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A stand-alone, menu-driven PC program, written in GAUSS, which can be used to estimate missing 
observations in longitudinal data sets is described and made available to interested readers. The program 
is limited to the situation in which we have complete data on N cases at each of the planned times of 
measurement tl, t2,..., tT; and we wish to use this information, together with the non-missing values for 
n additional cases, to estimate the missing values for those cases. The augmented data matrix may be 
saved in an ASCII tile and subsequently imported into programs requiring complete data. The use of the 
program is illustrated. Ten percent of the observations in a data set consisting of mandibular ramus height 
measurements for N = 12 young male rhesus monkeys measured at T = 5 time points are randomly 
discarded. The augmented data matrix is used to determine the lowest degree polynomial adequate to tit 
the average growth curve (AGC); the regression coefficients are estimated and confidence intervals for 
them are determined; and confidence bands for the AGC are constructed. The results are compared with 
those obtained when the original complete data set is used. 
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Introduction 

We have written and made available a number of PC programs which perform 
various longitudinal data analyses [l-9]. An overview of these is given in Ref. 10 
and details concerning the tracking programs are provided in Ref. 11. Each of these 
programs accepts unequally spaced time points tl, f2,..., tr, but none, at the mo- 
ment, allows missing data. That is, the data matrix consisting of the values of the 
measurement under consideration for N individuals at T time points, viz., 

x12 * . * XIT 

x22 .*. X2T 
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can have no missing entries. The purpose of the present paper is to describe, 
illustrate and make available a user-friendly, menu-driven, PC program that can be 
used to estimate missing entries in Eqn. (l), thus allowing the inclusion of individuals 
with one or more missing data points. We assume that the study is planned so that 
observations are to be made at the fixed set of times tl, ?2,...,tr but that n in- 
dividuals were not observed at one or more of these times. Our objective is to 
estimate these values. 

The discussion (and program) is limited to the case where we have complete data 
on N cases and wish to use this information, and the observed values for a given one 
of n cases with missing data, to estimate the missing values for that case. Thus the 
program is a direct extension of our programs for prediction [12,13]: Here we allow 
the missing values to occur anywhere in the vector of observations for an individual, 
not just at the end. We again use the conditional expectation of the missing values 
given the observed values for that individual and for the N cases with complete data, 
to fill-in the missing data points. To fix notation, we consider that the total data set 
is structured as 

x Xl 
(N + n) x T = x2 [ 1 

where Xi is Nx T, consisting of N cases with complete data; X2 is n x T, consisting 
of n cases, each of which contains one or more missing data points. Examples will 
follow. 

Other approaches to missing data problems exist. A general review of the 
literature up to 1966 is given in Ref. 14. A simple taxonomy of missing data problems 
is given in Ref. 15. More recent general discussions are also available [16- 181. Miss- 
ing data problems due to non-response in sample surveys are described in Refs. 19 
and 20. A comparison of the kinds of problems which arise in cross-sectional and 
longitudinal studies is made in Ref. 21. 

In the context of longitudinal data analysis, some of the approaches which have 
been used include: 

(i) Delete cases with missing data 
(ii) Use specialized, noniterative techniques which allow missing data 
(iii) Use the EM algorithm 
(iv) Fit individual curves; use the estimated regression coefficients as the basic data 
(v) Imputation methods 

The first of these is self-explanatory and is probably the ‘safest’ way to proceed 
[22], provided that the data are missing at random and that the proportion of cases 
with missing data is small. There are situations, however, when the majority of cases 
have one or more missing data points and discarding these would result in a sample 
size so small as to preclude any analysis. Discarding those subjects with incomplete 
data is easy to carry out and may be satisfactory in situations where only a small 
number of subjects present with missing data. This approach can, however, lead to 
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serious biases [ 171 and is not very efficient in the sense that all the information pres- 
ent in partially recorded observation vectors is ignored. 

Examples of (ii) are included in Refs. 23-26. These are promising approaches, but 
their routine application awaits implementation. Some require that one make 
(typically strong) assumptions concerning the structure of the correlations between 
the repeated measurements. Others are large-sample procedures whose small-sample 
operating characteristics are yet to be studied in detail. For example, Ref. 26 extends 
the two-stage polynomial growth curve model [4] to allow missing data when N or 
T is large. Programs implementing these methods are under development and it will 
be of considerable interest to compare their results with those obtained by the 
method considered here, as well as the results from iterative methods based on the 
EM algorithm. 

