equal to a line). Thus all singular polars are cuspidal
curves or their degenerations. In particular, each one is contained in the
locus of anharmonic cubics. Later on (6.5) we shall see that the locus of
points a€ P? such that P,F is an anharmonic cubic is a curve of degree 4.
This contradiction allows us to go to the next case, where St(F) is an
irreducible curve of degree 12, and the conductor € is of degree 90. The
only way to write ¥ as a sum of G-invariant divisors is 4, + 2¥,, where
deg(€,) =42, deg(6,)=24, €, =(6)rea- 1=1, 2. Write € =3 6p, where %,
is the conductor of a singular point Pe C. Let r, be the number of local
branches of § at P and u, is the colength of the Jacobian ideal of S at P,
It follows from the Jung-Milnor formula p,=deg(é,)—rp,+1 [Mi,
Sect. 10] that %, is reduced if and only if up,=1, ie, P is an ordinary
quadratic point. This implies that S exactly 21 nodes. The rest of the
singular points of S are cusps or their degenerations. In any case each
such a point i1s unibranched (i.e., rp,=1). Thus the local conductor %, is
supported at one point and is of degree 2. This immediately implies that P
is an ordinary cusp. So, St(F) is an irreducible curve of degree 12 with
exactly 24 ordinary cusps and 21 ordinary nodes.

(6.2) Let us consider the second polarization map:

SAV)— SAV*), @ Py(F).

Its kernel is the subspace AP,(F) of conics apolar to F. Recall from (2.8)
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that F is called non-degenerate if 4P,(F)=1{0}. The next condition plays
a fundamental role in the study of polar properties of quartic curves.

(6.2.1) DeFINITION. A quartic curve £ is called weakly non-degenerate if
it is non-degenerate or AP,{F) is spanned by a unique irreducible conic.

(6.3) Let
5, PEPx P2 |SX V).,  (a,b)— H,H,,

be the composition of the Segre map P? x P? — |V ® V| with the projection
[V ® V| ——— |S*(V)|. The restriction of s, to the diagonal is the Veronese
map:

00 PP = | Ca(2)]* = |SHV).

Let (P?)'? be the symmetric square of P%; its singular locus is the image
of the diagonal. It is well known that s, factors through an isomorphism

5 (PP NG SV,

where &, is the cubic hypersurface parametrizing reducible enveloping
conics. It is equal to the secant variety of the Veronese surface
Vaa=0,(P?)  [SAV)L.

(6.3.1) LeMMA.  Assume F is weakly non-degenerate. Then the map

SYPPx P SHV*R),  (a, by P, o (F),
is everywhere defined. The induced map

SHPH - (S (¥ *)|

is an embedding onto a cubic hypersurface Vi(F) if F is non-degenerate, or
is of degree 3 onto the hyperplane |AP,(F)'| otherwise.

Proof. We know that the map s% is equal to the composition
PP xP? - |S (V)] ——— | ST (V*)

of the map s, and the rational map |S*(V)| ——— [S*(V*)| corresponding
to the linear map S*(V ——— S (V'*), @ = P, (F). If AP,(F)=0, the latter
map is an isomorphism; hence the asserted property of 54 follows from the
similar property of §,. If AP,(F)#0, the map |S*(V)| ——— [S*(V*)] is
isomorphic to the projection from the point { @}, where @ spans AP,(F).

By assumption this point is not in the image of s,. Thus 54 is equal to
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the composition of the embedding onto a cubic hypersurface and the
projection from a point not lying on this hypersurface.

(6.4) LEMMA. Let V, ,<|S*(V*)| be the Veronese surface of double
lines, let & be its secant variety of reducible conics, and let v.:P*—
|S2(V*)| be the map a— P, (F). Then

He(F)=v, (2,).
v, "(Vy,) < Sing(He(F)),  if He(F)#P*

Proof. The polynomial of degree 3 that vanishes on &, is the discriminant
of quadratic forms. Hence the polynomial of minimal degree that vanishes
on v;'(%,) is equal to the Hessian of F. This shows that v, '(#,) and
He(F) coincide set-theoretically. It i1s clear that

v, (Vs ,)=laeP?: k(P (F)=1}.
Now the second assertion follows from Lemma (3.6).
(6.5) Let
1,: 8%(V*)-C

be the Aronhold invariant of degree 4 defined on the space of cubics
(5.13.1). Composing it with the polarization map

VRS (V*)— S (V*),

we obtain the Clebsch covariant of degree 4:
S, e SHV*®R SV *)*).

It can be considered as a function on the space of quartics $*(V*) of degree
4 in coefficients that takes its values in the space of quartics. By definition
S,(F)yeq = {aeP?: P (F)is an anharmonic cubic}.

In the case when S,(F)=S,(F),. # P* we denote by S(F) the quartic

curve S,(F) and will call it the covariant quartic of F.
In symbolic notation (see [Sa2, p. 269]),

Sy=(a B )2 B, 6)a, 7, 0B, p, 0)x 7.0,

This means that the total polarization of S is an element of V*®*® 1”4,
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whose value at a vector (v,, vy, 03, U, %, 8,7, 8) e V'@ V*®4 i5 equal to
the product

o, Byl fory B, 31 1B, 7. O oty 7, 0] alv) B(r2) p(03)d(p4),

where |...| denotes the determinant.

Note that the Clebsch covariant S, of quartics is an analog of the
Hessian covariant H, of cubics. In fact, F - He(F) is a covariant obtained
by composing the discriminant invariant of quadrics with the first
polarization map V® S*(V*) — S*(V*).

(6.6) Let Cat(F) be the catalecticant matrix of F in the standard bases
of S*(V) and S*(V*) (2.4). Recall that its entries ¢, ,, are defined by
Py(F)= Z Co sk A XX},
where @ =Y a u,u, (see (2.4)). They satisfy the symmetry conditions:
Citvsk = Ciio sk = Cij ks = CokeL iy

Let H=oagxg+a,x +o,x, be a line, and let @=3 a,uu, be its
second anti-polar, ie., P, (F)= H? Assume det(Cat(F))#0, i.e., F is non-
degenerate. Then the equation of @ is

&= Z (Cli: ,\’ka,\'ak)uluj;

here (C,; ) =Cat(C)* is the cofactor (or adjugate) matrix of Cat(F). The
condition that @ is reducible is

Z Coo. o0, %y Z Copon %% Z Coo. ok %%y
det Z C o, o 0,0 Z Chr w20 Z Crau,2, [ =0.
Z Copy o A Xy Z Copo e 2,0 Z Coa e 2,0

This is an equation of degree 6 in the coordinates (a,, &, ;) of A. The
left-hand side is a polynomial in the coefficients of F (of degree 15) and
a polynomial of degree 6 in g, «,, a,. It defines a SL(V)-equivariant
polynomial map of degree 15,

I S{V*)— 5% V),

1.e., a contravariant of degree 15 and class 6 on the space of quartics. If
crk(Cat(F))> 1, I'(F)=0. If crk(Cat(F))=1, then rk(Cat(C)*)=1, and
we may write

ij: sk = A‘i/ ;'.\'k ’
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for some scalars 4, satisfying 4,=4;. Then

loo Aot A

3
[(F)=det{ A,y A, 4pn (Zi.\ka,‘-“k)-

Axg A Az

The conic
¢0 = Z /.‘.\'k A 0y

is the apolar conic of F, i.e., a solution of the equation Cat(F)-® =0. This
implies that I'(F)#0 if F is weakly non-degenerate but degenerate. Note
that T is not identically zero (cf. (6.7)). So, we find that the set

I(F)={HeP?: P, ,(F)= H*for some a, be P?}
is equal to T'(F),.4 if F is weakly non-degenerate.

(6.6.1) Remark. Assume F is not weakly non-degenerate. Then I'(F)=0
but I'(F)# P2 In fact, let e AP,(F) and P, ,(F)= H? for some line H.
Then, by (1.7},

(B, H?)=(®, P, ,(F))=(PHH, F)={H,H,, Pa(F))=0;

hence, by Lemuma (1.6), H belongs to &. This shows that I'(F) isvcontained
in the base locus of the linear system |AP,(F)|. Thus I'(F)# P? for any
degenerate F.

(6.6.2) PROPOSITION. Let F be a non-degenerate quartic. Then T'(F) # 0.

Proof. Tt suffices to show that I'(F)# P It is clear that

I(F)=v, '(s5(P* x P AV, ),

where s%: P2 x P2 — [S?(V*)} is the morphism defined for any weakly non-
degenerate curve F in Lemma (6.3.1), and v,: P2 — V, , < |SY(V*)] is the
Veronese map. If F is non-degenerate, s4 is a double cover onto a cubic
hypersurface W =s%(P>x P?) that maps isomorphically the diagonal 4 to
the singular locus Sing(W) of W. Assume I'(F)=P2 Then V,,c W,
and the restriction of s5 over V, , defines a double cover m: T(F)— V, ,
branched along V, , n Sing(W), where

T(F)=(s5) " (Vy)={(a,b)eP*x P :1k(P, ,(F))=1}.

607-98-2-9
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By (3.6) the map v, 'V, ,— P? defines an embedding from V,,n
Sing(W) to the set of singular points of the Hessian He(F) unless
He(F)= P2 In the latter case, by (3.8), Fis a cone which is obviously a
degenerate curve. Assume T(F) is reducible. In this case T(F) consists of
two components T(F), and T(F), each isomorphic to P2 We know that
the degree of the projection T(F)— P2, (a, b) — a, is at most 3 (cf. (6.8)).
Hence the restriction of each projection to the component T(F), is
a finite cover P? of degree <2. As is well known, and is easy to prove,
the degree of such a map must be equal to 1 So, the degree of
T(F)=T(F),u T(F), » P? is equal to 2; therefore for any a € P? the polar
P,(F) is a singular anharmonic cubic. This implies that Si(F)=P*. Let us
prove that this is impossible. Indeed, according to (3.7) either F= G? where
G is a non-singular conic, of F has a point of multiplicity >3. In the former
case, for general ae P? the polar cubic P,(F) is the union of a conic and
a line that intersects it transversally, so P, (F) is not anharmonic cubic. In
the latter case every P,(F) is either a cuspidal cubic or the union of a
smooth conic and its tangent line. Indeed, otherwise for some ae P? the
polar P,(F) would either be zero or a cone. In the first case F is a cone so
it is degenerate. In the second case P, ,(F)=0 for 4 in the vertex of P, (F),
so F would be degenerate again. Therefore we obtain that every polar
P, (F) has a cuspidal point at some fixed point 4 which is a base point of
the linear system of polars. Its cuspidal tangent line does not move, since
otherwise we find a polar with an ordinary quadratic point at A. This
shows that in an appropriate coordinate system

P,(F)= I(U)X()-"f +G,(x,, x,),

where G ,(x, x,) is homogeneous of degree 3 and /(a) is a linear function of
a. Now for all zeroes a of [ the polar P,(F) is a cone which contradicts the
non-degeneracy of F as we have shown above.

