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We examine some efficient numerical approximations for hyperbolic
systems of conservation laws. The approximations are constructed by
hybridizing simple, accurate centered difference schemes (for use in
smoaoth regions), with sophisticated shock capturing schemes (for use
only in narrow zones near shocks and other singularities). The switch-
ing strategies we consider are very flexible in allowing one to choose
schemes independently for different regions of the flow. The resulting
hybrid schemes need not be conservative. Bul numerical examples in
one dimension demonstrate that if the switching strategy is cautious
{e.g., if switching is prohibited too close to shocks), then high
accuracy can be achieved for both shock speeds and smooth regions.
For one switching strategy in particular it is easy to prove convergence
to the entropy solution.  © 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper we consider numerical schemes for systems
of conservation laws of the form

u,+ flu) =0 (1)

Solutions of (1) typically develop discontinuities, for which
standard formally high order accurate schemes based on
centered differencing produce ruinous oscillations and
unphysical solutions. Conservation-form schemes which
approximate shocks well without oscillations are hard to
design for high accuracy in smooth regions. In recent
years a number of successful schemes (e.g., TVD and ENO
schemes) have been designed which in practice exhibit
desirable properties such as; narrow numerical shock zones
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without overshoots or undershoots; formal high order
accuracy in smooth regions; and convergence to the physi-
cally correct discontinuities satisfying an entropy condition
(cf. [9, 11,16, 18,5,10]). But while these sophisticated
schemes work well near shocks, they pay a performance
penalty, since their shock-handling features are used
everywhere in the grid, Especially expensive are the fieid-by-
field decompositions computed at each point in order to
obtain upwind differencing.

A natural approach to improving efficiency is hybridiza-
tion: Use a cheap, accurate centered difference scheme in
smooth regions, and switch to a sophisticated shock-captur-
ing scheme near discontinuities. Many of the schemes men-
tioned above incorporate a hybrid principle in their design,
tn order to obtain stability near shocks and accuracy away
from shocks. By and large, however, efficiency remains dif-
ficult to achieve for accurate schemes in conservation form.
It is comparatively easy to design an efficient nonconser-
vative hybrid—one can switch between completely different
schemes at adjacent points on the grid. But past experience
and theory have indicated that such nonconservative
hybrids produce poor approximations to weak solutions,
usually vielding errors in shock speeds of the order of 10%
(cf. [20, 21]).

Here we propose that an appropriate choice of switching
strategy can overcome this problem in nonconservative
hybrids. We find that if switching between schemes is mini-
mized, and not permitted in shock zones (where conserva-
tion form remains important), good performance can be
achieved with great flexibiiity in the choice of schemes and
the hybrid design. A key idea is to distinguish between
detecting and defining shock zones. Shocks (and other
singularities) are detected when a smoothness indicator
exceeds some threshold value. But simple indicators often
vary above and below threshold in an irregular pattern near
a single shock. It makes sense to smooth this pattern in
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order to define the shock zone. Moreover, a cheap scheme
may have a wide stencil, rendering it inaccurate (or
untrustworthy} within a certain distance from the shock,
This suggests that the shock zone, defined as the zone in
which the good shock-capturing scheme is used, should be
sufficiently broad so that switching occurs where both
schemes are performing well.

Based on the ideas above, in this paper we describe some
simple ways of combining existing schemes, in order to
achieve efficiency and accuracy in smooth regions, while
retaining stability and resolution in shock zones. We
describe a number of such schemes that perform well on test
problems in one dimension and note that the concepts can
be easily extended to the multidimensional case, where the
efficiency considerations are expected to be most relevant.

For example, in Section 2.3 we describe a scheme, which,
in smooth regions, uses fourth-order centered differences in
space and the Runge-Kutta method in time. This part of the
comptation can be vectorized, and the time step can be
taken (wice as large as is usually possible. (The maximum
CFL number for linear stability of this scheme is about
twice that of many traditional schemes.) In the shock zone,
the values from this cheap scheme are simply discarded, and
an appropriate upwind method is used. The upwind scheme
may be difficult or impossible to vectorize, but it need only
be computed at the relatively few points in the shock zone.
We give several numerical examples to show that this
hybrid can achieve high accuracy in smooth regions while
computing accurate shock speeds with the same resolution
as the upwind scheme, despite the lack of perfect conserva-
tion form.

Another nonconservative hybridizing strategy that per-
forms well is described in Section 2.4, In smooth regions, we
start with a semidiscrete scheme that uses fourth-order cen-
tered differences in space and is continuous in time. In shock
zones, this scheme is replaced by a flux-based fourth-order
ENQO scheme of Shu and Osher [18], which is also
continuous in time. The resulting combined scheme is
discretized in time using a Runge-Kutta method. In this
approach, the programming difficulty in constructing a
hybrid is reduced, since the same time discretization is done
for both component schemes; also, significant components
of the computation should be vectorizable.

The ideas developed here can also be applied to obtain
some efficient hybrid schemes in conservation form. In
Section 3 we show how to modify the Shu-Osher ENO
scheme to build a semidiscrete conservative hybrid which
uses simple fourth-order centered differences in smooth
regions while retaining full fourth-order accuracy when
switching occurs.

