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Signals from a discrete process contain a strong modulation as a result of the discrete
events in the process, such as paper passage in a recirculating document feeder (RDF).
This paper presents a study of the methodology of process monitoring for a RDF system.
A fault tree has been established that shows the cause-and-effect relationship regarding
possible malfunctions of a RDF system. Critical components of the RDF system have been
identified for condition monitoring. The signature from the measurements of position,
vibration, vacuum pressure, and drive motor current have been analysed. A data separation
scheme was used in signal processing to demodulate the strong signal component associated
with paper passage. Unique index extraction algorithms based on time seri¢s analysis and
modeling have been developed to detect failures of these components, A decision-making
scheme based on multiple voting has been implemented.

1. INTRODUCTION

A discrete process refers to a situation where parts are processed separately in a discrete-
timing manner. Dominant variables of this process are usually modulated by inherent
discrete-event type interruptions. Numerous fault detection and diagnosis methods have
been developed, mainly for a continuous process such as machining and rotating in power
machineries. Difficulties, however, are often encountered when applying these methods
directly to a discrete process. This is because for a discrete process, (a) the signals are not
stationary due to eveni-modulation, (b) time duration between two discrete events is very
short so that sampling and data processing time is very critical, and (c) a large margin of
uncertainty exists between events at different instances, which makes the signal less corre-
lated as compared to continuous processes for the same time duration,

This paper attempts to address these issues by presenting a case study on impending
failure detection for an RDF system. The RDF is a complete unit where paper is fed,
transported, registered, and restacked. Such a device is used in all copy machines at
different speeds, ranging from a few seconds to a fraction of a second per page. As a
typical discrete process, the paper circulating motion in an RDF is dominated by the paper
passage through the circle. The possible signals, such as sound and vibration, are all
modulated by the motion of corresponding single paper passing through the unit.

The most prominent failure mode in a RDF system is, practically, the paper jam. It
results in down-time and damage to the original document. The ultimate goal of this study
is to identify suitable signals and algorithms that can be used to monitor the performance
of the RDF, so that a jam-frec paper handling system can be achieved. For this purpose,
failure mode analysis was carried out and a fault tree was established. The critical compo-
nents were accordingly identified. Signals from vibration, vacuum pressure, and motor
current were used. A data separation scheme was facilitated to reduce the modulation
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effects due to paper passage. Algorithms based on statistical analysis, and a inverse filtering
were used to extract multiple indices, and a voting scheme was employed for decision-
making. Results of the experimental tests are also given.

2, FAILURE MODE ANALYSIS

A simplified diagram of a typical RDF is shown in Fig. 1. There are five primary
functional units involved in circulating a document. They are: 1, OVF tube, 2, nip rollers,
3, vacuum belts; 4, registration gate; 5, exit rollers.

Exit rollers Document sheet

Registration  Vacuum Nip rollers
gate beits

OVF fube

Figure 1. Schematic diagram of the RDF.

During the recirculating cycle, the paper is first moved to the nip rollers by the OVF
tube with a force provided by the vacuum pressure. Ideally, the two nip rollers then provide
an even force to move the paper smoothly through and send it to the vacuum belts, which
further drive the paper to the registration gate. At this position, the paper will be copied,
and then moved via the vacuum belt through the exit rollers back to the feeder platform.

The uitimate failures of the RDF are: misaligned image, paper jam and damage to the
document. The direct causes of the paper jam can be: skewness of paper; paper delay;
stoppage; paper condition variations.

The root causes of the above conditions can be identified. Skewness of paper is found
to cause the following factors: uneven nip force due to spring deterioration and nip wear;
uneven vacuum pressure due to leakage; registration gate open unevenly due to bending
of the gate bar, paper quality variation (e.g., different weights, surface, thickness, etc.).

Paper delay may be created by: OVF tube vacuum unable to pull a sheet to the take
away nip due to lower pressure or paper sticking; OVF motion slower or faster due to
transmission error or belt looseness; belt vaccum not strong enough to pull a sheet due to
low pressure; transmission error due to malfunctions in motor, gears or bearing defects.

The stoppage may be incited by: Double feed at OVF due to poor paper; registration
gate not opening due to timing error; excessive nip roller force due to spring deterioration.

The paper condition variations can be attributed to the following factors: poor originals;
fast wear out due 1o large nip roller forces or irregularities in path.
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Figure 2. Fault tree for the RDF.