Assume now that 7(F) is irreducible. This immediately yields that the
branch locus of n: T(F) - V, ,=~P? is a curve of even degree. Since this
curve is isomorphic to a multiple component of the Hessian He(F), its
degree must be equal to 2. From this we deduce that T(F) is isomorphic
to a quadric. Using the previous argument we obtain that the degree of the
projection T(F)— P must be equal to 3. This degree is equal to the self-
intersection of a divisor on a minimal resolution of the quadric, which is
isomorphic to the minimal ruled surface P' x P! or F,. It is easy to verify
that the self-intersectio of any divisor on any of these surfaces is even. This
contradiction proves the assertion.

(6.6.3) CorROLLARY. Let F be a quartic curve. The following assertions
are true:
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(i) T(F)=0 if and only if F is not weakly non-degenerate;
(i) I(F)#P%
(i) T(F)={(a,b)eP>xP?:rk(P, ,(F))<1} is a curve if F is
weakly non-degenerate;

(iv) S,(F)#0 if F is weakly non-degenerate quartic.

Proof. (1) It follows from (6.6) that ['(F)=0 if F is not weakly non-
degenerate and I'(F) #0 if F is degenerate but weakly non-degenerate. By
(6.6.2) I'(F)#0 if F is non-degenerate,

(i1)) We know from (6.6) that I'(F)=T(F).4 if F is weakly non-
degenerate. On the other hand, by Remark (6.6.1) I'(F)# P? for any
degenerate quartic.

(iii) Since F is weakly non-degenerate the map

n: T(F) - P2,

which assigns to a pair (g, b) the line H such that P, ,(F)= H’, is well-
defined. Its image is the set J'(F) and its degree is 2 if F is non-degenerate
and is 6 if F is degenerate. By (ii) I'(F) # P? which implies (iii).

(iv) Consider the first projection:
p: T(F) - P?, (a, b) > a.

By Proposition (5.13.2), its image equals the set {S,(F)=0}. By (iii) this
set is not the whole plane.

(6.6.4) Remark. There is another contravariant of class 6 of ternary
quartics of degree 3 in the coefficients (see [Sa2, p. 2717). Its value at Fis
equal to the locus of lines which cut out F in a harmonic quadruple. It was
asserted in [Cl] that I' is equal to the product of this contravariant and
the square of the catalecticant invariant C?. As was remarked in [Cil] this
is wrong (because I'(F)#0 for weakly non-degenerate curves with zero
catalecticant).

(6.7) ExamMPLE. [t is easy to compute the curve /(F), where F is the
Klein curve from Example 6.1.1. By direct computation we find that its
equation is

I'(F)=5ajas a3 — oqa] —ajo, — x,a; =0,

so0 it coincides with the equation of the Hessian, up to a change of coor-
dinates x, to the dual coordinates x,. This is not surprizing, and can be
easily deduced from the theory of invariants of the group PSL(2,F,)
[Bur, p. 363].



264 DOLGACHEV AND KANEV

(6.8) Let F be a weakly non-degenerate quartic with irreducible
Clebsch covariant gquartic S(F). By (6.6.3) the curve

T(F)={(a, b)e P*x P2 : 1k(P, ,(F))=1}
={(a, b)e S(F)x S(F) : tk(P, ,(F))=1}

defines a symmetric correspondence on S(F). If S(F) is not a component
of St(F), then the first projection,

prT(F)—» S(F), (a,b)—a,

is a map of degree 3. In fact, one verifies directly that p '(a) consists of
three points if and only if P,(F) is projectively isomorphic to the Fermat
cubic, p '{a) consists of two points if and only if P,(F) is a cuspidal curve,
and p '(a) consists of one point if P (F) is the union of a conic and its
tangent line. In the last case the point » must be the singular point of
P,(F). Note that P,(F) is never a cone, since otherwise P, ,(F)=0 for
some b; hence F is not weakly non-degenerate. Finally note that T(F) has
no united points (i.e., points on the diagonal) if He(F) is non-singular. So,
we obtain:

(6.8.1) PROPOSITION. Let F be a weakly non-degenerate quartic with non-
singular Hessian and irreducible S(F) which is not contained in St(F). Then

T(F)= {(a, b)e S(F)x S(F) : tk(P, ,(F))=1}
is a symmetric correspondence of degree (3, 3) without united points.

(6.8.2) Remark. For general F the correspondence 7(F) is a non-
singular curve. Indeed this is true for the Klein curve from Example (6.1.1).
As we saw in Example (6.7) the curve I'(F) is isomorphic to the Hessian
He(F) and hence is non-singular. Since T(F) has no united points, the
double cover T(F)— I'(F) is unramified; hence T(F) is non-singular.

(6.9) Assume S(F) is non-singular; for every point a € S(F) we denote
by T(a) the divisor corresponding to the. point @ in the correspondence
T(F). Assume first that T(a) is reduced, i.e., P ,(F) is a non-singular anhar-
monic cubic. Then T(a)=p, + p, + p;, where the three points p,. p,, and
py are the vertices of the Hessian triangle of lines of F. We will call the
triangle formed by the lines {p,, p»>, {p,, p»>, and {p,, py>, the
polohessian triangle of the point a€ S. If no confusion arises, we denote it
by T(a). It is inscribed in S(F), and its vertices are the points p,, p,, and
P (see Fig. 1). We know that

T(a)= He(P (F));
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S(F)

FIGURE !

il'l faCts Pu.pl(F)=2<p2’ p3>’ Pu.p;(F):2<pl» P3 >’ and PuAm(F)z
2<pla p2>

(6.9.1) It follows from the definition that the curve I'(F) parametrizes
the sides of polohessian triangles of F. According to (6.3.1), for every line
He I'(F) there exists an unordered pair {a, b} of points on § such that
P, .(F)y= H?. If He(F) is non-singular then a # b. This pair is unique if F
is non-degenerate. There are three such pairs if F is weakly non-degenerate.
We have (see the proof of (7.6))

T(a)=b+p+gq,
T(b)=a+p' +q,

where the common side H= {p, ¢)> = {p’, ¢’ > of these triangles is opposite
to the vertex b in 7(a) and to the vertex a in 7(b). We have

Ta)—b+T(b)—a=p+q+p +q ~Kgp).

Figure 2 describes the situation when all four points p, g, p’, and ¢’ are
distinct.

(6.9.2) Now let T(a)=2p+g4, ie., P,(F) is a cuspidal irreducible cubic.
We may also assume that P,(F)= xx,+ x3=0. Then easy computations
show that p=(1,0,0) is the cusp, g=(0, 0, 1) is the intersection point of
the cuspidal and the inflectional tangents, He(P,(F))= x,x}, the union of

FIGURE 2
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S(F) a

FIGURE 3

the cuspidal tangent and the line / joining the cusp with the inflection
point. By (69.1), T(g)=a+x+y, where 2p+x+ye|Kgy| The line
which cuts out this divisor is the tangent line /, to S at p. Also it equals
the second polar P, (F)= P, ,(F) of F; hence it coincides with /. We will
call Hess(P,(F))=7,+2{p, q> the degenerate polohessian triangle of the
point ae S. Note that the point p lies on the Hessian of F, since it is a
singular point of the polar P,(F) (see Fig. 3).

(6.9.3) Finally, 7(a) could be equal to 3p. In this case, P,(F) is the
union of an irreducible conic and its tangent line /. The Hessian of this
cubic is the tangent line taken with multiplicity 3. The point p is the
tangency point. As in the previous case, considering T(p), we obtain
that / equals the tangent line /7, to § at the point p. We will call
Hess(P, (F))=¢ ; the degenerate polohessian triangle of the point ae S
(see Fig. 4). Again, we have pe He(F)n S.

(6.9.4) Note that the number of degenerate triangles is at most 24.
This follows easily from the Hurwitz formula applied to the cover
p: T(F)—> S(F). By Remark (6.8.2) the curve T(F) is non-singular for
generic F. One can prove that the non-singularity of S(F) and He(F)
implies the non-singularity of T(F). Using Remark (6.8.2) we obtain that
for general F the genus of the curve T(F) equals 19. The triangle T{(a) is
degenerate if and only if the polar cubic P,(F) is singular, and the point
a belongs to the branch locus of p. The previous analysis shows that for
each such triangle 7{(a) the unique singular point of-P,(F) belongs to

S(F)

P £y

Py(F)

FIGURE 4
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He(F) n S(F). Note that the set B={ae S(F): P,(F) is singular} is equal
to S(F)n St F). Each point of B is a cusp of St#(F). Thus generically we
expect that the set B consists exactly of 24 cusps of St(F), and He(F)
intersects S(F) transversally at 24 cusps of cuspidal polar cubics.

(6.9.5) We leave it to the reader to draw pictures similar to Fig. 2 in the
cases where the polohessian triangles degenerate. One can show that the
point (a, b)e T(F) is a singular point of the correspondence T(F) if and
only if T{a)=2b+x, T(h)=2a+y, and {a,b)= (b, x>=<a, y). In this
case the common side H= {a, b) is a multiple side in each degenerate
triangle.

{6.10) Let F be a plane quartic curve. It admits a polar 1-gon if and
only if it is a multiple line. It admits a polar 2-gon if and only if it is the
union of four concurrent lines. If it admits a polar triangle, then we can
write it in the form:

IT+15+15=0.

If the linear forms /; are linearly independent, F is isomorphic to the
Fermat quartic. If they are not, F is the union of four concurrent lines.

(6.11) DeriNITION. A quartic admitting a polar quadrangle is called a
Capolary quartic.

{6.11.1) A general Capolary quartic is isomorphic to a quartic of the
form:

xp+xt+ x84+ (axy + bx, +cx,)* =0.

In particular, Capolary quartics depend on 3 moduli, so the locus of
Capolary quartics is of codimension 3 in the space of all quartics. The
polar of a Capolary quartic F with respect to any vertex of its polar
quadrangle is a cubic equal to the union of three concurrent lines. For
every point x on a side of its polar quadrangle, the polar cubic admits a
polar triangle; hence x belongs to the covariant quartic S(F). This shows
that S(F) is equal to the union of four lines.

(6.11.2) Any Capolary quartic is not weakly non-degenerate. In fact, if
F=13+134+13+13,

any enveloping conic passing through the points /,=0 is apolar to F.
Hence crk(Cat(F)) is equal to 2 if the lines /, =0, .., /,=0 are not con-
current, and equals 3 otherwise.