A traditional method of efficiently computing flows
with shocks is to modify a simple higher order accurate
conservative scheme to include sufficient dissipation
that undesirable overshoots in shocks are eliminated and

unphysical shocks prevented. In the large scale computa-
tions of Jameson [13], dissipation is carefully added in
conservation form in a hand-tuned, solution-specific fashion
near shocks only, leaving the basic fast second-order scheme
undisturbed in smooth regions. Field-by-field decomposi-
tions are not required at all in this approach, A different
approach to improving efficiency has been suggested by
Engquist er @l. [8]. These authors introduce conservative
nonlinear filters to postprocess at each time step the result
of using a high-order-accurate centered scheme. The filters
are designed simply to obtain an oscillation-free solution.
In practice they are activated only in shock zones, so field-
by-field decompositions can be avoided in most of the grid.

2. NONCONSERVATIVE SWITCHING
STRATEGIES

In this section, we describe four nonconservative
hybridizing strategies, ranging from a very simple strategy
for which a convergence result can be proved, to more
practical and efficient strategies. All the hybrid schemes
we present update the solution at each grid point by making
a simple choice between two schemes (or among several).
The differences lie in the selection of component schemes
to hybridize, and the switching strategy used to make the
choice at each grid point.

The first two strategies we present basically rely on trun-
cation error estimates obtained by comparing different
schemes. Recognizing that such error estimates essentially
serve to detect shocks, but perform badly when used
pointwise to define shock zones, we are led to construct a
switching strategy based on a rather simple shock zone
detection/definition algorithm. This algorithm amounts to
detecting shocks by using a smoothness indicator, and then
defining the shock zone to include any grid point where the
smoothness indicator fails, pius a buffer zone of a few grid
points on either side.

We describe and test two hybrid schemes based on this
strategy, a fully discrete hybrid and a semidiscrete one. The
latter has the advantage that it is easier to program in
combination with a high order accurate ENO scheme. The
numerical tests aim to show that shock speeds can be com-
puted accurately, while using a cheap, accurate scheme in
smooth regions, despite the fact that the hybrid scheme
overall is not in conservation form.

2.1. Simple Hybrids

Suppose u is a scalar. Given grid increments Ax and Az,
u; denotes an approximation to u(j4x, n At). A one-step
scheme may be denoted by u7*'=G(u"),. Given two
schemes G, and &, a very simple nonconservative hybrid
scheme &, can be constructed as follows: At time level n,
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determine switches s;(«"} (with values 0 or 1) and define the
hybrid scheme by

[ Golu™),

uw_1+l = GH(HH)-= J

f 7 LGl(u")j

if 5,=0
if s;=1 (2)
The hybrid is determined by the choice of the schemes Gy
and G,, together with the switching strategy. A class of
simple hybrids which can be shown to converge to the
entropy solution arise when G is a monotone scheme, G, is
arbitrary {it may not even be a one step scheme), and the
switching strategy guarantees that the hybrid is a small
perturbation of G,. For example, the switches can be
determined as follows: Let r be a positive function such
that r(4x} — 0 as Ax — 0, and choose

0]
=14

Thatis, 5,=01if G, and G, “agree” at grid point f, and s5; =1
if they “disagree.” Then Gp{u"),= Go(u"),+ 5,(G,(u"),—
Gy(u");), and we have

it |Golu™);— G {u");| < 4t r(4x),

it 1Go(u™);— G (u"), | > At r(dx). G)

[Gutu”); — G(u");] < At r{4x). (4)

For this class of simple hybrids, we have

THEOREM 1.  Assume that the monotone scheme G| has a
Jfinite stencil of width 2P+ 1, ie,
Gi(u)e =G, (o), i uj——-vjfor lk—jI<P.
Assume Atjdx = co> 0. Let u} be determined by (2) and (3)
above, and let v} be a solution obtained by the monotone

scheme alone, so that v}*'=G,(v"),. Then so long as
ndt<Tand (2g+1)Ax < L, we have

Y i —vildx<s Y

lil=q il <q+nP

luf —o?| Ax+ C(T, L) r(4x),
(3)
where C(T, LY= (L +2PT/cy)T.
Proof. By (4) we have
Y luf—ufldx= 3 1G4 ™Y, = Gi(" 1), dx

lil=q (ST

= Z !Gl(un_t)j_Gl(Un_l)jl 4x

il<q

+ A4t r{dx)(2g + 1) Ax.

Define #/~'=u!"" for |j|<g+P, =0 for |j|>g+P,
and similarly define 7' Then G,(u" '),=G,(@" "),

for |j|<g, and similarly for » sc since G, is an
{,-contraction [77], we have

z |Gl(un_1]j_Gl(U"_l)f| Ax

1/l<q

SYIGE )= G (F" )| 4x
7

<Y la =5 Ax
J

= ¥ luTt—erax
lsa+ P

By induction the estimate (5) follows.

Closely related to this result are remarks of Shu and
Osher [18], who describe some “essentially conservative”
ENO schemes which differ from the Lax—Friedrichs scheme
by O(4x?). Shu and Osher remark that such schemes yield
every convergence property that the monotone scheme has,
full convergence in multidimensional scalar problems to
solutions satisfying the entropy condition. More precisely,
our Theorem |, which may be easily extended to the
multidimensional case, yields convergence of the hybrid to
the entropy solution in L.

