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The number of the discrete samples for the dimensional 
measurement of  machined surfaces and their coordinates 
is investigated. Counter to intuition, there need not be 
quadratically more samples than in the case for sampling 
lines or curves. To justify this novel scheme, accuracy is 
defined as the discrepancy of a finite point set. Then, from 
number theory, a particular sequence of numbers is used 
to compute the sampling coordinates, resulting in a number 
that is linear in 1D, at the same level of  accuracy that 
is achieved by a 2D uniform distribution. Finally, 
experimental results of  the measurement of  machined 
surfaces modeled as random processes are compiled. 

coordinate measurement, optical scanning, surface roughness, low- 
discrepancy point sets 

While machined surfaces are 2D, topologically, the 
characteristics of the features can be classified as 0D, 1D 
or 2D according to tolerancing standards 1-3. A 0D (or 
point) characteristic is a position (of the center of a hole, 
for example). 1D (or line) characteristics include 
straightness, circularity, the profile of a line, angularity, 
perpendicularity, parallelism, runout and concentricity. 
2D (or surface) characteristics include flatness, cylindricity, 
and the profile of a surface. Perhaps because of the 
predominance of 1D characteristics, most of the literature 
on measurement has been on 1D features ¢-11. This paper 
calls attention to the fact that 1D methods may not extend 
to 2D. A case in point is in the determination of 
cylindricity. Conventional wisdom suggests the sectioning 
of a cylinder, hence transforming a 2D problem into 
several 1D ones. Suppose that one inquires how the 
sectioning should be done. (Clearly, different sectionings 
will yield different results.) Uniform and random 
sectioning are typically the answers. Suppose that one 
pushes a step further by asking how many such sections 
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should be taken. Those who are analytically inclined may 
suggest a number such as two (with the reasoning that 
the axis of a cylinder is a line, and two points that are 
the derived centers of circles should suffice). Practitioners 
of metrology, however, may suggest a number greater 
than two (with statistical significance in mind). 

Perhaps equally disturbing, there is no concensus 
among the suppliers of equipment. In one report, 
coordinate-measuring machines (CMMs) by five different 
vendors were benchmarked 12. The results disagreed by 
as much as 50%, leading to the implication that good 
parts may be rejected and bad parts may be in service. 
This phenomenon was subsequently termed the divergence 
of methods 13. 

There are three places where 'methods '  are invoked 
in surface measurement: for data sampling, for data 
fitting, and for data comparison. The second section of 
this paper reviews these methods, and brings out the 
source of divergence: distance, and the choice of a metric. 
The third section clarifies the criteria in sampling as 
accuracy and time. On the basis of the work by a Fields 
medalist, accuracy is expressed by a mathematical notion 
called the discrepancy of a finite set of N points for which 
a lower bound exists 14. Time can therefore be quantified 
in terms of N. Then, a sampling strategy based on the 
Hammersley sequence 15 is compared with uniform 
sampling. It shows a remarkable improvement of nearly 
quadratic reduction in the number of samples, and hence 
units of time, while maintaining the same level of 
accuracy. (Loosely speaking, a quadratic reduction of 
250 000 points yields 500. ) Finally, the implementation 
of the algorithm and the simulation of inspection on 
machined surfaces are reported on. The results confirm 
the theoretical prediction. This paper thus contributes to 
the convergence of sampling methods for surface 
measurement. It answers the fundamental question as to 
where the samples should be located on a surface. 

DISTANCE AND METRIC 

Distance is the basic element in computational 
metrology. Consider the familiar Euclidean distance 
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between two points (xl,  Yt, zx ) and (X2, Y2, Z2)" For each 
of the coordinates, the difference, e.g. (xl - x2), is first 
captured. Then, the differences are squared and summed, 
and a square root is taken over the sum: 

d2 = [(xl  - x2) 2 + (Yl - - Y 2 )  2 -~- (Z1 --Z2)2] 1/2 (1) 

The metric applied to Equation 1 is the so-called L2 
metric, and it has the general form under the Lp metric 16 
of 

d p =  [ lx l  - x2lP .-F lyt - yzlP-b lzl - z2lP] zip (2) 