We refer to [Ci3] for many interesting properties of Capolary quartics.
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(6.12) Suppose F admits a polar pentagon. If four of the sides are
concurrent then S,(F)=0. Indeed, for every ae P? the polar cubic P, (F)
has a polar pentagon with four concurrent sides. Let ¢ be the point of
concurrency. Then P (P (F))= H? for some line H, so by (54.1) P,(F) is
an anharmonic cubic. If no four of the sides are concurrent, then S,(F) #0.
In fact, one easily shows that four of the sides are in general linear position.
Thus for every point a on the remaining side the polar cubic P,(F) is not
anharmonic {5.14.1). Now, suppose that no four of the sides are concurrent
but there are three sides which are concurrent. Then the polar of F with
respect to the concurrency point ¢ admits a polar 2-gon; hence P (F) is a
cone. By (7.5) the covariant quartic S(F) is singular. Also, F is not weakly
non-degenerate. In fact, the reducible enveloping conic passing through the
sides of the polar pentagon is a polar to F.

(6.12.1) DEFINITION. A quartic admitting a polar pentagon whose sides
form a complete pentagon is called a Clebsch quartic.

Recall that a complete pentagon is formed by 5 lines intersecting
pairwisely in 10 distinct points (the vertices of the pentagon). In other
words a complete pentagon is the set of 5 lines in general linear position
(no 3 are concurrent).

(6.12.2) THEOREM. Let F be a plane quartic curve. The following
conditions are equivalent:

(1) F is a Clebsch quartic,

(1) F is weakly non-degenerate but degenerate;
(ii1) APZ(F ) is spanned by an irreducible conic;
(iv) C(F)=0,T(F)#0.

Proof. (i1) <> (iii) by definition of a weakly non-degenerate quartic
curve. (1i1) <> (iv) was observed in (6.6) (recall that C is the catalecticant
invariant). If F is a Clebsch quartic, its polar pentagon is formed by five
points in the dual plane in general linear position. The unique enveloping
conic @, through these points is necessarily non-singular and apolar to F.
Suppose @ is an enveloping conic which is apolar to F=/%+...+/%. Then

Po(F)y=®(,)I2+...+ ®(l5)121=0.

Since /, ..., /s are in general position (as points in the dual plane), we
may apply Lemma (4.2.2) to obtain that &(/,)=... = ®(/5)=0. Hence @
coincides with @,. This proves (i) = (iii).

Let us prove the converse. Let @ be the unique non-singular apolar conic
of F. By (6.6), @ = I'(F) parametrizes the sides of the polohessian triangles



POLAR COVARIANTS 269

T(a)= He(P,(F)) of F. For a general xe @ there exist three unordered
pairs (4, b) such that

P, (F)=H;.

Moreover, ac T(b), be T(a). Since the line A, intersects @ at two points,
each point a is a vertex of two sides of polohessian triangles (instead of six
for a general quartic!). Let xe @, a¢ F, ie, H, is not tangent to F. Then
there are six non-degenerate polohessians T, such that H, is a side of
each of them. They are T(a,), T(b;), where P, , (F)=H?, i=1,2,3. Let
Py» . Ps be the four points of intersection of H, with F. Every T, has three
sides; one of them is H,, two others pass through some p, and p,. Since
each p; lies on only two sides, we obtain that the six polohessians T, are
composed of five lines forming a complete pentagon inscribed into S. Thus
S has oo! inscribed complete pentagons.

Let P be one such pentagon. For each of its five sides H, there is a pair
of points (a,, b;) such that

y

JF)=H2, =15

P, i

Since each pair (a;, b,), j # i, contains a point on H,,
Poboa o FY=0, j#i

Moreover, H,; does not contain a;, b;; therefore

Pu,. by, aj. ,,‘(F) #+ 0.

Now, since AH? are linearly independent by (4.2.2), the assertion will follow
from the following:

(6.12.3) LEMMA. Let F satisfy (iii) in (6.12.2). Let (a,, b,) be five pairs
of points such that:
(i) Q;=P, ,(F) are linearly independent,
(1) P, b 0 s(F)=0 fori#];
(i) P, s a.6(F)#0.
Then there exist some constants 4, #0, i=1, ..., S, such that:

F=/,01+..+is50Q3.

Proof. Since the space of conics apolar to @ is 5-dimensional, for every
pair of points (a, b} we can write

Pu.b(F):thll|.h|(F)+“‘+’5Pus./75(F) (,)
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for some constants ¢,, i=1,..,5 Polarizing both sides with respect to
(a;, b;), and using (i1}, we get

Po b asFY=1P, 4 0 s (F), i=1,..,5 (2)
Setting @ = b = x, a generic point of P?, we find:
F=P, (F)
Hence if we plug ¢ =b = x into (1) and use (2} we obtain
F=2,Q1+...+ 40z,
where
Ai=(Py 4w n(F) L

(6.13) Let us now compute the covariant quartic S(F) of a Clebsch
quartic F. Let

F=DI1+13+13+15+13=0
be its polar complete pentagon. Then for any a e P> we have

P (F)=) l(a)l}.
By definition, up to a numerical factor,
SaF)=14(P,(F)) =1, (Z I,(a)l;.’)
The symbolic expression for the invariant I, of cubics is
L= (o By HB. 3. 02, 7. 0)(a, B, 3).
This means the following. If we polarize Q = P (F),
0=Y (@), ®,®1,

and write down J®QO0®Q0®Je V*®'? as a linear combination of the
tensors

(@@ (FRLRIPB(HT®TR® )R (OB I®I),
then the value of T, at such a tensor is given by the product of determinants

lot, B, 71 1o B 01 1B, 7, 8 e, 3, 6.
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where we identify the linear forms from F* with the column of its
coefficients. In our case, we obtain

5 5
L(Q@Q@Q@QFL(Z ® I,(a)/,@l,-@l,): Y kT 1),
J=1 j#i j=1 JFEI
where

k,= det(l,, 1, 1) #£0,  r=1,..5.

A

j<k
i jok}

= A

i
re¢

~.

Replacing a by x, we derive the equation of S(F):
5
S(Fy=3Y k] L.(x)=0.
i=1 jET

It is clear that S(F) is circumscribed around the complete pentagon
!i, .., Is. The equation of S(F) can be, informally, put in the form

kil Vv kady " ksl Tk ksl =0
(cf. [Sa2, p.269; Lii, p.46]).

(6.13.1) DEFINITION. A Liroth quartic 1s a quartic which can be
circumscribed around a complete pentagon.

We shall now show that every Liiroth quartic is realized as the quartic
covariant of a Clebsch quartic.

(6.13.2) LEMMA. Let 1, .., Ise V* be in general position. Then the five

guartic forms L1105, 1 1,1, .., 11,151, are linearly indepedent.

Proof. It is easy to verify that any four of these forms are linearly
independent. Indeed, let the first four be linearly dependent. Then

alylydy + Bl + 30 L+ 60 1L, =0.

It does no harm to assume that /,=x,, bL=x,, l=x, I=
axg+bx, +cx,, a,b,¢#0. Then, collecting the coeflicients at each
monomial, we find

fa=pb=yb=yc=0a=3dc=0.

This obviously implies the assertion.
Now we may assume that

(1,[2/3[4[5+(1211/3/415+031113/4[5+a4111213/5+a5/|[2[3/4=0,
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where all a, are different from zero. Then, as we saw in (6.13), the covariant
quartic of x,/%+ ...+ as/% is equal to

kyoyoyoadslslylyds+ .o+ kgoyasoyagly 11, (*)

where k; are defined in (6.13). It is clear that we can choose («,, ..., a<) such
that
Uy XK =@y, ey %y ... 24k = ag.

Thus the assertion will follow from the fact that S,(F) 0 for any Clebsch
quartic (use (6.12.2) and (6.6.3), or argue as follows. Let F=17{+...+1% be
Clebsch quartic. Then

PAFY=1(a)3+.. + 1)}

for any « with I5(a)=0, [,(a)#0, i#5. Thus P,(F) admits a polar
quadrangle; hence it is not anharmonic cubic (5.14.1), ie. S, (F)=
L(P(F))#0).

(6.13.3) COROLLARY. Let # ={H,, .., Hs} be a complete pentagon.
Then S, transforms injectively the set of Clebsch quartics with polar
pentagon K into the set of Liiroth quartics with inscribed pentagon .

Proof. Let H, be given by a linear form /,. Then every Clebsch quartic
F with polar pentagon {H,, .., Hs} can be written as F=a,/7 +... + as/%.
Using (*) from (6.13.2), the previous lemma, and the fact that the map
(%), oy 25) > (K 02X 04, ooy ks, 2,0504) defines an automorphism of the
open subset of C* defined by x,a,0,%,2 #0, we prove the corollary.

(6.13.4) THEOREM (J.Liiroth). Let F be a Clebsch quartic. Then its
covariant quartic S(F)=S,{(F) is a Liiroth quartic. Every Liiroth quartic is
obtained in this way.

Proof. The polar of F with respect to any vertex of its polar pentagon
P is a cubic admitting a polar triangle. Therefore the covariant quartic
S(F) passes through the ten vertices of P. Hence P is inscribed in S(F).

Let C be a Luroth quartic and let /, ...Is=0 be its inscribed complete
pentagon. Then the five quartics /,...7,...[s=0, i=1,.., 5, are linearly
independent (6.13.2) and pass through the ten vertices of the pentagon. The
dimension of the linear system of quartics with these ten base points is
equal to 4. Indeed, by (4.2.4) it is larger than 4 if either six base points are
collinear, or all of them lie on a conic. In each case they are not realized
as the set of vertices of a complete pentagon. So, the equation of C can be
written in the form

C=ikd; " +...+ skl '=0,
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where k; are defined as in (6.13). Then we consider the quartic
F=4i, 11+ +4i5'13,
and verify that S(F)=C.

(6.13.5) PROPOSITION. A general Liiroth quartic is non-singular.

Proof. 1t is known that the Hessian of a general cubic surface is a
normal surface. As we saw in (5.15.4) it is circumscribed around a penta-
hedron of planes. Thus a general plane section of the Hessian is a non-
singular Liiroth quartic.

(6.14) Let us now study polar hexagons of a quartic curve F. Let
®1:5€Cq 4 > |Cp2(4)]

be the projection of the 6-secant bundle of the Veronese surface ¥, ,=P"
(4.1.1). This map is surjective. Indeed, its image is an irreducible closed
subset of |(;:(4)| containing the locus of Clebsch quartics. Thus it is equal
either to the closure of the locus of Clebsch quartics (= the catalecticant
hypersurface) or to the whole space of quartics. It is easy to exclude the
former possibility. Indeed take any six linear forms /,, ..., /, such that the
corresponding lines do not lie on an enveloping conic. Then the quartic

F=I1+...+1{=0

admits a polar hexagon and is non-degenerate. Indeed, if P,(F)=0 for
some conic @, we get

Po(Fy=®(,) 2+ ...+ ®(l)12=0.