Also highly relevant is the work of Cockburn [3].
{See also LeRoux [147].) In [3], Cockburn describes how
to combine numerical fluxes for two conservative schemes, -
the first an arbitrary three-point monotone scheme and
the second scheme arbitrary, in order to obtain a
“quasimonotone” scheme which is proved to be TVD and
convergent to the entropy seclution. Cockburn shows that
if the numerical fluxes coincide with the Gudonov and
Lax-Wendroff respectively to two terms in a Taylor expan-
sion, then formally the quasimonotone flux will agree with
the second flux, in smooth regions, where x+— f(u{x, 1)) 15
monotone; hence the combined scheme will retain the full
accuracy of the second scheme,

2.2. Variable Order

At a practical level, the switching strategy in (3) is not
very successful. When the tolerance is sufficiently stringent,
shock speeds are in fact computed correctly, and the
large errors traditionally associated with nonconservative
schemes are avoided. But in practice, one wants to use G,,,
typically a cheap, higher-order accurate scheme, for
accuracy in smooth regions. Then one should choose the
tolerance Atr(Ax) to be larger than O(4x7), the truncation
error of the monotone scheme. If the tolerance is too lax,
switching may occur in the shock zome, creating larger
errors in conservation which lead to incorrect shock speeds.
In choosing the tolerance, there is a delicate balance which
can be difficult to achieve. In the course of a computation,
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a tolerance large enough to permit the use of G, in smooth
regions may be too lax to correctly track a weak shock.

Performance may be improved by a more sophisticated
switching strategy. One may argue that the high order
accurate scheme should be used only when justifiable, e.g.,
when an estimate of truncation error indicates that the
scheme is performing at its designed accuracy. The test in
(3) accepts the high order scheme too readily, rejecting it
only when it performs worse than a first-order accurate
scheme. This leads one to consider “variable order” hybrids,
with switching based on truncation error estimates, while
making sure that an estimate iike (4) holds to guarantee
correct entropy production.

Let us now consider in detail such a variable order
strategy, while noting that the switching strategies to be
discussed in Sections 2.3 and 2.4 are probably more prac-
tical. We will switch among the following schemes: Let
G p = Lax—Friedrichs scheme (a cheap monotone scheme),
G o = second-order Engquist—Osher scheme (or any higher
quality shock capturing scheme), G, = Lax-Wendroff
(a cheap second-order scheme), Ggy., Gris = fourth-order
centered differences in space, with fourth- and fifth-order
Runge-Kutta-Fehiberg time discretization, respectively.
We argue as follows, to determine which scheme to use at
any given grid point. Part of our motivation is to minimize
the use and computation of the expensive shock capturing
scheme: First compute the cheap schemes Grp, Gyw, Grkas
and Gggs everywhere in the grid. Now at each grid point,
compare G and G y,. Il they disagree at first order in the
grid size, a shock zone is detected. There we will choose the
scheme Gpo. Il G and Gy agree, compare Gy and Gpyy
at second order. If these disagree, this is a reason to believe
that the use of a cheap accurate scheme is not justified, so
again we choose Ggq. If G| y and Grg, agree, then compare
Gria and Ggys. (The difference is the estimate of the time
truncation error of Gy, produced by the RKF45 method.)
If these agree at fourth order, use Gyy,. Otherwise, use of a
fourth-order scheme is not justified, but use of the cheap
second-order scheme G|  is, 50 choose that.

In order to define the scheme precisely, let C,, C,, C, be
constants and define the switches:

5:{0 i 1GLp); — Gl 1 < Cidx? O
VUL 1G), = Grg(ut), | > € Ax?

_ {0 if {GLw(u"), — Grealu”);] € C, Ax°
= i ! s (D
1 if |GLW(u )j_GRK4(Nn)j| >C2 Ax
Sy = 0 i |Gres(”);— Grialu™);| < Cy AX° (8)

N 1 lr ‘GRKS(MH)j‘— GRKq(un]jl > C3 Ax5

The variable order hybrid scheme G, is defined by

GH(“”),;: (1 - 51;')(1 "'52,-‘)(1 - 5'3_;’) Gqu(“”)j
+(1 _Su)(l - Szj) S3_jGLW(u”)_,i
+ (51‘14'521‘51;'521') GEO(u")j (9)

This switching strategy ought to detect the different kinds
of singularities in the flow (shocks, rarefaction corners, etc.)
and choose between the expensive scheme Ggg and one of
the cheap schemes of “best” order in that region. Only when
difficult singularities are detected is it necessary to compute
the expensive scheme since only cheap schemes are used in
computing the switches. Since shock zones are only a small
region of a typical flow, this should be a cost-effective
strategy, especially for systems where ficld-by-field decom-
positions are part of any sophisticated upwind scheme.

ExamprLE 1. We consider the inviscid Burgers equation,

u.?
Y =0
“+(2)x

in the interval [ — 1, 1] with periodic boundary conditions
and initial data given by

09
uo(x)=x ——sin(2xx) + 1. (10)
2n

The solution exhibits a shock moving at constant speed
s5=1 and a “feature,” i, a smooth region where higher
derivatives become rather large. We seek to compute the
solution at time ¢=2.5. Compared to the standard shock
formation problem in Example 8 below, this problem is
somewhat more challenging, since the shock travels more
than a full spatial period, and a high order accurate scheme
is needed to resolve the “feature.” {Compare Fig. 3b.)

To compute the solution we use the variable order hybrid
described above with Ggya(e”); replaced by Ggys(u”), —
C, d1(4*u);, where 4*u is the fourth difference operator in
space. Without the fourth-order dissipation term the scheme
Gria(u™); tends to propagate the large errors produced in
the neighborhood of the shock with a speed smaller than
that of the shock and this causes the entire region behind the
shock to be polluted. The fourth-order dissipation effec-
tively eliminates this propagation of error in the scalar test
problems.