The EM (estimation/maximization) algorithm is a general method for estimating 
missing data in a variety of situations. The EM algorithm was given its name by 
Dempster et al. [27] who presented the general theory for the algorithm and a 
number of examples. A GAUSS program is already available [28]. Applications to 
growth curve problems are considered by Laird et al. [29]. 

Examples of (iv) include those reported by Dawson et al. and Zerbe [30,31]. Here 
individual growth curves are tit and a Ti thus obtained for each case. The q are then 
used as the basic data and one may, e.g., construct confidence bands for the average 
growth curve (AGC) and/or the individual growth curves [30] and derive standards 
for growth, growth velocity and acceleration on this basis [31]. Different groups of 
individuals may also be compared using this method [32]. We note in passing that 
the data used in Ref. 30 consisted of a sample of n = 11 achondroplasic children, 
none of which were measured at all T = 13 time points (f = O,l,..., 12 months). Our 
program cannot be used in such situations. Rather, it is intended for use when n is 
small relative to N, and when the pattern of missing data may reasonably be describ- 
ed as ‘incidental.’ 

In (v), missing data values are filled-in and the resultant completed data set is 
analyzed by standard methods. Common forms of imputation include hot deck im- 
putation, where actual observations from other subjects are substituted for missing 
values; mean imputation, where mean values computed from the complete data are 
substituted; and regression imputation, where the missing values for a subject are 
estimated either by predicted values from the conditional regression as described 
above, or by predicted values from the regression on the known values from that 
subject alone. This latter form of regression imputation is equivalent to the approach 
taken by Dawson et al. and Zerbe [30,31] and is not considered further here. An im- 
portant consideration when any imputation technique is used is how to modify 
subsequent analyses to allow for the differing status of the real and imputed values. 
Our approach to this’question is outlined in the following section. 

Methods 

We assume that each row, x’, of X has a multivariate normal distribution with 
mean or expected value 

E(x) = WT (3) 
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and (arbitrary) covariance matrix C. In (2), W is the P x T within-individual (or time) 
design matrix used to fit a polynomial of degree D = P - 1 to the data and T is the 
P x 1 vector of polynomial regression coefficients for AGC, viz., 

and r = . . . . . . 

71 
72 [1 TP 

(4) 

The smallest degree polynomial adequate to fit the data for the N cases is determined 
as outlined in [ 1,131. We now consider one of the n cases with missing data. If m 
of the entries of x are missing, we write the model in partioned form as 

wherexiis(T-m)xl,x2ism x l,Wiis(T-m) x PandW2ism x P.In(5), 
the entries of x are rearranged (if necessary) so that x1, contains the values actually 
observed and x2 the missing data points. We also partition the TX T sample 
covariance matrix, S, as in (5), viz., 

s= Sll s12 

[ 1 s21 s22 
(6) 

so that Sii is (T- m) x (T- m), S12 = S ii is (T - m) x m and S22 is m x m. It 
should be noted that S is computed using the N cases with complete data, but it is 
partitioned in accordance with the pattern of missing data for the case under con- 
sideration, i.e., SI1 contains the covariances of the measurements actually observed 
for that case; Si2 (and S’z, = Si2) the covariances between the observed and miss- 
ing observations; and S22 the covariances among the missing observations. S is 
computed just once, but it is rearranged and partitioned as many times as there are 
distinct patterns of missing data. 

Having determined D, the P coefficients of T are estimated by 

+ = (w’s-lw)-l w's-1~ (7) 

where j? is the TX 1 vector of means at each time point [13]. We then estimate x2 by 

A 

22 = w2i + s2,s;l (x1 - W,r) (8) 

which is of the same form as used in Refs. 12 and 13. When imputing missing data, 
however, this should be modified. It is important to realize that since we intend to 
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use estimated values as observations, some adjustment needs to be made. For 
reasons given in [18] and considered in more detail in the Discussion, we take 

x2 =ft2+e (9) 

where e is the residual from a randomly selected complete case. That is, focus for 
the moment on the N complete cases. We have ? computed from these cases and the 
fitted values for a given one of these cases is computed by 

? = W? (10) 

with the corresponding residual 

1 e=x-x (11) 

The elements of this randomly selected residual corresponding to the missing 
elements in the case whose values are being estimated are added to x2. A detailed 
example is considered below. We first give a brief description of the program. 

The Program 

The menu-driven program is invoked by issuing the command 

gsnmi missing 

The program menu appears and the user is prompted for the location of the data 
tile, which can be in a different directory than the program itself. The indicated 
directory is searched and the names of those data files with the extension ‘.ASC’ are 
displayed. It is assumed that these files have the following properties: 

(i) They are rectangular - rows corresponding to subjects, columns to data 
values; 

(ii) They are in ASCII format with one or more spaces separating the data values; 
(iii) Missing values are coded by periods (“.“); 
(iv) Subjects with missing values can be in any row (not just at the end); 
(v) Missing data are missing at random; and 
(vi) N > T and N > n. 