Since /2 are linearly independent (4.2.4), we find that @(/,)=0, i=1, .., 6.
This contradicts our choice of the linear forms /, showing that the image
of Sec, 4 contains a point not on the catalecticant hypersurface. A non-
degenerate quartic does not admit polar (possibly degenerate) pentagons,
since otherwise it belongs to the closure of the locus of Clebsch quartics.
Thus we obtain that every non-degenerate quartic admits a polar hexagon
{possibly degenerate). Finally we observe that the dimension of the general
fibre of the map ¢ is equal to 3; hence a general quartic admits «* polar
hexagons.

(6.14.1) Assume that F is non-degenerate and admits a polar hexagon
H,, .. Hg and let a,, ..., a¢ be the corresponding points in P2 Let @ be an
enveloping conic passing through «,, ..., a5. Then P,(F) has H, as its polar
l-gon; hence it is equal to the double line H2. In other words, each
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enveloping conic @, passing through o, ..., ,, ..., %, is the second anti-polar

of the line H,. Note that, since F is non-degenerate, %, ..., &, do not lie on

a conic; hence @, #®,, i#j, and &, N D, = {a,, .., a5} — {0, 2, }, 2, ¢ D,.
This suggests the following construction of a polar hexagon of F:

(6.14.2) THEOREM. Let F be a non-degenerate quartic. Let H, = H, be a
line in P2 and let @, be its second anti-polar enveloping conic with respect
to F. Assume that «, does not belong to @,. Let Hy=H_, be such that
a,ed, and let @, be its second anti-polar with respect to F. Assume @,
intersects transversally ®@,. Let ay, ..., %, be the four intersection points of @,
and ®@,. Then H,, .., H, is a polar hexagon of F.

aps

Proof. Let L be the linear system of enveloping quartics passing
through the six constructed points x,, .., 2,. By Lemma (4.2.4) it is of
dimension 8, unless «,, ..., x4 lie on the same line (then it is of dimension 9).
In our case the latter is impossible. It contains two four-dimensional
linear systems formed by quartics of the form ¢ K (resp. @,K’), where
o, €K, a,€ K'. By assumption, @, and @, have no common irreducible
components. This implies that the two four-dimensional linear systems
intersect along the unique quartic ¢, ¢,, and hence span L. Since

(@K, F)=[(K, P¢1(F)>= (K, Hi,>=K(°‘1)=O,
(PLK', FY=(K', Po,(F)>) =<K H>=K'(a;) =0,

we obtain that (F, ¥> =0 for all ¥e L. Thus we can use Proposition(4.3)
to conclude that H, , .., H,, is a polar hexagon of F.

(6.14.3) Let us see what can go wrong in this construction. First of all,
we begin by taking a line H satisfying the property that its second anti-
polar @ does not contain it. This is easy to fulfil. Since F is non-degenerate,
we find the equation of @ by applying the inverse of the catalecticant
matrix Cat(F) to H? (see (6.6)),

¢l = Z (Cl/:‘\kfx.\ak)uiu;’

where H=o,x,+0,x,+a,x,, and (G, ,)=Cat(F)* is the cofactor
matrix of Cat(F). The condition that @, vanishes at H is expressed by the
equation

Z Cu: \ka.\akala/zo* (*)
so this is an equation of degree 4 in the coordinates of H. The left-hand

side of (*) is a contravariant £ of quartics of class 4 and degree 5 in the
coefficients of F. This is a “new” covariant, not mentioned in [Sa2].
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Contrary to a statement from [Cl], it differs from the product of the
quartic contravariant ¢ and the cubic invariant 4 of Salmon (see [Cil ]).
Obviously

Q(F)=0<crk(Cat(F))> 1.

In particular, for a non-degenerate quartic F, the locus Q(F) of “bad” lines
H is the curve Q(F)=0. Note that the correspondence F— Q(F)=
{Q(F)=0} is a new kind of duality for quartics. It corresponds to the
usual duality between quadrics in |S*(V'*)| and quadrics in |S*(V)|
(see (2.9)). Under this duality quartics with crk(Cat(£))=1 correspond to
double conics

Q(F) = (y_;,, , ,><Z/'L‘,,koc_\,1k> (z,,, - ,>’= ,

where C,. . = 4,44 as in (6.6). Here

i sk T

I(F)=Y Z,0,2,=0

[/l Aat]

is the apolar conic of F. So, we obtain that, for quartics F with
dim(AP,(F))=1, (F) is the square of an irreducible conic if F is a
Clebsch quartic, and is the square of a reducible conic otherwise.

Thus we should start our construction of a polar hexagon by taking any
line not in the curve Q(F). The next difficulty occurs when for every a, e @,
the second apolar conic @, is not transversal to @,. We do not know
whether this is avoidable, even in the case when @, is irreducible (for this
we have to take H, not in the set I'(F)). The case when &, is tangent to
@, leads to degenerate hexagons.

(6.15) DeFINITION. A line H is called a good line for a non-degenerate
quartic F if F admits a polar hexagon with one side equal to H, and the
second anti-polar of F with respect to H is a non-singular conic not
containing H (ie., Q(H)+#0).

It easily follows from (6.14.1) and (6.14.2) that, if F admits at least one

polar hexagon, the set of its good lines is a non-empty open Zariski subset
of P2,

(6.15.1) PROPOSITION. Let H be a good line with respect to a non-
degenerate quartic F. Then the variety of all pentagons H,, ..., Hs such that
H, H,, .. Hsis a polar hexagon of F is one-dimensional. It consists of all
polar pentagons of a unique Clebsch quartic F'.
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Proof. Let H =H, H,,..,H, be a polar hexagon of F. Suppose
H,, H,. .., H is another polar hexagon of F. Then we can write F in two
ways,

F=l1+0+. +=0d{+mi+. . +mi=0,

where H,={/,=0}, i=1,..,6, H/ ={m,=0), i=2,..,6, and / is a non-
zero constant. Hence

6
(1=t =5 (1 —mh. (%)
Let @ (resp. @') be the enveloping conic through the points H,, ..., H,
(resp. H, .., Hy). Then P,(F)=®(H )3, Py (F)=A®'(I,)I3. Since F is
non-degenerate, we get @ =@'. Hence @ contains the 10 lines H,, ..., H,,
Hy, .. He If 241, (%) implies also that @(/,)=0 hence P,(F)=0. This is
impossible. Therefore /=1,

34+l =mi+ .. +ml

By definition of a good line, @ is a non-singular conic. Hence the lines
{H,,..H¢} and {H4, .., Hy} are complete pentagons which are polar
pentagons of the same Clebsch quartic F'. It follows from Theorem (6.14.2)
that the set of pentagons which together with a fixed line form a polar
sextic of F is one-dimensional. This proves our assertion.

(6.15.2) COROLLARY. Let F be a quartic admitting a polar hexagon, and
let H be a good line with respect to F. Then there exists a unique Clebsch
quartic F which is 4-tangent to F at the points of intersection of F and H.

(6.16) DEFINITION. A polar hexagon of a non-degenerate plane quartic
is called concurrent if it contains three concurrent sides.

Note that no four lines of a polar hexagon of a non-degenerate quartic
are concurrent.

(6.16.1) PROPOSITION. Let H,, ..., H be a concurrent polar hexagon of F
and let a=H ~"H,nH; be a concurrent point. Then a belongs to the
covariant quartic S(F) of F, and the triangle formed by H,, Hs, and Hg is
a polar triangle of the polar of F with respect to a. If @ is the second anti-
polar of H, with respect to F, then the line H, intersects @ at two points
corresponding to H, and H.

Proof. The triangle formed by H,, Hs, an H, is a polar triangle of

P,(F), so ae S(F). We know that H,, i# 1, lie on the second anti-polar @
of H,, The three lines H,, H,, and H, belong to the pencil of lines through
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the point 4, i.e., belong to the line A, in the dual plane. Hence H, and H,
are the intersection points of J#, with @.

(6.16.2) COROLLARY. A polar hexagon is concurrent if and only if one of its
sides is a side of a polohessian of F.

Proof. The necessity was shown in the proof of the previous proposi-
tion. Let H,, ..., H¢ be any polar hexagon of F which contains a side of a
polohessian triangle of F, say H,. Then the remaining lines lic on the
second anti-polar @ of H,. Since P, ,(F)= H; for some a, he S(F), we get
&= H,H,. This shows that three of these lines belong to either H, or H,.

We refer to [Mu] for the geometry of the variety X (F) of polar
hexagons of a general quartic.

7. THE SCOrRZA MapP

Here we define a birational map from the space of plane quartics to
its finite cover parametrizing the pairs (C, 3), where C i1s a non-singular
quartic and 3 is an even theta characteristic on C.

(7.1) Recall that an even (non-vanishing) theta characteristic on a non-
singular non-hyperelliptic curve X of genus g is a non-effective divisor class
3 such that 29 belongs to the canonical class of X. By Riemann--Roch, for
every point x€ X, the linear system |x+ 9 consists of a unique effective
divisor T,(x) of degree g. This defines a correspondence T ,ec Div(X x X).
Define the map

a: X x X - Jac(X),

by sending a pair (x, y) to the divisor class cl{y—x). Let W,
Pic*™ '(X) be the hypersurface of effective divisor classes of degree g — 1,
and let @=W,_, |, —JcJac(X) be its translate. Define a correspondence
T, e Div(X x X) by setting

1 &

T, =x*(O).

The restriction of 7', to the fibre {x} x X, xe X, is equal to {=a¥(@),
where 2 (y)=cl{y — x). By Riemann’s theorem,

§~x+.9,

so {=|x+ 3 =T,(x),since h’(x+ 3)=1. Thus T, = T,. If 5 is the involu-
tion of X x X which permutes the factors, then

a*T,=a*(( _idjuux;)*@): a*(@)=T,,

607 9% 2-10
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so T, is a symmetric correspondence. It has no united points, since the
existence of a point (x, x)e Supp(7T,) implies that 3 is effective. Let p,, p,
be the projeictions X x X — X. Using the seesaw theorem one obtains,

T,~A44pH3) +pF9) (*)

Finally note that T, is a connected curve. In fact, a(X x X)-@ is con-
nected because it is an ample divisor. Since 0¢ €, and « is an embedding
outside the diagonal of X x X, we obtain that T, is connected.

(7.1.1) LeMMA. Ler xe X and yeSupp(T,(x)). Let T, x)=y+¢,
T y)=n+x Then {+ne|Ky|

Proof. We have

$=C4+y—x,

J=n+x—
Adding up, we obtain the assertion.