Wechose O =C,=Cy=5and C,=1and CFL # =038.
The computation used 80 mesh points and the results are
shown in Fig. 1 at time r=2.5. The solid line in Fig. la
represents the exact solution which was computed from the
formula u(x, 1) = uy(a), where a satisfies

(11)

x—tugla)=a

and we solved for a with a bisection method.
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FIG. 1. Shock with a feature for Burgers’ equation, computed with the variable order hybrid of Example 1: (2) Computed solution «; and exact solu-
tion w1, at t= 2.5, (b) logyp lu, —u(x;)} at 1 =2.5. (c) Schemes used at x; for every 20th time step: 1 =second-order Engquist-Osher; 2 = Lax-Wendroff;

4 = centered in x-RKF4%in 1.

In Fig. 1b we plot the base 10 log of the absolute value of
the error. In Fig. 1¢ we show the schemes used at each grid
point for every 20 time steps, where 1=Grg, 2=GLw,
4 = Griq- We note that the points where the Lax—Wendroff
scheme was used act as & buffer between the shock zone
where the upwind scheme was used and the smooth region
where the fourth-order centered scheme was used. It seems
that Ggy 4, which has a very wide stencil, fails the truncation
error test in the immediate neighborhood of the shock zone.
However, this region is smooth enough for the second-order
Lax-Wendroff scheme.

ExaMPLE 2. We consider the non-convex conservation
law (see Sanders [16]),

— ) Lo
RO PICINTIRES

in the interval [ —1, 1], with periodic boundary conditions
and initial data given by

1 if —05<x<(,
0 otherwise.

u(.¥,0)={

The same scheme and number of points as in Example 1 and
the CFL # = 0.9 were used. In Fig. 2a we plot the result at
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FIG. 2. The nonconvex problem of Example 2 cbmputcd with the
vartable order hybrid: (a) Computed solutions at r =04 with 80 and 1000
points. {(b) Schemes used at x, for every second time step, as in Fig. 1.
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time 1 =0.4. The solid line represents a computation with
1000 points and is our approximation to the exact solution.
In Fig. 2b we show the schemes used at each grid point for
cvery five time steps.

2.3. Switch Buffering

Much simpler switching strategies can be designed which
perform as well as or better than the variable order strategy
described abeve. One point of view is that truncation error
estimates or consistency tests as in (3) give means of
detecting shocks (or other singularitics). To minimize
switching near singularities, it seems appropriate to define
the shock zone, the zone in which the cheap scheme is not
used, as those grid points sufficiently near any point where
a shock was detected. To give a precise definition, suppose
for example that we first determine initial switches as in (3),

L if |Go(u"),— G (u");] < At r(dx)
U {1 il |Golu™),— G ("), > At r(4x),

1.25 . — v r T T . — v a

1.2F b

3 P . -

-1 08 06 04 02 0 0.2 04 0.6 08 i

where we recall that G, is 2 monotone scheme and G, is
arbitrary. For a given buffer size K, the final switches are
defined as

~j+p‘ (12)

The shock zone is defined to consist of the set of grid points
where s;= 1. The hybrid can now be defined as in (2) and
Theorem 1 still holds. In practice, simpler means of
detecting shocks prove to be very effective, such as using
smoothness indicators based on second or fourth differences.
(Extensive use has been made of such indicators in the past,
see [13,12].) For example, one could define the initial
switches §; as

(4%}, < C, A%

[(4%),} < C, 4x° (13)
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FIG. 3. Shock with a feature for Burgers’ equation, computed with the switch buflering hybrid of Example 3: (a) Computed and exact solutions at
t=2.5. (b) The second-order Engquist—Osher scheme alone. (c) log,, [;—u(x;)| at 1=2.5 for: O= Hybrid scheme from (a); + = second-order
Engquist—Osher alone, from (b). {d) Schemes used by the hybrid for every 10th time step: | = second-order Engquist-Osher; 0 = fourth-order centered

n x, Runge-Kutta in 1.
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or

.o if |[(4%),! <C, 4x?
Sj_{l it {(4%);] > C, A,
where (4%u);, (4*u), are, respectively the second and fourth
differences of u in space.

The “switch buffer” strategy indicated in (12) can
virtually eliminate the error in shock speeds due to loss of
conservation. The reason for this is that the switching is
minimized and occurs inside the smooth region. Buffering
can create a wide shock zone, though, so to achieve high
resolution inside the shock zone a good shock capturing
scheme is needed such as & MUSCL or ENO scheme.

Our suggested approach to hybrid construction allows
great flexibility in selecting efficient and accurate schemes in
smooth regions independently of the scheme used to treat
shocks or other singularities. For exampie, the scheme used
in Examples 3-6 below hybridizes Ggs =second-order
Engquist—-Osher scheme and Gy =fourth-order centered
differences in space with the classical Runge-Kutta time
discretization. But we take advantage of the fact that for
smooth solutions Gy is stable for CFL numbers about
double the largest stable CFL number permitted by Ggo.
The computations are performed using a CFL # = 1.6 for
Gryx and taking two “half” time steps with (g in shock
zones, with CFL # = 0.8, The resulting scheme is therefore

(14)

0.9
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FIG. 4. The nonconvex problem computed with the switch buffering
hybrid: (a) Computed solutions at =04 with 80 and 1000 points.
(b) Schemes used at x; for every second time step, as in Fig. 3.

a hybrid defined by (2) with the schemes G, = Ggg and
G, = Gggo Ggg. Hall the computational effort is saved in
smooth regions, at perhaps some cost in accuracy. But
perhaps also it is better to gain some accuracy in the shock
zone to balance resolution overall.