The absolute value is taken so as to accommodate the 
odd and even nature of the exponent p with respect to 
the sign of the differences. When p >i 1, one finds a variety 
of distances, each having its own merit. In particular, 
when p = 0% Equation 2 becomes a mechanism for 
selecting the largest of the three components, as 
supremum, or the maximal element in the set: 

do~ = sup[}xx - x2l ,  [Yl - Y2I, IZl - 22[]  (3) 

The transition from Equation 2 to Equation 3 can be 
understood by assuming that one of the terms, say 
l Yl - Y21, is the largest of the three. Dividing the entire 
right-hand side of Equation 2 by this term yields 

[LXly ,  y~21/ + \IY, Y21/ 

+ lYl - Y21P~ (4) 

The first and the third terms of Equation 4 vanish when 
p becomes very large, hence effectively rendering the 
supremum as in Equation 3. Figure 1 shows the various 
dps. 

The basic idea in data fitting is that of an elevation in 
dimensionality. Sample points are not only numerous, 
but also OD. By fitting a curve through points, or a 
surface through curves, and hence elevating the 
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Figure 1. Relative importance o f  individual parts o f  
Equation 4 for  various p 
[ a : p =  l ,b :p=2,  c:p=3, d:p=4, e:p=30.] 

dimensionality, two objectives are achieved. First, the 
size of data storage is reduced, for later algorithmic 
processing. Second, a group behaviour emerges, for 
interpretation and decision making. Having seen that 
distance can adopt infinitely many measures, it should 
not be surprising that there are a variety of algorithms 
for elevating the dimensionality of point data by fitting 
them into curves and surfaces 4'6'17. The word 'fitting' 
implies a preconceived notion of some ideal geometry. 
Indeed, there must be some polynomial of a fixed degree 
into which the data fits, because, otherwise, fitting 
becomes arbitrary. 

The kinds of ideal geometries in computer-aided design 
(CAD) are linear, quadratic, cubic and higher-degree. 
Examples of linear geometry are lines and planes, and 
examples of quadratic geometry are cylinders, cones and 
spheres. When the geometry is cubic or higher, there are 
few familiar shapes, with the possible exception of a torus 
(which can be used to blend surfaces as fillets). In CAD, 
these high-degree surfaces are called free-form surfaces. 
By virtue of the local control that the designer has of the 
shape, there are various interpolators 18, such as Hermite, 
Bernstein and other polynomials, giving rise to Coons, 
B~zier, B-spline and nonuniform B-spline curves and 
surfaces that are familiar to the CAD community. 

Conceptually, there are three basic criteria to fit data 
to these ideal geometries: extreme, through and offset. 
Data can be fitted so that they all lie on the inside (the 
material side) of the ideal geometry, or, conversely, on 
the outside, invoking the L~ metric. Inscription and 
circumscription are examples. Fitting an ideal geometry 
through the data, such that some data lie on the inside 
and others on the outside, gives a sense of an 'average'. 
The least-squares method (invoking the L 2 metric) is 
often used. When the mini-max method (invoking the 
L~ metric) is used, the (absolute value of the) maxima 
imply an offset, providing a connection to a 'tolerance 
zone '19'2°. To ensure that the surrogate geometry 
satisfies one of the three criteria, a distance function must 
be invoked, which can be linear, as in Equation 3, or 
nonlinear, as in Equation 1 or Equation 2. Thus, fitting 
algorithms are seen as linear or nonlinear optimization 
problems in general, whereby some form of a (linear or 
nonlinear) distance is minimized as constrained by an 
ideal (linear or nonlinear) geometry. 

After the data has been fitted, the surrogate geometry 
is compared with the ideal geometry. Here, again, the 
notion of distance must be invoked. For speed, one may 
choose the largest component, as in Equation 3, for an 
approximation to distance. For accuracy, the RSS 
distance as in Equation 1 is adopted. Recall that the 
objective of fitting point data is to elevate the 
dimensionality. Now that the 0D points have been raised 
to I D curves or 2D surfaces, the distance between the 
fitted and the ideal curves and surfaces once again invokes 
that of the points; to find the distance between two 
curves, for example, one computes the distance between 
a pair of closest points on the two curves, and treats it 
as the distance between the curves. Adopting the 
paradigm of the Lp metric, one can take the square, the 
cube and so on as distances. 
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Unlike fitting and comparison, the sampling of surfaces 
has an optimal solution, which is discussed below. 