(7.1.2). Let us identify X with its canonical model in P* ' We shall
refer to the divisor T,(x)=y,+...+ ¥, as a I-polyhedron attached to x
with vertices y |, .., y,. The hyperplane (T ,(x)—y;> will be called the face
of T,(x) opposite to the vertex y;,. Note that this definition is meaningful
even when 7 ,(x) is not reduced; here, for any effective divisor D on X, we
denote by (D) the intersecion of all hyperplanes in P* ' which cut out
the divisors D+ D' € |Ky| on the canonical model of X. We can interpret
the previous lemma by saying that for any (x, ) e Supp(7,). the opposite
faces in the polyhedra T,(x) and 7,(}) coincide.

(7.1.3) Lemma. A4 point (x,»)eT, is singular if and only if
I T, (x)=2p| # &, xel{T,(x)—y>, or equivalently |T,(y)—2x|#,
ye{Ty(y)—x.

Proof. The point (x, y) is singular on T, if and only’ © does not inter-
sect 2(X x X) transversally at a(x, y). The projectivized tangent space of @
at a(x, y) is {T,(x)—yv), the projectivized tangent space of «(X x X) at
(x, y) is the line {x+y> Thus (x, y) is singular if and only if
(x+yyc{T,(x)—yD. Since the divisor T,(x) spans P* ', we have

VeSupp(Ty(x)—y),  xel{Tyux)—y).

By symmetry, we must have x e Supp(7T,(y)—x), ye {T,vy)—x).
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(7.1.4) As we have already mentioned, for every (x,y)eT,,
H(T,(x)—y)=1; hence, by Riemann’s theorem., x(x. v} belongs to the
open subset @™ of non-singular points of &. Define the map

m Ty— |Kyl,
as the composition of the embedding «|,.,: T, — & and the Gauss map:
710" - Kyl

Recall that the latter is defined by sending a point € @™ to the unique
De|Ky| containing the effective divisor linearly equivalent to -+ .
By definition, the map = sends a pair (x, y)eT, to (T, ,x)—y>=
{(T,(y)—x>. Denote by [(J) the image of r.

It is known that the Gauss map is a finite map of degree (** ) [ACGH,
p. 247]. Its branch locus is an open subset of the dual hypersurface of the
canonicl model of X. Since T, is symmetric, the degree of the map

nT,-I{3)

equals 2d(3) < (i’;’ Z). In other words, the Gauss map factors through the
map
70=0/(— idpaex) = 1Kyl

of degree (%" 7)., and d(3) is equal to the degree of the restriction of ¥ to
the image T'(3) of T, in @. The number d(#) is an interesting invariant of
the pair (X, J). By (7.1.1} and (7.1.2), 2d(}) is equal to the number of
g-polyhedra of X that have a common face. For example, if g=3,
d(3)e {1,2,3}. Later on we shall see that for a general quartic curve X
one has d(3) =1 for every J; however, d($) may take the value 3 on special
pairs (X, 3). We do not know an example of a pair (X, 3) with d(3)=2.
We refer to [Do-Or] for more geometry related to the surface &
(the dianode surfuce).

(7.1.5) PROPOSITION. Assume T, is a reduced curve. Then its arithmetic
genus p (T,) is given by

PT,)=3g(g—1)+1
Proof. By adjunction,
p (T )—2=AT,+Ky, ) T,=T, - T,+4g(g—1)}.
Now we use that

T, T,=T,- a*(@)=(T,)- O) ey = (a(X x X)- 92)1;m.\ )
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It is known that
2

x(XxX)x(g_z)!@

and ®*=g! ([ACGH]; note a mistake in the formula on p.223). This
gives

T, T,=2¢g(g—1),
and
2[’11( T.’J) “ 2 = 6g(g_ l )'

(7.1.6) PROPOSITION.  Assume d(3)=1 and T, is a reduced curve. Let
n=m'"«h be the composition, where n': T, — T,/(1)=1T(3) is a factor map
by the natural involution of T, and h: I'(3) — I'(9) is u birational map. Let
@, be the canonical sheaf of /($)". Then

O piay ZHC BN R Cp g, ()

Jor some 2-torsion divisor cluss & on I'(3)'.

Proof. Since T,n A=, because I is not effective, the factor map
n': T,— 1(39) 1s an unramified double cover. This gives

T )=y,

Let e X and H, be the hyperplane in P ' whose points are the hyper-

planes in P* ' which contain the point «. Then

H,n[(3)={Hel'(}) :Hisafaceof T (b),be T (a),ac H).
If T {ay=h +...+b,, then ue T, (h,), and
HeH,nI'($)<= H={T,(b,)—q>=nlb, q)
for some b;, ge T,(h,), ¢ #a. Let

pp:T,—> X, (a, b)— a, (a, b)r—b

be the two maps induced by the projections X x X — X. By definition of the
map n, we have

TX(H, T3 = (p*(T,(a)) — p* (@) + (p™X(T,(a)) — p*(a))
=p*(T (a)— @)Y+ p (T, (a)—a)=p*(3)+ p ().
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Restricting (*) from (7.1) to T,, and taking into account that 4 and 7, are
disjoint, we see that p*(3)+ p'*(3) is cut out on T, by the theta divisor ©.
So, since 4 and T, are disjoint, we get

(O, (1)) = €1 (O).
By the proof of the formula for the genus of T, (7.1.5),

O ) Z 0, 2 C (OVR(C,® C (K )
= (1 (0)® Cr (p*(28)+ p'*(29)) = (,,(30)
= () (3) =T 1y (3)):

This proves the assertion.

(7.1.7) COROLLARY. Assume d(3)=1 and T, is a reduced curve.
Then I'(8) is of degree g(g—1) and I'(3) is of arithmetic genus
3g(g— 1)+ 1. In particular, if g =3, I'(3) = 1(3) is a plane sextic.

(7.1.8) PROPOSITION. Let a,be X, and let T (a) and T ,(b) be the corre-
sponding 8-polyhedra. Then the dimension of the linear system of quadrics
through the divisor Ty(a)+ T (b) is of dimension g(g+1)—2g.

Proof. We have
Ta)~a+9,  Tyb)~bh+4.
Adding up, we find
RKy—Tya)—T,bh)|=|Ky—a—h|

From this we infer that the linear system of quadrics through 7',(a) and
T,(b) cuts out on X the linear system |K,—a—b| of dimension g—3.
Adding up the dimension of the linear system of quadrics in P* ! con-
taining X ( 1g(g+1)—3g + 3), we obtain the needed number.

(7.1.9) Remark. 1f T,(a) and T,(b) are reduced and have no common
points, this proposition can be interpreted by saying that the set
T,(a)w T,(b) imposes one less condition on quadrics; alternatively, it is a
self-associated unordered set of points in P# ' (see [Do-Or]).

(7.2) Suppose the covariant quartic S(F) is non-singular. Then every
even theta characteristic 3 on S(F) defines a symmetric correspondence of
degree (3, 3) without united points on S(F). Another correspondence of
this kind is 7(F) defined in (6.8). We shall later show that T(F) is equal
to T, for some §.
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(7.2.1) LEMMA. Let X be a non-singular curve of genus g, and let
TeDiv(X x X)

be a symmetric effective correspondence without united points, of some
valence v and degree (g, g). Suppose that h°(X, T(x))=1 for general point
x € X. Then there exists a unique even theta characteristic 3 on X such that
T=T,.

Proof. Recall that a correspondence T of degree (a, b) is of valence v
for some integer v if the divisor class T(x)+ vx is independent of x.
Equivalently, this means that 7 induces the endomorphism —vidj,.y, of
the Jacobian variety Jac(X') of X, or T is algebraically equivalent on X' x X
to the divisor

E+ F—u4a,

where E and F are divisors whose support consists of fibres of the two
projections X x X — X, and 4 is the diagonal. By the Cayley—Brill formula
[Gr-Ha, p. 287], the number of united points of T is equal to a + & + 2vg,
which implies in our case that v = —1. Let us denote the divisor class
T(x)—x by 3, and prove that it is an even theta characteristic. By
assumption #°(T(x)) = 1 for general x; since x ¢ Supp(T(x}), we obtain that
T(x)— x is not efective for general x. This gives that 4'(3)=0. Let

e = ( ’-idjuc(,\';)* (@),

where @ =W, | — 8 is as in (7.1). By the inversion part of Riemann’s
theorem we conclude as in (7.1) that T=a*(@ ) and o*T=a*(@). By
hypothesis, the correspondence 7 is symmetric, so

a*¥ (@ )=a*(O). (%)

Let ©® =60 +e¢ for some e € Jac(X). Restricting (*) to a fibre {x} x X and
again using Riemann’s theorem, we obtain ¢ =0. So @ = @, therefore 9 is
a theta characteristic.

(7.3) Let F be a Clebsch quartic with non-singular covariant quartic
C = S(F). By the proof of (6.12.2) the family X(F) of polar pentagons of
F is equal to the family of pentagons inscribed in C. Its sides are the sides
of the polohessian triangles of F, and hence are parametrized by the apolar
conic @ of F. Furthermore any general He @ belongs to a unique polar
pentagon. Therefore X (F) is an irreducible rational curve. This implies
that every sufficiently general xe C is a vertex of a polar pentagon of F.
Such a pentagon is unique since the three sides not containing x are the
sides of the polohessian triangle He(P,(F)) and the other sides are
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obtained from the polohessian triangle of the vertices of He(P (F)).
Assigning to each x e C the unique pentagon that has x as its vertex, we
obtain a map a: C — P! of degree 10 which can be reconstructed from the
correspondence T« C x C and vice versa.

(7.3.1) LemMa. There is a unique even theta characteristic 3 on C such
that T=T, (see (7.1)).

Proof. Let x e C be sufficiently general and ye T(x)=y +p, + p,. Then
the line {p,, p,) is a side of the pentagon x(x) and does not contain x and
». Therefore it is a side of the triangle T(y) and by the description of the
polohessian triangles given above we have

T(x)—yv+T(y)—xe|K| (%)

Let us consider the map f: C — Pic'®*(C) defined by f(x)=cl(T(x)—x). If
T(x)=y,+y,+y; we conclude by () that f(y)=f(») i j=1,23.
Applying the same argument for T(y;) and so forth we conclude that
f(x)=f(x') for any two vertices of a complete pentagon from X.(F). Thus
f=pB-a for some map B:P'— Pic'?(C) showing that f(C) is a point
9ePic'?(C). By (») we conclude that 29= K. For general xe C the
points of T(x)= |3+ x| are not collinear so that A°%(3) = 0.