ExaMpLE 3. We consider the problem in Exampie 1.
The scheme used is the hybrid just described, with switching
based on fourth differences according to {14) and (12}. The
size of the buffer in (12) is chosen to be X'=3 and the con-
stant in (14) is C,=2500. The results are not sensitive to
small changes in these parameters. The result is shown in
Fig. 3a. For comparison, in Fig. 3b the result for the single
second-order Engquist—Osher scheme Gz, alone is shown.
In Fig. 3c we plot the base 10 log of the error for the hybrid
compared to that for Ggg alone. The schemes used at each
grid point by the hybrid for every 10 time steps are shown
in Fig. 3d, where 1 = Ggp and 0= Gy

Comparing with the variable order scheme (Fig. 1), we
note the slightly better performance behind the shock with
the switch buffer scheme. We found that this performance
difference grows if the computation is continued until the
shock becomes weak (f = 15 or s0). With the variable order
scheme, one begins to observe frequent switching at points
in the shock zone and some consequent loss of accuracy in
the position of the weak shock. With the switch buffer
scheme, the shock eventually becomes smoothed out and
too small to detect by (14), but Gk continues to track its
location accurately.

ExaMPLE 4. We consider the problem in Example 2 and
the same hybrid as in Example 3. The results are shown in
Fig. 4.

ExaMpPLE 5. We consider the linear advection equation

1

0.9¢

0.8}

0.7f

9.6

051

0.4

03

02F

O.F

-1 -03 06 04 .02 Q 0.2 04 0.6 2] !

FIG. 5. Linear advection of a step function after one period, computed
with the switch buffering hybrid.
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with initial values as in Example 2. The same hybrid as in
Example 3 is used and the result after one period is shown
in Fig. 5.

ExaMPLE 6. (Systems—gas dynamics.) We consider the
Riemann problem in one-dimensional gas dynamigcs, This is
a system of three equations in the variables p, pu, pE denot-
ing the density, momenturm, and total energy, respectively
(cf. [61),

pi+(pn) =0

(pu), + (pu* + p), =0
(pE), + (puE +up) =0,

where the pressure p is obtained from E= p/(y — 1)p + u?/2,
y= 14, which is the equation of state for a polytropic gas
(ck [6]).

We first consider the initial values proposed by Sod:

(1,0,2.5),
(0.125, ©, 0.250),

x<0.5

, pu, pEY(x, 0) =
{p, pu, pE)(x, 0) { 505,
For &, the second-order TVD scheme based on the Roe
solver denoted by Ggop, is used, with CFL # x~0.8. The
second-order accuracy is achieved by adding a limited
amount of antidiffusion to the first-order entropy-fixed Roe

a
1 1 " 0000000000000000000H000000000000O000E0C000011111111111110660000000000000000000C0B000E000C00000000000
Jr— Q0A0O00000000000000000000000000DENONG00001 1111111111111111100000000000G0000C00000000C00000000000000
0.8 0.8 fi 000000000000000000000000000000000000G00T L 111111111113111111110006000C000000000C0C0006000006000000000
LOU000A00DH0000000000000000C0000000G T 1111111111111111111 11111} IH0R0C00000000000G000C000000000000000
0.6 06 0000000000000000000D000000000N0000COL 1111 11111L111111111121111111110000000000000C0C 000
: : [0600000C000G000000000000000C0000011LIL11I1111LIL11112E11 11111111 141006060000000000000000008000000
M G000000000COR000C00000000000000011 111 111100000111311111111111111111111111000000000006660000000000500
04 04 0000800000000000R000G000E00000111 1111110000000011111110011111111111111111111006000600000000005000000
000000000000000000000000GE01 11111111000000000011111110001111111110011111111110000600000000000000000
0.2 0.2 09000000006000000000006000111 11111 100000060000011 1111000000011 111110001111 1111 110600000000005050000
0 L 0 g ' &
o 0.5 1 0 0.5 i
density velocity
1 T 3 . d
0.8 1.3 T 2 -
2.51 E !
0.61 : al ] 150 .
04F q oL 1k i
E
0.2F E 0.3,
— 0.5+ T
% 05 1 1 '50 '
X 0.5 1 0 . 0 . by
ressure internal ener; ¢ 0.5 1 0 0.3 1
P BY
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C
| T i T
0.8} 4 03| . 4 " 20 "
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10F E
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0 0.3 1 0 0.5 1
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0.8
2.51 R
G.6F
L
0.4 2l BOH000000006000000060C 0001111111111 1111111106000000000300000000060000000000000000000
Q00000000000 000000NGN! TI1111E11111111111111111111111000030000000000003000000000C0000000
0.2p 000000000000000C00020000000001 111 1111111211111100000111111111111111120000000000000300000000000000000
000000000000000G000600001 1 111111111111111110000060000001 1111111111111 1111100340000000000000060000000
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FIG. 6. The Riemann problem for gas dynamics with Sod’s initial vaiues and 100 peints, computed with the switch buffering hybrid of Example 6:
(a) Computed solution at t = 0.16 with 100 points. (b) Schemes used in (a) for every second time step: 1 =second-order Roe scheme; 0 = fourth-order
centered in x, Runge-Kutta in ¢. (¢) Computed solution at r = 0.16 with 200 points. The Riemann problem for gas dynamics with Harten’s initial values
and 100 points, computed with the switch buffering hybrid of Example 6: (d) Computed solution at ¢ =0.16 with 100 points. (e) Schemes used in (d) for
every second time step: 1 = second-order Roe scheme; (0 = fourth-order centered in x, Runge-Kutta in r.
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scheme (cf. [9,19]). The overcompressive “superbee”
limiter is used in the contact field for capturing sharp
contact discontinuities. In the genuinely nonlinear fields the
Chakravarthy-Osher limiter is used [197].