Based on the above analysis, a fault tree showing the relationship among the failure
modes, their immediate causes, and root causes can be constructed and is shown in Fig.
2. Since our purpose is to identify critical components of the RDF which should be
monitored closely to prevent failure, the inherent correlation between the root causes and
the RDF components should also be established. In Fig. 2, the dotted lines represent
such correlations. Therefore, paper condition, nip-spring structure, vacuum, and belt are
identified to be critical components for jam prevention, On the other hand, though the
motor, bearings and gears in the RDF also contribute to the paper and since they are
relatively stable and durable, they will not be studied further. Therefore, the most impor-
tant conditions which should be monitored are: paper variation; nip roller force variation;
vacuum pressure changes; motion variations.

Sensing devices are subsequently selected, shown in Fig. 3. Two eddy-current probes are
placed near the nip rollers to pick up displacements when paper is passing through. This
information can be used to monitor the conditions of skewness, delay, nip roller spring
and motion variation. Piezo film is used to gather the data on vacuum pressure. The motor
current is also measured to monitor the motion and paper variations.

3. ALGORITHMS
The monitoring procedure based on the data acquired from sensors includes three steps:
1, data pre-processing; 2, index extraction; 3, decision-making.
3.1. DATA PRE-PROCESSING

Many monitoring techniques fail in application because of the excessive noise level
embedded in data. To deal with this situation, a data pre-processing unit was designed 1o
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Figure 3. Sensing device arrangement.

suppress possible noise in signals. Some standard algorithms, such as digital filtering, linear
and non-linear smoothing etc., were employed [8]. The non-linear smoothing algorithm is
degined by

Y,=M,[x(i)] for[t—(N—1)/21<i<[t+(N-1)/2]. (1)

where N is the window length, i.¢. the number of data in each signal segment. The operator,
M,, on a segment of signals is simply their middle number. Therefore, such an algorithm
is also called running median smoothing. The feature of the non-linear smoothing is that
the running medians will follow the discontinuities in the signal. This is desirable for a
discrete process such as the paper handling process where many discontinuities exist due
to paper passage modulation. In addition, a special signal separation scheme for the data
picked up from the nip rolter was developed to remove the modulation effect in signal
processing.

As mentioned earlier, the pair of nip rollers at the first gate of the paper recirculating
process play a critical role for possible paper jam. Figure 4 shows the details of the nip
roller-spring structure. When paper passes through the rollers, it will force the nip rollers
to move away a little from the OVF tube, and the roller will place a force on the paper
while driving it through. The nip roller force is provided by the preloaded nip spring
connected through a linkage. The amount of the pre-load can be adjusted by turning a
nut adjacent to each spring. Ideally, the two nip rollers would be synchronised and provide
identical force to the paper passing through them. Thus the paper will pass through the
gate smoothly without skewness. In practice, however, deterjoration of the spring can

Paper
Eddy-current probe Preload nut

.

%/// " Y=

Nip roller

Figure 4. Schematic of the nip roller-spring structure.
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occur and cause the nip roller force to be swept away from a pre-set value for normal
operation. Uneven forces applied to paper is the main reason for skewness. If the paper
is properly positioned without skewness, the two nip rollers will be synchronised. In order
to detect any possible defect in this motion, the eddy current probe is placed in the position
shown in Fig. 4 to measure the displacement of the linkage to which the nip roller and
spring are attached. It is obvious that by evaluating the delay between the displacements
of the two linkages, the skewness of the paper at this position can be monitored. The
spring condition can also be monitored by assessing the dynamics of the spring-roller
structure.

Information about the dynamics of the spring-roller and about the delay is, however,
located in different frequency ranges of the measured displacement data from the probe.
Figure 5 is a plot of raw data as measured from the two probes. As can be seen, the signals
are modulated by the paper passage motion, so that high frequency components are
embedded in a lower frequency, square-wave type carrier. This modulation makes further
signal processing difficult. To alleviate this problem, the following moving average window
was applied to the raw data x,.

l tH(N=-1y/2

== X x (2}
r N im—ivonp

where N is the window length, and y, represents the new data after smoothing. The residual
between the raw data, x, and the smoothed portion, y,, is the rough part of the data which
represents the high frequency components, and is donated by z,. As shown in Fig. 5, the
rough part, z,, of the signal is no longer modulated by the paper passage motion. Actually
the impulse response of the spring-roller structure subjecied to the paper insertion domi-
nated the rough part, z,. Therefore, the motion of the paper when passing through the nip
roller can be accessed by evaluating the smooth part of the measurement, y,, while the
spring condition can be monitored by information embedded in z,.
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Figure 5. Pre-processing for eddy current measurements.
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3.2, INDEX EXTRACTION

After signal pre-proceesing, an index extraction module was designed to estimate the
quantities that reveal the condition of the process. For improved reliability of the algo-
rithm, more than one index were used. Table 1 is a list of essential indices adopted for the
detection of impending failures of the RDF.