Let M€ be the variety of Clebsch quartics F with non-singular covariant
quartic S(F). By (6.13.5) and (6.13.4), M“ is not an empty open Zariski
subset in the variety of all Clebsch quartics (which is an open subset of the
catalecticant hypersurface C = 0). The restriction of the covariant S, to M€
defines a morphism,

SIMS > M-,
where M " is the variety of non-singular Litroth quartics. According to the
previous lemma we can lift this morphism to a morphism
Se:MC— M,
where M’ is the variety of pairs (C, 3), where C is a nonsingular Liiroth

quartic, and # is an even theta characteristic defined by the polohessian
triangles of some Clebsch quartic in § '(C).

(7.3.2) THEOREM. The map
Sc M M-

is an isomorphism.



284 DOLGACHEV AND KANEV

Proof. 1t suffices to show the injectivity of the map Sc¢. Suppose
ScC(F)y=Sc“(F')=(C, 8). The correspondence T, determines uniquely the
map «: C — P! of degree 10 with the property that T, transforms any fibre
to itself. Thus X (F)= X (F'). It remains to apply Corollary (6.13.3).

(7.3.3) COrROLLARY. The map
S M- MY Fe— S(F)
is finite. In particular, the closure of M" in |C\,:(4)| is a hypersurface.

(7.3.4) Remark. The degree of the hypersurface M* of Liiroth quartics
1s equal to 54 (see [ Mo, LP, TT]).

(74) Let C be a non-singular Liiroth quartic; an even theta charac-
teristic % on C will be called pentagonal if (C, 9) is in the image of M€
under the map Sc¢. Note that the invariant d($) defined in (7.1.4) is equal
to 3 for any pentagonal characteristic. We do not know whether every even
theta characteristic on C with d($)=3 is pentagonal. Each pentagonal
characteristic defines a one-dimensional family of complete pentagons
inscribed in . The sides of these pentagons are parametrized by an open
subset of [(F). Each complete pentagon inscribed in C belongs to some
family of pentagons defined by some pentagonal characteristic (see
(6.13.4)). The number of pentagonal theta characteristics on a general
Liiroth quartic is equal to the degree of the map S M > M’ It is
known to be equal to I [LP]. It is known that for some curves the pre-
image of some Liiroth quartic consists of more than one point (e.g., for
desmic quartics; see [ Bat]). According to [Ba] the moduli space M(2,0, 4)
of stable rank 2 vector bundles on P* with ¢, =0, ¢, =4 is birationally
isomorphic to the variety of pairs (C, ¥), where C is a Liiroth quartic, and J
is a pentagonal even theta characteristicc. By Theorem (7.3.2), it is
birationally isomorphic to M. The rationality of M(2, 0, 4) follows easily
from the rationality of the catalecticant hypersurface.

(7.4.1) THEOREM. Let C be a non-singular Liiroth quartic and let 3 be its
pentagonal theta characteristic. Then there exists a cubic surface K in P?
such that the web of polar quadrics of K contains a net whose Hessian
invariant is equal to (C, 3).

Proof. Let C=S(F), where F=1[}+...+1% Then
C=kyl, "+t kol |,

where k, =17, ¢ {i, j k! det(/,, 1, 1,).
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Let K be the cubic surface in P* = P(W) with equation
K=Li+..+L}=0,

where L, are linear forms in four variables y, ..., v, satisfying

Y A,L,=0, il=k i=1,.,5

We know from (5.15.4) that its Hessian is given by the equation

He(K)=Y 2L, '=0.

Let

be one of the non-trivial linear relations between the forms /, in which all
coefficients are non-zero. The condition that each three forms /, are linearly
independent allows us to do it. Choose 4, satisfying

it=k.a,, i=1..5,

and let
rV-aw

be the linear map whose transpose map W™* — I'* sends each L, to
(A?/k){.. Then the Hessian of the net .4 = {P,,,(K)}.., is equal to C.

Let 5: C— P(W) be the Steiner map, which assigns to each point ae C
the singular point s{a) of the quadric P, (K). We know from (5.5.2) that
for any plane H in P(W) its inverse image s*(H) is a divisor on C linearly
equivalent to K.+ 9, where % is the theta characteristic that, together
with C, defines the Hesse invariant of the net . #". We shall show that 3" = J
by choosing a special H and computing the divisor s*(H). In view of
(5.15.4), for any ae C the coordinates (), -, V'4) of the point s(a) satisfy
the relation:

L(L(i(a)=4,, i=1,..5
Pick the plane H with the equation:
AL (3)+ ALy + A L3y = (= ALyt y) = [ Ls () =0
Then
As

an  Liita)

32 32 2
Ay 45 A3

L@y | Lyti@)  Ly(ia))

—t et

A
L,(i
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and the divisor 2s*(H) is cut out in P(}') by the conic
kylyly+ kol Iy + k31,1, =0,
and the line
kyls+ksly=0.
Writing the equation of the Liiroth quartic in the form
ColiLlkgls+ kol + Ltk L+ kol i+ kil 1) =0,

we observe that the line is tangent to C at the point p=/,n/; and cuts out
the divisor

Dy=2p+4,+4q,,
for some points ¢, and g¢,. The conic cuts out the divisor
Dy=2(p,+p>+pi)+qi+4,

where p,=/l,n1;, po=I1,nl;, py=1nl, are the vertices of the triangle
T,(p) (see (7.3.1). Therefore, s*(H) cuts out the divisor

[)|+[)3+]);+[)+C[,+qz~r,+K(—[7=[7+3+K(—[)~3+K(

(7.4.2) Remark. The assertion that a Liiroth quartic is equal to the
Hessian of a net of polars of a cubic surface was proven first by
W. Frahm [Fr].

(7.5) LEMMA. Assume S(F) is non singular. Then

(1) F is weakly non-degenerate;
(ii) the correspondence T(F)< S(F)x S(F) is of degree (3, 3).

Proof. (i) Assume F is not weakly non-degenerate. Then P, ,(F)=0
for some a, he P’ Indeed if dim AP,(F)=1, this follows from the
definition. If AP,(F)> 1, then the linear system of apolar conics |AP,(F)|
contains a reducible conic. The polar cubic P,(F) is a cone. It is easy to
verify, by using the explicit formula for I, in (5.13.1), that the corresponding
point in the locus I, '(0) of anharmonic cubics is a singular point. Since the
polar linear system #.=P? is not contained in the 1, '(0) (otherwise
S.(F)=0), we obtain that ¢ is a singular point of S(F).

(it} For a general F and a general point ¢ from S(F) the polar cubic
P_(F) is a non-singular Fermat cubic since this holds for Clebsch quartics.
So (i1) holds for general quartics. Assume (i1) is false for some F with non-
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singular S(F). Then for any point ae S(F) the polar cubic P, (F) is
singular. There exists a one-parameter family (F,, a,) with a,e S(F,) and
P, (F,) non-singular for r#0 such that Fy=F and a,=a. The lines of
He(P,(F)) are limits of the sides of the triangles He(P,(F,)} as t—0, so
there exists be S(F) such that P, ,(F)= H? and the line H is tangent to
S(F). Since He I'(F), and I'(F) is a curve of degree <6 (6.6.2), this shows
that the dual curve of S(F) is a component of I'(F). But this is absurd since
the degree of the dual curve of a non-singular quartic is equal to t2.

(7.6) THEOREM. Assume S(F) is non-singular. Then the correspondence

T(F)={(a,b)eS(F)xS(F):rk P, ,(F)=1}

is equal to the correspondence T, defined by a unique even theta charac-
teristic on S.

Proof. Let us first consider the case where F is a general quartic and let
C = S(F). We claim that for any xe C and y e Supp(7(x))

Tx)—y+T(y)—xelK. (*)

It suffices to prove this for general xe C. For such x the polar P (F) is
a non-singular Fermat cubic, the sides of the polohessian triangle
He(P (F)) intersect transversally C, and for any ye T(x) the divisors
T(x)—y and T(y)— x have no common points. All these properties hold
for general F since they hold for the Clebsch quartics. Now for x, y
as above P, (F)= H?, where H is the opposite side of y in T(x) and of
x in T(y). Therefore H - C=x,+x,+y,+y,, where T(x)=p+y,+>
and 7T(y)=x+x,+x,. This proves (x). Let us consider the map
f: C—Pic?(C) given by f(x)=T(x)—x. Using (*) we see that f(y)=
J(y,)=f(y,) for the vertices of T(x). Thus either f(C) is a point or f(C}
is a curve of genus <2. The case of genus 0 is impossible since rational
curves do not lie on an abelian variety. The easy argument counting con-
stants shows that the coverings of curves of genus 1 or 2 form a subvariety
of codimension 22 of the space of quartics. Now we can appeal to (7.3.3)
to get that the closure of S(|S*(¥*)|) contains the hypersurface of Liiroth
quartics. This shows that for general F the image of f'is a point & By (*)
we find that 29 = K. and clearly #°(3)=0. Let U< |S*(V*)| be the open
Zariski subset of curves F with non-singular S(F). By (7.5) for each Fe U
the correspondence 7(F) is symmetric and of degree (3, 3). Now for general
ae S we have T(F)(a)=p,+ p,+ p;, where p; are distinct. We can find a
one-parameter family of triples (F,,S,,q,) such that S,=S(F,),
(Fo, So, ay) = (F, S(F), a), and for 1t # 0 the curve F, has the property that
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T(F,)=T, for some even theta characteristic 3, on S,. Let 7(F ){a,)=
(Y +pa(1)+ p;(t). Then

S, =cllp, (1) +p2(1) +ps3(t)—a,)

is an even theta characteristic on S, for 7 # 0. A smooth specialization of an
even theta characteristic is an even theta characteristic [Mum]. So,

S~p+p.+p;—a

Since the number of theta characteristics is finite, 3 does not depend on «.
This shows that T(F)=T,.

(7.7) Let M be the open Zariski subset of |S*(V*)| which consists of
plane quartics F with non-singular covariant quartic S(F). By (7.5) every
quartic Fe M" i1s weakly non-degenerate. The Clebsch covariant S, is well-
defined on M", and the curve S(F)=S,(F) carries a unique even theta
characteristic $ such that the correspondence T(F) on S(F) defined by the
polohessian triangles coincides with the correspondence 7,. This defines a
map, the Scorza map,

Se: M- M, F— (5, 9),

where M*" is the variety parametrizing the pairs (S, ), where S is a non-
singular quartic, and 3 is an even theta characteristic on it.

(7.7.1) LEMMA.  The variety M is an irreducible variety, and its natural
projection to the variety M of non-singular plane quartic curves is an
unramified covering of degree 36.

Proof. The latter assertion is well known; the number of even theta
characteristics on any curve of genus g is 2* '(2¢+1). As we explained in
(5.7) the assignment of the Hesse invariant (X, $) to a net of quadrics in
P?=P(W) defines a birational isomorphism between M and the orbit
space of an open Zariski subset of P(V*® S*(W*)) by PGL(W). The
latter variety is irreducible.