For G, the fourth-order accurate Gy, with a
CFL # ~ 1.6—twice the CFL number of Gpop— 18 used.
Thus two “half” time steps are taken in shock zones as in
Examples 3-5. Switching is based on second differences of
the control variable pE (replacing # in (13) by pE), which
permits one to detect the different types of singularities in
the flow, i.e., shocks, contacts, and rarefaction corners.

The size of the buffer X is chosen to be three and the con-
stant C; in (13} to be 1000/7. The algorithm is programmed
efficiently, i.e., the expensive scheme Gpee, is computed
only when necessary, which is at relatively few points.

In Fig. 6a the solution at time ¢ = (.16 (20 time steps ) with
100 points is shown. The solid line represents the solution
computed with G ez and 1000 points. The schemes used at
each grid point for every two time steps is shown in Fig. 6b.

097 L p

08 4

0.7

The detection of singularities in the flow is marked by
occurrences of ones, i.e., the points where Grgop, was used.
In Fig. 6c the solution with 200 points is shown.

Second, we consider the initial values proposed by
Harten:

x<0.5
x>0.5.

E)e. 0y (0445, 0311, 8928)
(ps pu pENX. 0= 5 0, 1.427),

The same hybrid and same parameters as in Sod’s case are
used. The result at r=0.16 with 100 points is shown in
Fig. 6d and the schemes at each grid point are used in
Fig. Ge.

The results in Example 6 indicate that the nonconser-
vative Grop,Gri hybrid tracks the discontinuities as well
as the Gyop, scheme alone (cf. [9, 19]). Le., the lack of fuil
conservation form does not appear to create significant
error in the shock positions.
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FIG. 7. Shock with a feature for Burgers’ equation computed with the semidiscrete hybrid of Example 7: (a} Computed and exact solutions at r = 2.5,
(b) logyp Ju,—u{x,)| at £ =25 for three hybrid schemes: O = semidiscrete scheme from (a); x =second-order Engguist-Osher—fourth-order centered
in x, RK in t; + = [first-order Engquist-Osher—fourth-order centered in x, RK in £. (¢} log o |u;— u(x;)| at # = 2.5 for three pure schemes: O = Shu-Osher
ENO in x, Runge-Kutta in ¢, » = second-order Engquist—Osher scheme; + = first-order Engquisi—Osher scheme.,
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2.4. Semidiscrete Hybrids

From the programming viewpoint, it can be simpler to
construct hybrids starting from two semi-discrete schemes

du . du,
—d—lf=Ku(u)j, 71’=K1(u),.

Determine switches using a smoothness indicator as in (14)
and a buffer as in (12) and solve

du.
d—“{’: Kylu); = Kolu); (1 —5,) + K (u); 5,

{15)
by an appropriate time discretization method. Here the
switches are taken to be determined at each instant of time
by u. Alternatively, one could compute the switches at dis-
crete times ¢, (perhaps every time step, perhaps less often)
and keep them fixed on the time interval r, <r<1t, ..

0.8

0.6

Q4

021

04

9 L . L .

-1 08 06 04 02 0 0.2 04 0.6 08 1

FIG. 8. Shock formation for Burgers’ equation computed with the
semidiscrete hybrid as in Example 8: (a) Computed and exact solutions at
r=L1.(b)log |, —u(x)| at t = 1.1.

ExaMPLE 7. We compute the shock with feature con-
sidered in Example 1. We use the schemes K = fourth-order
centered differences in space, K, = semidiscrete fourth-order
flux-based ENQ scheme of Shu and Osher [187], which will
be described in detail in the next section below. For that
scheme, the parameter o is chosen to be « =2.5. Equation
(15) is solved by the classical Runge-Kutta method, with
CFL # = (.8, determining the switches only at the begin
ning of each time step. A small amount of fourth-order
dissipation is added to the scheme K,. The switches are
computed by (14) with C,=5x10" and (12) with K=3.
We plot # vs x in Fig. 7a. The base 10 log of absolute error
is plotted in Fig. 7b, marked by circles. To compare similar
hybrids that use different schemes in the shock zone, we also
plot in Fig. 7b the results from Example 3 (marked by
crosses), the hybrid of the second-order Engquist-Osher
scheme, and the centered in space, Runge—Kutta in time
scheme, and also (marked by plusses), the resuit from
replacing the second-order Engquist-Osher scheme in
Example 3 by the first-order Engquist-Osher scheme. In
Fig. 7c the results of using the shock capturing schemes
alone appear: Shu—Osher (ENO) scheme (circles), second-
order Engquist-Osher (crosses), first-order Engquist-
Osher (plusses).

ExampLE 8. Consider the inviscid Burgers equation as
in Example | with periodic initial conditions
u(x, 0) =} + 5 sin mx. (16)
The exact solution is smooth initially, then develops a shock
at r=2/n which lies on the line x = —1 + ¢/4. We use the
same scheme as in Example 7, without fourth-order dissipa-
tion and with ¢ =1.2. The CFL # = 0.6, and C,=5x10°,
K =3, At r= 1.1 we plot the solutiont in Fig. 8a and the base
10 tog of the error in Fig. 8b.