SAMPLING METHOD 

Discrete sampling is inherently an approximation 
process. If the number of samples is infinite, one may 
imagine that the error in approximation approaches zero. 
However, when the sample size is finite, the error must 
be nonzero. This observation encourages two practical 
questions. First, for any sampling sequence of size N, 
how small can the error be? This question is answered 
below. Second, where should the N samples be located ? 
This is addressed in the second section below, in which 
a surface is assumed to be a unit square addressable by 
coordinates (s, t), where s, t ~ [0, 1]. 

Sampling accuracy 

It has been noted that, once a metric has been adopted, 
the variety of methods is reduced. However, this still 
leaves open the following question. Suppose that one 
adopts the L 2 metric, what is the best method for 
sampling? In the last section, the measure of 'goodness'  
has been subjective" taking the least of the squares or 
minimizing the maximum. This section reports an 
objective criterion for assessing sampling errors, and 
hence the accuracy. 

Roth established a lower bound in the discrepancy D 
for a finite set of N points, in d dimensions ~4" 

D ~ O ( N - l ( l o g  N (d-1)/2) ( 5 )  

The significance of Equation 5 is that the lower bound 
is expressed only in terms of N and d. Most important 
to dimensional measurement is that one can determine 
whether a finite set of samples of size N, giving rise to a 
discrepancy D, meets Roth 's  bound, hence giving the 
least amount of error possible. For  the calibration of the 
sampling sequences, to be discussed later, Roth 's  bounds 
in low dimensions are 

D ~ O(( log N ) u 2 / S )  d = 2 (6) 

D ~ _ O ( 1 / S )  d =  1 (7) 

Important as discrepancy is to surface measurement, the 
concept may be unfamiliar. An outline of the basic idea, 
with definitions 2~, is given in the Appendix. 

Sample size and locations 

The intuition that sample size is inversely proportional 
to error is confirmed by Equation 7, for 1D. However, 
as the dimensionality of the sample points increases, the 
discrepancy is also directly proportional to some power 
of the logarithm of N, as in Equation 6. The key question 
is that of whether there are points that approach or even 
reach Roth 's  bound, as in Equation 5. The answer turns 
out to be yes. 

Before going into sequences, a note on the utility of 
the samples is required. For  a surface under inspection to 
be visible to an inspection machine, the surface can only 
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be assumed to be single-valued; a command-coordinate 
pair (x~, Yi) is issued, and a value z~ is read. To choose 
freely between the pairs (x~, yg), (x~, z~) and (y~, zl), the 
command coordinate (s~, t~) is identified with the term 
'sample',  and hence d = 2. For  a point-sampling device 
such as a CMM, the sequence discussed below can be 
used directly as command coordinates. For  a line- 
sampling device such as a laser scanner, however, data 
is gathered in arrays. The following sequence can be used 
as a filter, by postprocessing a given array and selecting 
those points that are the nearest to the Hammersley 
coordinates. It is especially the latter, the filtering of 
optical data, that proves to be powerful, as shown in the 
last section of this paper. 

Sequences have been studied extensively over the 
years 21. However, it was van der Corput 22 who first 
arrived at a sequence with low discrepancy, using dyadic 
fractions. Roth ~4 extended the van der Corput sequence 
to 2D, and Hammersley 15 to d dimensions. The 
coordinates (s~, t~) of a Hammersley point in 2D are 

s i = i / U  (8) 

k 

t , =  ~ b~2 - j - '  
j=O 

where 

i~[0 ,  N - 1] 

N = total number of points 

k = l-log i] = ceiling of (log i) 

bj = binary digits for representing i 

As the binary representation of integers is used, the 
logarithm is taken to the base 2. 

Suppose that N = 10 Hammersley points are used for 
sampling. The procedure for computing the Hammersley 
coordinates is as follows: 

• Determine k." Since i~[0 ,  9], rlog i] = 4. 
• Determine bj: The 4 bit representations (b 3 b 2 b 1 bo) 

f o r i a r e ( 0 0 0 0 ) , ( 0 0 0  1) . . . . .  ( 1 0 0 1 ) .  
• Compute si: According to Equation 8, the si 

coordinates for the N = 10 points are 0/10, 1/10, 
2/10 . . . . .  9/10. 