(7.8) THEOREM (G. Scorza). The Scorza map is an injective birational
isomorphism.

Proof. Since M° and M*" have the same dimension, it suffices to prove
that the Scorza map is injective. Let us first prove the injectivity of the
Scorza map restricted to the locus (M), of non-degenerate quartics. Let
Fe(M?®),,and §= S(F). By (7.5) there exists an open non-empty subset S’
of S such that for every ae S’ the polohessian T(a) is non-degenerate with
no sides tangent to S. If Se(F)=Sc(F')=(S, 3) for some F'# F, then for
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any aeS’, P,(F) and P,(F’) are non-singular anharmonic cubics whose
Hessian is equal to the triangle of lines whose vertices are the three points
in T(a)=Tgy(a)~ 3+ a. Suppose we show, using (5.9), that this implies
that P (F)=P,(F’) for all aeS'. Since S’ spans P? we obtain that
P,(F)=P,(F') for all ae P2 This obviously implies that F' = F.

Take a general point ae S, let T(a)=p,+p,+ b, and let H={p,+p,>
be the side of T(a) opposite to the vertex h. Since a is general, the triangle
T(h) is non-degenerate, and hence equal to ¢+ ¢, + q., where ¢,, g, € H.
and {p,. p.} 0 {q,,q,} =T Let T(¢,)=h+r, +r, (again we may assume
that T(g,) is non-degenerate, and {r,,r,} n{a,g.} =) Then its side
{ry+ry) is equal to the side (a+ ¢, of T(h). The four lines

ly=<bry>, Li={bry>, ly=<b, p:>, Ly=<{b, py>,

are all different (see Fig. 5). Indeed, /, #{,, /3%, because all triangles are
non-degenerate. If /, =/;, then the triangles 7(a), T(q,), and T(r,) have a
common side equal to /,. This is impossible by (6.9.1). Similarly we verify
that /, #1,, I,#/;, I, #/,. Let

P, AF)=P,  =m+m,.

. gy

We know that
P, AF)=I3, P, J(F)=I3.

So, the lines /5, m,, {,, m, cut out four points on H with cross-ratio equal
to —1 (5.9). Similarly, the lines /,, m,, [, m, cut out four points on
{r,,ry> with cross-ratio —1. Consider the pencil of divisors a+ f§ of
degree 2 on H such that the cross-ratio (/,nH, 2, l,n H, B)=—1, and
another pencil characterized by the condition that the cross-ratio (/;~ H,
a, [y H, B)y= —1. These pencils are different since {/,,{,} # {/3./,}. Their
intersection is equal to the divisor m, n H + m, n H. Now, for the pencil of

FIGURE §
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quadrics on H cut out by the polars P_ ,(F) with xe H we know that to
p, corresponds 2p,, to p, corresponds 2p,, and to ¢, corresponds
a+ f=m,nH+m,n H that is determined uniquely by the lines /,, /5, /;,
{, and H as above. So, the pencil is completely determined by the set of
polohessian triangles which is the data given by (S, #) via T,. Using (5.9)
this shows that P, (F) can be reconstructed from (S, 3). Now we have
M =(M"),,wM" and we have shown in (7.3.2) that the Scorza map Sc
is injective when restricted to M. If Fe(M"),, and F'eM, it is
impossible that Sc(F)=Sc(F')= (X, 3) since in the former case d(3)=1
and in the latter case d(J)=3. This proves the theorem.

(7.9) One repeats the argument from the proof of the Scorza theorem
to construct explicitly F. In fact, we reconstruct from (S, 9) a family of
anharmonic cubics {C(a)}, . where S'= {ae S: T(u) is reduced|. The
polar triangle of each such a cubic is the triangle T(«). Since S’ spans P~
we will reconstruct the linear sysem of polars

Ue V@ S\( V* )’
which arises from a symmetric tensor
Fe S'(V*)

representing our quartic curve F.
We return to another explicit construction for the inverse of the Scorza
map in Section 9.

(7.10) For every pair (S, %) in the image of the Scorza map, the value
of the invariant d(%) defined in (7.1.4) is equal to 1 or 3. The latter case
happens only if F is degenerate. In his proof of Theorem (7.8) (see Sect. 9)
Scorza implicitly assumed that for a general curve X there exists an even
theta characteristic 3 with d(3) = 1. This is not obvious and. in fact, follows
from Theorem (7.6). A priori, a pair (S, 9) with d(%)=2 may cxist. What
is an intrinsic characterization of special % for which d(4) = 3?

(7.11) COROLLARY. Let . #y be the moduli space of curves of genus 3,
and let . H be the moduli space of curves of genus 3 with an even theta
characteristic. Then My and . &Y are birationally isomorphic.

Proof. The Scorza map is PGL(}V)-cquiinvariant. Passing to the
quotient, we obtain the assertion.

(7.12) Remark. The previous fact is implicitly contained in [Mu]. The
question of rationality of either space is still open (cf. [Do]).
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(7.13) COROLLARY. The degree of the Clebsch covariant S,:
[SHV*)| ——— |S*(V'*) is equal to 36.

8. AN EXAMPLE

In this section, following [Ci5] we shall find all quartics F such that
S(F) is a fixed Klein curve with 168 automorphisms.

(8.1) We will need the following explicit formula for the values of the
covariant S, on quartics from the following family:

F=axi+bx}+exi+6/xIx3+ 6gx3x] + 6hx;x;.
We have (see [Sa2, p. 270])
SF)y=a'xi+b'x]+ X3+ 6f'x]x3+6g'xx7 + 6h'x] X7,
where
Q=68 b=6hY% =61
[ =bcgh—[(hg® + ch®) — ghf?
g’ =acfh—g(ch® +af*) — fhg?,
h' = abfg — h(af* + bg*) — fgh”.
(8.2) Let C be the Klein quartic given by the equation as in (6.1.1):
XoxX;+XIx, + x3x,=0.

We claim that its covariant quartic S(C) coincides with C. In fact, if Fis
given by an equation of the form

F=Ax}x, + Bxix,+ Cx3x,,
then
P (F)=ay(3Ax2+ Cx3) +a,(3Bxix, + Ax)) + a,(3Cx2 + Bx),
and, applying the formula for I, we find
I,(P,(F))=ABC(Aa}a, + Ba}a, + Casa,).

Thus, replacing (4, ¢,, -} by (x4, x,, x5), we find an equation of the
covariant quartic S(F)

S(F)=ABC(Ax)x,+ Bx]x,+ Cxix,)
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In particular, if A= B=C, we obtain S(F)= F. Note that if (' is the value
at C of some covariant or contravariant of degree 4, then (’ is projectively
isomorphic to C. Indeed, it is well known that every plane quartic with 168
automorphisms is projectively isomorphic to the Klein quartic [Bur,
p. 3647]. Much more non-trivial is the fact that S(F)= F if and only if F is
a double conic or belongs to the PGL(3)-orbit of the Klein quartic [Ci4].

(8.3) Following [Ci5] we shall find quartics F such that S(F)=C.
According to Theorem(7.6) we expect to find 36 such curves F. They
correspond to even theta characteristics on C. We have found already one
such curve, the curve C itself. This defines an even theta characteristics 3,
which is invariant with respect to the whole group of automorphisms G
of C.

Consider the family of plane quartics from (8.1) with a=bh=¢ and
f=g=h

F,=xj+ X} + x5+ 6Ax5x] + X557 + X7 x3). (%)

Every curve from this family is invariant with respect to the octahedral
group O,, of order 24 that consists of transformations (x, y,z)—
{+x,, +x,, £x;) and permutations of the coordinates. It 1s easy to see
that every plane quartic invariant with respect to this group of transforma-
tions belongs to the above pencil. It 1s well known that O,, has only one
isomorphism class of 2-dimensional linear projective representations. Since
the group G = Aut(C) contains a subgroup isomorphic to O,,, the Klein
curve C is projectively isomorphic to a curve F, from pencil (). Since
S(F,)=F,, using the formulae of (8.1) we easily find:

2.

6i7+ A7 +2,—1=0.

One of the solutions is 4 = 1/3; it gives a double conic. Two other solutions
are

—1+i7

/‘\v:
4

Then F, is invariant with respect to the following transformation of
order 7:

(X0s X10 X2) = (= A(x; — X0) + 232, — A(Xg = X)) + 2X5, A7(xg + X))

So each of the two curves is projectively isomorphic to the Klein curve C.
We fix one of them, say corresponding to Z=(—1+ \/7),%4. Now we shall



POLAR COVARIANTS 293

try to find F among the curves of the family from (8.1). If S(F)=F, we
must have:

This implies
[P=gt=h (%x)

If f=g=h, then a=bh=c, and we get that F=F,_, where

"o
6ui+p+2u—1=0.

This gives two solutions for x. One is p=4 that has been already
accounted for. The second is

5—i7
=6

The corresponding curve F, is invariant with respect to the octahedral
group so that its G-orbit consists of seven curves each having C as its
covariant quartic. There are two conjugacy classes of octahedral subgroups
in G (see [Bur]). So we must have seven more curves F with S(F)=C.
Since any two octahedral groups are conjugate in PGL(3), there exists a
system of projective coordinates (), ¥,, ¥») such that F and C can be
written in the form

Yo+ vt i uriyi+ai i+ i) =0.

As above C corresponds to the value p=(—1+i \/‘7)/“4 and F corresponds
to the value p'=(5+ 1'\;""7)/’16. It is easy to see that y=(—14+,,/7)/16 and
i =(5+1i./7)/16 (otherwise the transformation x — y leaves the original
Klein quartic invariant). Furthermore the second group of seven projec-
tively equivalent quartics is not projectively equivalent to the first one.
Now we shall consider the cases when f=g = —h, and so forth. Then

—ac+hla+ )+ hr=ab—hla+b)—h> = —bc+hb+c)+ 1 =6ih*;
hence
(a—b)h—c)=0.

The case h=c leads to 2h> =64k which is absurd since 4 # 1;3. So a = h.
and we obtain

(a/h)? = 2(a/h)— 1 —64i=0,
—(a/h)c/h) + (alh) + (c/h) + 1 - 61 =0.

607 98.2-11
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This allows us to find two solutions:

ath=(5+i7)/2, cla=—(1+3i/7)/4;
ath=(—1—iJ7y2,  c¢ja= 2.

One can verify that the first solution leads to an equation which is
invariant with respect to an octahedral group. This gives one of the 14
curves that have been found earlier. The second solution gives the curve

xo4xt—2xd b 6oy + XX —xix3) =0,
where f=(—1+ VG)/4. It is invariant with respect to a subgroup of G of
order 8. All subgroups of order 8 are conjugate in G, and this gives us 21
projectively equivalent curves F with S(F)=C. Now all the even theta
characteristics are accounted for. We have

36=1+7+7+21,

and this partition of 36 describes the decomposition of the set of even theta
characteristics into G-orbits.