3. A HYBRID IN CONSERVATION FORM

The main point of this section is to construct an efficient
hybrid scheme based on a numerical flux which switches
from that for a fourth-order centered difference scheme to
a fourth-order ENO flux, which is a modification of a
flux-based scheme of Shu and Osher [18]. The hybrid
retains full fourth-order formal accuracy both at extrema
and at points where switching occurs.

First, however, we describe a general way of constructing
hybrid schemes in conservation form by exploiting an idea
of Shu and Osher [18]. Related ideas have also been
developed by Cockburn [3]. Shu and Osher construct a
numerical flux which they observe is a O(4x?) perturbation
of the numerical flux of a TVD (total variation diminishing)
scheme and, hence, vields a TVB (total variation bounded}
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scheme. Our line of thought now suggests that any given
conservation form scheme can be made TVB by hybridizing
appropriately with a TVD scheme. For example, suppose
we are given an arbitrary conservation form scheme

u}'H=G(”")j=”;_"-(ﬁﬂ/:‘f}-],ﬂz)s {17)

where 1= 4¢/4x, with a consistent numerical flux,

-

j:ﬁ'wtl,'z:f‘(uj)h “ey “j+k), Sflu, . )= flu), (18)

and a TVD numerical flux f TP, and a constant M. Then we
can define a hybrid scheme using the “switch buffering” idea
of Section 2.4 as follows: Define switches §,, ,,, by

- 0
Siv12= 1

Let a buffer width K be given and define

it foin—J i nl <M A1 Ax

N : (19)
if U:,'.;.U:}_‘“ frﬁ.2|>MAtAx.

5;+112=|‘;|12}:,§j+p+1/2- (20)
Then define the hybrid flux by
‘,-H:uz-_“f:wwz+-?f+1/2(ffrl13/2“fj+uz)- (21)

A precise result on the total variation bound for a scheme
defined as in {19)-(21) will be presented in Theorem 2,
From a practical point of view, however, such a scheme has
the drawback that both fluxes must be computed at every
grid point in order to set the switches. Thus if the TVD
scheme is expensive to compute, this scheme has little point.
As we discussed in Section 2, a more practical way of setting
the initial switches &, ,, would be to use a smoothness
indicator as in (13} or {14). A numerical experiment with a
scheme of this sort will be presented below.

THEOREM 2. Assume the scheme G is a TVD scheme with
a finite stencil of width 2P + 1, and the scheme G 5 satisfies

|G (), — G(u);| < M Ar dx

Sfor all j, for some constant M, for any bounded grid function
u. Assume AtjAx =z ¢y > 0. Then G is a locally TV B scheme.
fuj vt =G y(u") forn=0,1, .. then so long asn At < T and
(2g+1) Ax < L, we have

DN UAEEHESED)

lil<q J1€qg+nP

—u}’] +C(T, LYM, (22)

0
Ju]+t

where C(T, L)=2T{L + 2PT/c,).

Proof. We have

Z I, —uyl = Z 1G ™™ )0y — Gl ™ 1),

lil<q lil<q
< Z |G(un_l)j+1_G(un_l)ji
il<g
+(2¢+1)2M At Ax.
Define
T for j>q+ P
fy=<u; ! for |jl<q+P
wl, for j<—g—P

Then G(i1);= G(u" '), for | j| < g and we have

Y 1G(@),,, —Gli), | <X 1G(@),, — Ga),|

1it=q

Q_Z ‘ﬁj+l_ﬂj|
7

n—1 n—1i
< Z Gy —u |
lilsqg+P

The estimate (22) now follows by induction.

A practical useful hybrid scheme should have certain
characteristics: It should employ an inexpensive, accurate
scheme outside shock zones and a high quality shock-
capturing scheme inside shock zones. In a conservative
hybrid such as we have described, it is desirable to have the
two schemes compatibie, to avoid loss of accuracy at the
point where switching occurs. Here we describe how a high
quality fourth-order ENO scheme of Shu and Osher may be
modified so that it may be hybridized with a fourth-order
centered difference scheme while avoiding loss of accuracy
when switching in smooth regions. The hybrid scheme
retains full fourth-order formal accuracy for smooth
solutions.

The particular scheme of Shu and Osher which we discuss
originates from a semidiscrete scheme of the form

du; | B
= —B (f_‘f+1,t‘27f_;'71,"2]'

- = (23).
The forward Euler method applied to (23) yields (17). If this
scheme were TVD, the ODEs in (23) can be solved by
Runge-Kutta methods designed to produce a TV} scheme
[181]. The construction of fis designed to vield a truncation
error estimate of order 2m for £,

1 - -
f(u(x))x:E(f;‘+1/2_f_;‘7l,'2)+0(dx2m)' (24)
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For stability reasons, this will be achieved through separate
approximations f * and f ~ corresponding to

F7 ()= 3(f(u) + aw),
f ()= 3(f(u) — au),

where « = max |f'(¢}| is a constant. (The stencils for f *
and /'~ are determined differently.) Let f,,;, denote
Su(x; 1)) and f11513 denote [, 2 — f;_ 1. Shu and
Osher observe that if @, = — 35, @, = w3, €l¢., then

d
(6x f)J

They therefore define polynomial interpolants p7, ,, of
order 2m interpolating f'* at 2m+1 points near x,, 5
(chosen according to ENQ ideas), from which it follows
that

m—1 32k J+ 12
[f+ Y ay Ax* = 2kf] + O Ax*™),

F—=172

(25)

ak
Axkﬁp_iuz(x = Ax* ‘_f (u(x))+ O(dx*" 1}

or k=0, 1, .., 2m. Then the numerical flux is defined by
fr f where

m=-1 2%k

P il
fji+1,'2=|:ﬁ‘,-‘i;1/2+ Z 25T szkﬁpﬁrm:‘ . 126)
k=1 . =X

The truncation error estimate {24) is therefore achieved.