TaBLE 1
Potential indices

Symbol Meaning
PRI, PR2 average of period from Ch.1f and Ch.2t
DPR maximum difference of period between Ch.1 and Ch.2
pUl, DU2 average of duration of Ch.1 and Ch.2
DDU maximum difference of duration between Ch.1 and Ch.2
R correlation of Ch.1 and Ch.2
RMSI root mean square value of Ch.1
RMS2 root mean square value of Ch.2
RMS3 root mean square value of Ch.3
RMS4 root mean square value of Ch.4
FREQ! natural frequency of Ch.l (rough part)
FREQ2 natural frequency of Ch.2 (rough part)
FAT1 AR parameter of Ch.1 (rough part)
FAI2 AR parameter of Ch.2 (rough part)
FAI3 AR parameter of CH.31
FAI4 AR parameter of Ch.4%
MEAN3 mean value of Ch.3
MEAN4 mean value of Ch.4

t Ch.1, eddy current probe 1; Ch.2, eddy current probe 2; Ch.3, pressure of vacuum; Ch.4, motor current.

3.2.1. Period and duration

The period (PR) refers to the time interval between the arrival of two consecutive sheets
of paper at the nip roller. In the same way the duration (DU) represents the time needed
for a single sheet of paper passing through the nip roller as observed by the two eddy
current probes. The differences in the period (denoted by DPR) and the duration (DDU)
as measured from the left and right probes, clearly indicate any possible delay and skewness
of paper. Therefore by establishing an acceptabie safe range for DPR and DDU, a quanti-
tive assessment of paper in terms of possible skewness is possible.

3.2.2. Natural frequency and AR parameters

The deterioration in the spring of the nip roller structure will result in a change in its
characteristics. Such a change is usually hard to see merely by viewing the raw data,
especially at an early stage of deterioration. However, if the response can be modeled, the
model parameters, such as the natural frequency and damping ratio, are sensitive to any
change in the system characteristics. To this end, an Autoregressive Moving-Average
(ARMA) modeling method [7] was used to estimate the dynamic characteristics of the
spring-roller structure. As mentioned earlier, the raw data from the probes cannot be used
directly in modeling due to strong modulation in the motion of paper passage. The rough
part z, after data separation is, however, suitable for modeling. An nth order ARMA
model is given by

Xe=m X=Xz, — 0@~ — Optly (3
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where ¢, are the antoregressive parameters and 8, are the moving average parameters. A
detailed illustration of the modeling procedure is given in [7]. The adequate model, equa-
tion (3), contains pertinent information about the system. For instance, the natural fre-
quency f, and damping ratio ¢ can be calculated using the following equations:

fim g, \ﬁm (w)12+4[°°sh’(iz%*f)]

In (A4%)

g - 2
\/ [in (A% + 4[cos_' (; +,_ﬁ_/13:1*)]

where A is the sampling interval. The complex conjugate pair, A and A*, is the characteristic
root of the model which can be obtained by solving the following eigen-equation

F—S ¢AT=0. ()
=1

4

In this way, deterioration of the spring can be detected by identifying the variation of the
estimated value of the natural frequency and, indirectly, the AR parameter ¢.

3.2.3. Inverse filtering

The inverse filtering algorithm [1] is used to evaluate the overall performance of the
paper handling process using signals from all available channels. This algorithm is based
on the assumption that a machine or process can be represented by an ARMA model
given in equation (3). Note that equation (3) is a recursive difference equation, which
shows the relationship between values of x, at different time instances. The future value
of response can then be predicted based on the available measurements, such as

xrlr—l = QSI X—1t- -+ (bnxrﬁn_' Ohap— Ol (6)

which is based on the fact that at time ¢— 1, the values of x,—y, ..., x;—pand a,_,, ..., @_,,
are known constants. The prediction error ¢,, which is the difference between the predicted
value and the true measurement, is given by

E= X, Xeli- €))

According to optimal prediction theory, the prediction error should be a sequence of zero
mean, white Gaussian process with minimum variance. However, if the system is away
from normal operation for any reason, the model equation (3) will no longer be adequate
for the current condition and the statistical properties of the prediction error process will
vary.

It is therefore valid to check to see if the system is still operating under normal condition
by simply evaluating the statistical properties of the prediction errors. Three indices are
formed to evaluate the statistical properties of the prediction error series: normalised
variance (NV), kurtosis (KT), and autocorrelation (AC).