• Compute t~." The binary representation for the t~ 
coordinate is obtained by taking the 'mirror image' 
of the binary representation for i about the decimal 
point. For  instance for i = 1 = ( 0 0 0  1 ) or sl = 1/10, 
the mirror image is (1 0 0 0) or t 1 = 8 / 1 6 .  For 
i = 7 = ( 0  1 1 1 ) o r  s 1 = 7 / 1 0 ,  the mirror image is 
(1 1 1 0)  or t7 = 14/16. 

The N = 10 Hammersley points are shown in Figure 2. 
The 10 x 10 grid is to be interpreted as the locations for 
the 100 uniform samples. 

The discrepancy of the Hammersley points 15 in d 
dimensions is of the order 

D H - - - - -  O ( N -  1 (log N)d-  1 ) (9) 

which is off by a factor of one-half power as compared 
with the absolute lower bound established by Roth in 
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Equation 5. While slightly suboptimal, the Hammersley 
sequence shows a nearly quadratic reduction in the 
number of points needed by uniform sampling, for the 
same level of accuracy as measured by discrepancy. 

More precisely, it is known from Monte Carlo methods 
that, as the number of samples N approaches infinity, 
the error becomes indistinguishable from that of a 
uniform sequence 21. In particular, the error for a uniform 
sequence is O(N-Ud). To compare the number of 
uniform points Nu against the Hammersley points Nn, 
suppose that they yield the same discrepancy in 2D: 

1 1 
- log N H (10 )  

N 1/2 Nn 

It becomes immediately obvious that there are almost 
quadratically as many Nu as there are NH: 

= (11) 

A graph of the relationship between N u and Nn is given 
in Figure 3. 

IMPLEMENTATION 

The confluence of mathematics and metrology has many 
bridges that are yet to be established. There are needs 
relating to the characterization of errors in the 
kinematics and dynamics of the measuring machine 23, 
the environmental factors such as the temperature 
gradient 24, and the manufacturing processes that create 
the workpiece. Since this paper deals with sampling, it 
is not desirable to lump all the contributing factors into 
one. To this end, an ' ideal '  measuring machine is 
assumed, and machined surfaces are simulated as random 
processes 2 s. 

Not only because random processes offer lst-order 
(mean), 2nd-order (variance) and higher-order statistics 16 
that capture ensemble behaviors of machined surfaces, 
as evidenced in a beautiful catalog 27, it turns out that 
random processes also provide a crucial link of Roth 's  
bound and Hammersley's  sequence 2s. In proving the 
average time complexity for multivariate integration, 
Wozniakowski 29 modeled continuous functions as a 
random process and used the Hammersley sequence for 
sampling. 

Here, machined surfaces are simulated by two models : 
the Wiener model and the Gaussian model. For each of 
the two surface models, the uniform and the Hammersley 
points are used as samples so that their (respective) 
accuracies can be assessed. Consider the average 
roughness of a surface R a. This is defined 3° as the average 
heights h at a point (s, t) on a surface approximated by 
N discrete measurements: 

fo;o R.= Ih ( s , t ) l d sd t=~= Ih(p,i, p,)i (12) 

where P,i is the s coordinate of the ith point in a sequence 
of N points. (The absolute value is taken on h(s, t) in 
Equation 12 so as to ensure that the asperities do not 
cancel out. ) Calling the difference between the two sides 
of Equation 12 the error, 

e(N, pi)= Ih ( s , t ) l d sd t -~ i= l  

(13) 

The root-mean-square error (RMS error) in surface 
measurement eRM s, by invoking the L 2 metric, is simply 

/~RMS = [e(N, pi)2f(s, t) ds dt (14) 

where f(s, t) is the probability density function for the 
Wiener or the Gaussian distribution. The sample points 
Pi in Equation 14 are not specified. However, it is 
desirable to use a set of points having an eRMS which is 
as small as possible. Here is where the Hammersley points 
come in, associated with which is the notion of 
discrepancy. To use the Hammersley points for sampli',;.,. 
the discrepancy of a point set and the RMS error , ,  
measuring surface roughness must be established. This 
is done in Reference 31. 
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Figure 4 shows 32 Hammersley points superimposed 
on a Wiener surface and on a Gaussian surface. It may 
be seen that the Wiener surface is smooth and periodic, 
simulating single-point rotary cutting. The Gaussian 
surface is more textured and independent, simulating 
such processes as electrodischarge machining or sand 
blasting 27. 