Let us consider the case m =2 and compare with the
numerical flux for fourth-order centered differences. That
fiux 1s

f,+1/2 (w2t =T+ 2012,

Hybridizing this flux with the ENQ flux yields only third-
order accuracy, unfortunately, since for example, from
(25)-(26) it follows that

(27)

i . .
H (fﬁr 172 _ff— 1/2)

1 1 ,
:Z [LJr 1/2 *54‘ szfﬁ 12
37
T Ax* 485+ O(4x%)

1
- (j:r— 1”275 szf:,-’, vt O(Axs))]

= (% f)j+ O(4x%). (28)

However, since f!¥,,— f1¥', , = 0(4x) for smooth solu-
tions, full fourth-order accuracy in (28) can be recovered if
we take Shu and Osher’s scheme and simply modify (26) in
the case m =2 by adding the appropriate term of order

O(Ax*), obtaining

2

- 1
fjﬁ /2= [Pji 1127 g 4x? 5/\?2}’,& 12

37 &
———Ax'— pZ ] . (29)
115277 ax*™ ]

The resulting pure ENQ scheme also retains formal fourth-
order accuracy, including at extreme points. (On a related
point, note that if the coefficient —37/1152 in (29) is
replaced by a, = 7/5760, the resulting pure ENO scheme is
formally fifth-order accurate, assuming the stencil is fixed.
But when the stencil does change, this scheme is formally
only fourth-order accurate, and the extra term does not
increase the accuracy of the scheme in (25) and (26).)

ExaMpLE 9. We consider the same test problem as
Example 8. We use a conservative hybrid scheme switching
between the flux /€ in (27) and the ENO flux of Shu and
Osher determined from (26), with and without the
modification in (29). Switches are comuted from fourth dif-
ferences as in (14), (12) with C, =5 x 10, K= 10. The base
10 log of the error is plotted in Fig. 9a, marked with crosses
(unmodified) or circles (modified). In general, we observed
little difference in the results produced by the hybrid scheme
with and without the modification. To see some difference,
a wide buffer seems 1o be required, as in the calculation
shown. A slight improvement is seen with the modification.
With a practical buffer size, the larger error at switching
points produced by the unmodified scheme may be too near

0

STk 4

L 08 106 04 02 0 02 04 06 08 1

FIG. 9. Shock formation for Burgers’ equation computed with
conservative flux switching, log,, |#;—u(x;)| for the hybrid schemes:
O—modified fourth-order Shu—Osher ENO—fourth-order centered;
x —unmodified fourth-order Shu—Osher—fourth-order centered.
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the shock to be significant or may be suppressed by the
focussing of characteristics toward the shock in one
dimension. It is interesting, however, to note that the non-
conservative hybrid of Example 8 (sce Fig. 8b) yvields results
comparable to the conservative hybrids.

4. CONCLUSIONS

In this paper we have constructed simple, efficient, and
accurate nonconservative hybrids based on several switch-
ing strategies. When switching occurs between two accurate
conservative schemes only in smooth regions, the error in
shock speeds due to loss of conservation form is virtually
eliminated. The switching strategies which are most success-
ful m practice have the key feature that they distinguish
between detecting and defining the shock zone, i.e., between
locating singularities and choosing an appropriate scheme
to deal with them. In particular, the strategy of nonconser-
vative switching described in Section 2.3, based on detecting
shocks with a smoothness indicator, but incorporating
a “buffer” in the shock zone definition, provides great
flexibility in selecting efficient and accurate schemes for
smooth regions independently of the sophisticated scheme
used to treat shocks or other singularities.

Thus, for example, it should not be a great task to modify
an existing high quality one-step shock-capturing code
to form a hybrid with a centered-in-x, RK-in-r scheme
(provided the grid geometry is regular, at least). Once
switches have been determined, simply testing whether a
switch is 0 or 1 could save the cost of computing the expen-
sive scheme in smooth regions. And the cheap scheme may
be vectorizable, since the schemes can be computed inde-
pendently over each time step. Vectorization would have the
trade-off (slight, one hopes) that values computed in the
shock zone would be discarded, however,

Along with difficulty in programming, another tradi-
tional drawback associated with hybrid schemes has been
the “nonintrinsic” nature of smoothness indicators such as
those we use in (13) and (14}, sometimes requiring a delicate
problem-dependent choice of parameters to achieve good
results. We have no general remedy for this problem but
have indicated how the switch buffer strategy helps reduce
the ill effects of the sometimes irregular pattern generated by
such detectors. Also, our experience is that the test based on
fourth differences in (14) is much less sensitive to the choice
of parameter that the test in (13).

One possibility which has not been discussed before, but
which may be of practical value, is to use a locally refined
mesh in the shock zone. One of the difficulties addressed
in earlier work [l]—achieving conservation form at the
interface between coarse and fine mesh zones—might be
eliminated by using a nonconservative switching strategy
such as we have described, to make sure that grid interfaces
occur in smooth regions.

Finally, we mention that the ultimate utility of the ideas
we have described probably depends on what efficiency
gains can be achieved in multidimensional shock computa-
tions. Unfortunately, we have not been able to address this
issue in the present paper, feeling that it is better it be
addressed by those with more experience with large scale
computations.
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