3.3. MULTIPLE VOTING

Since a larger margin of uncertainty exists in the paper recirculating process, and there
is no single index that is exclusively superior to others for all possible conditions, several
indices were used in order to improve the reliability and consistency of the monitoring
system. The decision, however, based on multiple indices was not made aribtrarily, but
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rather in a weighted voting manner [2]. That is, a voting grade, G;, is defined by
G;=X W, P(index;) (8)

where W, i=1,..., M (M =number of indices} is a weighting factor associated with the
index 7, and P(index /) is the probability of index i falling into an abnormal region. The
weighted factors W; were estimated through a learning procedure based on information
measures of each index to the process. Namely, the information gain of each index / can
be quantitatively defined as

G(y)= H(C)=H(Ciyx)- (9)
The estimation of the information gain can be calculated by [2]
Ne AT NC‘ Ne No H;; n
Gn(Y)‘—‘—Z—“lng—"'): E —=log (10)
i=1 j=1i=1 j N i

where N is the total number of data in a learning process. The higher the information
gain, the more paramount is the index to the process. The weighting function

Wk=Gﬂ(Yk) k=1’--'sM (]1)

can be obtained
The details of the learning procedure are referred to reference {2]. Finally, the classifica-
tion decision is based on the following voting:

if’ G; {normal range}
then: the current condition is normal
otherwise: the current condition is abnormal

4. EXPERIMENT RESULTS AND DISCUSSION

The following conditions were created to test an RDF system: paper variation—by
using different papers and bad paper; spring variation—adjusting the preload nut; speed
variation—adjusting the motor speed from 320 to 470 rpm; vaccum pressure variation—
adjusting the pressure level; belt variation— by adjusting the tension of the belt.

Typical data under different conditions are shown in Fig. 6. Figures 7 and & show
changes of indices when different papers were used. The rms value generally is not very
sensitive to the type of paper used, while the correlation is sensitive to this change. How-
ever, both indices show significant change when bad paper is added to the recirculating
process. Therefore, these indices can be used to detect a bad paper. As shown in Fig. 9,
there is a clear decline in the trend of the natural frequency estimated by ARMA modeling
when the spring is softened. It should be emphasised that this trend in frequency is consist-
ent since it represents the characteristics of the spring which are not coupled with noise
from other sources. Other indices, however, such as rms value, did not show the same
trend corresponding to spring softening. Figure 10 shows that the range value is a good
indicator for speed variation, The frequency of ARMA modeling from the motor current
measurement is sensitive to belt variation (Fig. 11). Figure 12 illustrates the mean value
of the pressure measurement is, naturally, a good index to monitor the pressure variation
of the vacuum tub.

A test for the inverse filtering algorithm was also conducted, and the results shown in
Fig. 13. With 20 sets of data gathered under normal operating conditions, an ARMA (6.4)
model was found to be adequate. In Fig. 13, the first three observations were made for
normal operating conditions, and all three indices calculated after inverse filtering, NV,
KT, AC, confirmed this. The rest of the observations were made under various abnormal
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Figure 6. Plot of raw data under varying conditions. (a) Normal; (b) spring loosening; (c) structure loosening;
{d) bad paper.

conditions, such as adding bad paper, spring loosening, structure loosening. ft is shown
that there is a clear distinction between normal and abnormal conditions from the plot.
Though the estimation of the normal model takes some time, it can be done in the learning
process before the monitoring process starts. In the monitoring process, no ARMA model-
ing is needed and the only calculation is the inverse filtering which can be done very quickly
so that real-time application is possible.

Since timing is a critical factor to be considered in signal processing, most of the indices
are extracted using only simple arithmetic calculation, such as the peak to peak value,
average, rms, etc. These calculations can be done in a very short time, thus allowing
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Figure 13. Plot of indices (a) NV, (b) KT, and (¢} AC under normal and abnormal conditions.

continuous monitoring of the process without interruption. However, there are also some
indices whose extraction involve more sophisticated calculation, such as the natural fre-
quency and damping ratio. AR modeling was used to estimate dynamic characteristics of
the system because it gives a parametric model of the system which can be compared with
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the normal model. The AR model also yields a better estimate of the natural frequency
and damping ratio, although it takes longer to compare the estimation of simple indices.
Fortunately, AR modeling is used for monitoring of the spring condition only and change
is usually not of a catastrophic type. The deterioration of the spring happens over a
sufficiently lengthy period to enable AR modeling to catch the variation.

5. CONCLUSIONS

Monitoring of a discrete-event dominated process, such as the paper handling process,
can be extremely difficult due to short-timing and a large margin of uncertainty pertinent
to the discrete process. The monitoring task, however, can be achieved by detecting the
impending failure of critical components of the system. The prevention of failure in a
paper handling device, such as a paper recirculating feeder, can be made by the detection
of the abnormal condition in critical components at the earliest possible time. The measure-
ments of position, vibration and pressure are good choices for monitoring of the RDF
systemn, Multiple indices should be used to ensure reliability. Therefore, different algorithms
should be applied to different components. It has been found that skewness of paper
can be detected using indices that need only simple arithmetic calculation. Model-based
algorithms can also be employed where timing is not so critical.
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