(8.4) One immediately verifies that each curve F with S(F)= C is not
a Clebsch curve. In other words, C is not a Liiroth quartic. In fact, a Klein
curve does not belong to the closure of the locus of Liiroth quartics. This
immediately implies that the map given by the covariant S, is dominant.
This fact can be used for another proof of Theorem (7.6).

(8.5) Remark. The existence of an invariant even theta characteristic
on a Klein curve can be verified in various ways. We refer to [Bu] for one
of them. Another way is to use the representation theory of G=SL(2, F,)
to construct a G-invariant net of quadrics in P*. Its Hessian (C, 3) is a
Klein curve with a G-invariant even theta characteristic.

9. CANONICAL CURVES AND QUARTIC HYPERSURFACES

(9.1) Let (X, 3) be a pair consisting of a non-singular canonical curve
XcP? '=P(V), V=HX, ¢,(K\))* and a non-effective theta charac-
teristic 9 on X. Assume the following properties are satisfied:

(Al) d(3)=1.
(A2) Let T,eDiv(Xx X) be the correspondence on X defined in
Section (7.1), and let

I['(3)={HeP* ':Hisaface of some J-polyhedron of X



POLAR COVARIANTS 295

be the image of the map n: T, > P= ', (q, ) (T,(a)—p, >. Then I'($)
is not contained in a quadric.

(A3) T, is reduced.

In the case g=3 this is satisfied for any pair (X, 3) with d(3)=1, in
particular for any pair which is the value of the Scorza map at a non-
degenerate quartic F (see (6.3.1)). Indeed, it suffices to show that
deg I'(3) < 6 because in this case the dual cuve X is of degree 12 and hence
cannot be contained in I(3), and so for general a€ X none of the sides of
T{a) are tangent to X. By (7.1.3) we obtain (A3). Since 4(3)=1 we obtain
using Corollary (7.1.7) that deg 7(3)=6. Then (A2) is fulfilled as well.
Now let us prove that deg I'(:3) < 6. Consider the universal family 7" — M<"
of plane quartics with even theta characteristic. Using a relative version of
(7.1) one can define a relative correspondence 7 € Pic({# x 5 4') by the
pull-back of the relative theta divisor. One defines as in (7.1.4) a relative
Gauss map. Let Uc M be a Zariski open subset that consists of pair
(X, 3) = Sc(F') for non-degenerate quartics F' (7.6). For such (X, 3) the
curve I(89)" 1s of degree 6 (see (6.3.1)). By specialization for every
(X, 3)e M the curve I'(3)' is the support of a divisor of degree 6; therefore
deg /'(9) < 6. This proves the assertion.

Next we shall discuss a remarkable contruction of G. Scorza that assigns
to each pair (X, &) satisfying (A1)-(A3) a certain quartic hypersurface in
P#- ! In case g =3, this construction gives the inverse of the Scorza map.
Naturally, his construction assumes that the set of such pairs (X, 3) is not
empty. This is true for g =3, but we have not been able to verify it for
g>3.

This makes all the results in this section (except when g =3), as well as
in [Sc3], conditional. From now on we shall assume that (X, 3) is a pair
satisfying (A1)-(A3).

(9.2) ProPOSITION. Let H be a hyperplane such that the divisor
HnX=q +...4+ ¢, ,€|Ky| is reduced. Then the g(2g — 2) faces H, of the
J-polyhedra T ,(q;), i=1, .., 2g—2, are cut out by an enveloping quadric Q
in B# '

Proof. Let H be a common face of two non-degenerate polyhedra T ,(a)
and T,(b). By Lemma (7.1.1) H cuts out X in the union of two divisors
m+...+p, and r+..+r, |, where T, a)=b+p +..+p, |,
T,b)=a+r +...+r, ,. Then the hyperplanes passing through the point
a (resp. b) contain the remaining faces of T,(b) (resp. T,(a)). One easily
checks that each face of T,(r;) and T,(p,) contains one of the points a, b.
Since deg(/(9))=g(g— 1) (7.1.7), the assertion is true; the needed quadric
Q is the union of two hyperplanes H, and H,.
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Let p:T,->X<P* ' be the canonical projection and let
T, 1($Hc P '=|K,|* be as in (9.1). We can interpret the previous
observation as follows. Let He[l(%), D, |K,| be the corresponding
canonical divisor, and let p*(D,) be its pre-image under p. Then
n, p¥(D, ) is cut out by some quadric Qe |("s, :(2)]. Let U be the Zariski
open subset of P* ! which consists of hyperplanes H such that p*(D,,)
does not contain singular points of 7,. By Lemma (7.1.3) each hyperplane
H not containing a branch point of the map p belongs to U. Let
Div*t¢ D([(3)) be the variety of divisors on /(3) with support outside of
the singular locus of 7(#). The variety W< Div*® "(I(3)) of divisors
D,=mn,p*(D,). Hel, is unirational, and hence spans a linear system
L=g%, . , ofdivisorson I'(§). We want to show that L equals the restric-
tion of the linear system |€, 1(2)| to the curve 7(3). Let £ P* '— L be
the map // — D,,, and let 7 be a general line in P¢ ' ie., a pencil of hyper-
planes in P* ' Let H,e /() be a common face of two polyhedra T ,(«a)
and T,(h). Then H, is contained in exactly two divisors D,, of the curve
f(3); they correspond to the two hyperplanes passing through « and A. This
shows that the pre-image (under /') of the hyperplane in L of divisors con-
taining H,, intersects y in two points. This implies that for any hyperplane
L'« L its pre-image under f is a quadric. This gives that the dimension
rof L is at most {g(g+ 1)—1. Now observe that L n[(,,,(2)| contains
the divisors D,,, where H is a face of a general 3-polyhedron T ,(«). They
are cut out by the quadrics Q= H, H,, (a, b)e T,. These quadrics must
span the space of quadrics in P* . If not, there exists a quadric in P¢ '
apolar to all quadrics /,H,. This would imply that for a fixed ¢€ X the
points he T,(a) lie a hyperplane. However (T ,(a))=P*% ' since
otherwise the theta characteristic 3 is effective. So, thanks to assumption
(A2), dim L " [C),,(2)] = dim [(p (2)]=3g(g+1)— 1. This forces L to
be equal to the restriction of the linear system [(x. 1(2)] to 7(3) which
proves the assertion.

(9.2.1)) Remark. We do not know whether the restriction homo-
morphism |Cs, (2)] = |€";,,,(2)| is an isomorphism. This is true if g=3
since 1(9) is a plane sextic.

{9.3) Let L be the restriction of [(4, (2)] to I'(¥) and let
£Pe oL

be the map H— D,, constructed in Proposition (9.1). As we saw in its
proof this map is given by a linear system of quadrics in P* ', and its
image spans the target space. Therefore, /' defines a projective isomorphism

[Ce (2)* = |SHV*) = |Cae (2) =[SV
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which can be lifted to a linear isomorphism:

[ SHV*) o> SV

We shall show that the inverse of this map is equal to the polarization map

SUV)— S V™), & — P, (F),

for a unique quartic hypersurface F.

(9.3.1) THEOREM. There exists a unique quartic hypersurfuce F in P5 !

such that the polarization map @ PL(F) defines an  isomorphism
S (V) - SHV*) whose inverse coincides with the map

A Coe 1((2)] =[Oy 1(2)]

defined on a general quadric H? of rank 1 by the formula

AH*Y=H,+ ...+ Hyyy 1)

where H,, .., Hy,, 1, are the faces of the S-polyhedra T ,(x)), x,e H X.

Proof. 1t suffices to show that the tensor Ulx, y,z, w)e
S} (V*)® S*(V*) defined by the linear isomorphism f ': S} (V) - S*(V'*)
is symmetric. Then it arises from the polarization of a unique quartic poly-
nomial F.

Fix a reduced &-polyhedron T, (a)=p,+..+p,, and let H =
{T,(a)—p,> beits faces. Then, as we saw in the proof of Proposition (9.1),
by definition,

AH})=H,H,.

Choose coordinates such that H, are the coordinate hyperplanes x,=0.
Then for any y=(4y, ... 4, )

4 (z A,x?) - (z /:,.u,>(z a,u,>,

where a = (4, ..., a, ). Therefore we have
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Thus U(a, v, x, x) can be considered as a polarization of a unique cubic
K(a)= Ula, x, x, x). Therefore, the tensor U(x, y, z, w) is symmetric in
v, Z, w. Since it ts symmetric in x, y and in z, w, we find that it is symmetric.

(9.4) DerNiTiON.  The unique quartic F attached to a pair (X, %)
satisfying the assumptions (A1) (A3) is called the Scorza quartic of the
pair (X, 9).

(9.4.1) CoROLLARY. The image of the Scorza map contains all pairs
(X, 3) where X is a non-singular quartic and 3 is an even theta characteristic
with d(3)=1. For such a pair the Scorza quartic F is non-degenerate and
Sc(F)= (X, 3). It is the unique quartic with these properties.

Proof. We have shown above that the pair (X, J) satisfies (Al)-(A3).
The Scorza quartic F is non-degenerate since it is obtained from the
isomorphism S?(¥) — S*(V*). The map f: P? - |¢..(2)] assigns to a line H
its second anti-polar conic ¢ with respect to F. When H is a face of
a 3-polyhedron of X, @ =H,H, for some (a,b)eT,, implying that
P, ,(F)=H’ where He I'(P). This shows that S(F)> X. Now according
to (6.6.2) S(F) is a curve of degree 4, so S(F)=X. By the construction
of the Scorza map we have that Se(F)= (X, 3). If F' is another non-
degenerate quartic with Se(F')= (X, 3) then F= F' by (7.8).

(9.5) What is the special property characterizing Scorza quartics F? As
in (9.4.1) we verify that for any («, h)e T,

P, (F)=H"

where H e I'($). In the other words, the map n: T, » I'($) coincides with
the mixed polarization map (¢, b} — P, ,(F). Let N be the locus of quartics
with the property that the set

{(a,pye P "x P ' ek(P, J(F)) =1}
is a curve. The locus of quadrics of rank 1 is of codimension L g(g+1)—g
in the space of all quadrics. Considering the polarization map

P txPE |, ()] o e 1 (2)].

we easily find that the expected codimension of N in [(,. (4)] equals
1g(g+1)—3g+ 3. Since all Scorza quartics belong to N, a general quartic
is not a Scorza quartic for g > 3. If g =4, we expect that the locus of Scorza
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quartics is of codimension 1. What is this hypersurface parametrizing the
Scorza quartic surfaces?
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