A number of experiments have been conducted to 
assess the accuracy of the Hammersley points. The 
number of samples ranges from 16 to 15625, for two 
reasons. First, the uniform distribution of Nu = 10 x 10, 
25x25 ,  5 0 x 5 0  and 125x 125=15625 points are used 
as a benchmark. Second, the Hammersley points are 
chosen at N .  = 16, 32, 64 and 128 to approximate the 
nearly quadratic reduction in Equation 11.20 runs are 
made for each of the Wiener and the Gaussian surface 
models, and the RMS error using the Hammersley points 
versus the RMS error using the uniform points are 

a 
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Table 1. RMS error on Wiener surfaces 

Uniform Hammersley 

Number RMS error Number RMS error 

50 x 50 0.01414 64 0.00678 
25 × 25 0.03295 32 0.01081 
10 × 10 0.09469 16 0.01407 

Table 2. RMS error on Gaussian surfaces 

Uniform Hammersley 

Number RMS error Number RMS error 

125 × 125 0.02254 128 0.01766 
50 x 50 0.08092 64 0.04398 
25 × 25 0.06107 32 0.05453 

calculated on the basis of Equation 14. Table 1 shows 
the experimental results for the RMS errors for the 
Wiener surfaces, with correspondences in the reduced 
number of sample points. 

For  an approximately quadratic reduction in the 
number of points, the Hammersley samples are more 
accurate than uniform sampling. Results for the 20 
Gaussian surfaces are given in Table 2. For  an 
approximately quadratic reduction in the number, the 
Hammersley points are of the same order of accuracy as 
the uniform points. 

CONCLUSIONS 

This paper has introduced the application of the 
Hammersley sequence for surface measurement, hence 
bringing some convergence to sampling methods. The 
basis for the application of the Hammersley sequence is 
that it exhibits a discrepancy that approaches the 
number-theoretic limit asserted by Roth. Discrepancy is 
related to the RMS error in measuring average surface 
roughness. 

For point sampling, users of the CMM may wish to 
examine the reported strategy for random or uniform 
sampling. For  line sampling, practitioners in computer 
vision can note that a scan of 500 x 500 points can now 
be dramatically compacted to approximately its square 
root. 

b 
F i g u r e  4. Hammersley points on Wiener and Gaussian 
surfaces," ( a ) 32 Hammersley points on modified Wiener 
surface, ( b )  32 Hammersley points on Gaussian surface 
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APPENDIX 

Discrepancy 
In an effort to estimate surface parameters by using a 
discrete sample of points, it is convenient to begin in 2D. 
Suppose that there is a rectangular region with sides tl 
and t2, where 0 ~< tl ~< 1, 0 ~< t 2 ~< 1, and one wishes to 
estimate the area. One estimator is to sample in the unit 
square at points pl, P2 . . . . .  PN, where p~ = (s i, t~) and 
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i ~ [ 1, N],  and count the number of points that are in 

area = tl * t2 ~ ~ )~(Pi) (15) 
i= l  

Here, )~(p~) is the characteristic function indicating 
whether or not a point p~ is in the region: 

Z ( P l ) = { ~  otherwise(Pl)isintheregi°n (16) 

The error, called the residual, is 

residual = t 1 • t 2 - ~ X(Pi) (17) 
i=1 

Generalizing Equation 17 to d dimensions, whereby the 
unit square becomes the unit hypercube I d =  [0, 1] d 

Dimensional measurement of surfaces and their sampling 

parameterized by t, the residual becomes 

R ( t , N , p , ) =  ]-I tk-- Z(P,) (18) 
k=l  N I = I  

The discrepancy in the L 2 norm, o r  L 2 discrepancy, is 
defined as 21 

o=={f,, [R(t,N, pl)]2dt} 1/2 (19) 

Roth 1~'a2 established the lower bound on the L 2 
discrepancy as 

D E >1 kN- 1 (log N) (a- 1)/2 (20) 

where the constant k is in terms of the dimension d only. 
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