The user then highlights the tile of choice using the cursor arrow keys and selects 
the file with the return key. He/she then supplies various simple pieces of informa- 
tion concerning the structure of the data and the manner in which it is to be analyz- 
ed. These options, implemented in the form of questions, include: 

(i) Are the observations made at equally spaced time points? If the time points 
are equally spaced, the user is given the option of starting at 1 (default) or 
any other starting time. The interval between time points is entered next. If 
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the time points are not equally spaced, the user is prompted for each of the 
time points. Fractional (e.g., 4.75) and negative (e.g., for centering the data) 
values are allowed; and 
What level of significance (e.g., 0.05) is to be used in determining the smallest 
degree, D, adequate to fit the AGC? 

Some Examples 

A simple example based on the data in Schneiderman and Kowalski [l], where 
polynomials of degree D = 2 were tit to mandibular ramus height measurements 
(mm) for N = 12 young male rhesus monkeys at times coded t = 1, 2, 3, 4, 5 will 
clarify some of the above notions. For convenience, these data are reproduced below 

x= 

25.2 29.0 33.6 35.2 35.8 
27.3 32.1 37.0 41.8 43.5 
26.3 30.7 36.1 38.0 38.9 
26.0 34.5 39.0 42.3 44.4 
25.5 29.5 34.4 38.3 37.9 
28.2 32.5 36.3 42.3 43.8 
25.4 33.4 38.0 42.7 43.1 
27.2 34.8 37.2 44.0 44.0 
26.0 34.5 38.0 43.5 43.8 
28.5 33.8 38.0 39.2 42.0 
27.0 31.2 36.0 41.7 43.8 
26.0 33.0 40.2 42.5 43.8 

For these data we found 

E’ = [ 26.6, 32.4, 

S= 

37.0, 41.0, 42.1 1 

1.1756 0.7236 0.3145 0.7314 1.3718 
0.7236 3.8451 2.9876 4.2699 4.6906 
0.3145 2.9876 3.4451 3.4747 4.1221 
0.7314 4.2699 3.4747 7.0954 7.2139 

-1.3718 4.6906 4.1221 7.2139 8.2715 

and a D = 2 polynomial was adequate to fit the AGC (p = 0.1356). 
When T = 5 and D = 2 (P = 3), the time design matrix is 

w= 

‘1 1 1 

12 4 
13 9 
1 4 16 

_l 5 25 I 



Missing longitudinal dnra 

and so the estimated regression coefticients for the AGC are 

127 

18.5572 
+ = (J#I~,-l~-I w’s-ix = 

[ I 

8.8189 
-0.8198 

The user may wish to center the time-design matrix, W. In this example, the centered 
time points would be -2, -1, 0, 1, 2 and we would have 

1 -2 4 
1 -1 1 

w= 

L 1 1 0 0 
1 1 1 
1 2 4 

Centering does not effect the predicted values, but does reduce the multicollinearity 
inherent (especially for large values of D) in the uncentered form of W [6]. One is 
therefore encouraged to select the option to center the time points (in this case the 
program would assign equally spaced time points starting at -2 and incrementing 
by 1). 

For purposes of illustration, we use the uncentered form of W and suppose that 
the measurements of the 1 lth monkey are missing at times t = 2 and t = 4 and that 
the 12th monkey is missing at times t = 1, t = 4 and t = 5, i.e., that the observation 
vectors for these monkeys are: 

x11 = 

-27.0- 
? 

36.0 
? 

_43.8_ 1 and x12 = 

- _ 
? 

33.0 
40.2 

? 
? - - 

The input data file with N = 10 and n = 2 would then be prepared as shown below 
with periods (“.“) representing the missing data points. 

25.2 29.0 33.6 
27.3 32.1 37.0 
26.3 30.7 36.1 
26.0 34.5 39.0 
25.5 29.5 34.4 
28.2 32.5 36.3 
25.4 33.4 38.0 
27.2 34.8 37.2 
26.0 34.5 38.0 
28.5 33.8 38.0 
27.0 36.0 

33:o 40.2 

35.2 
41.8 
38.0 
42.3 
38.3 
42.3 
42.7 
44.0 
43.5 
39.2 

35.8 
43.5 
38.9 
44.4 
37.9 
43.8 
43.1 
44.0 
43.8 
42.0 
43.8 
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The monkeys with missing data are then considered in turn: the W and S matrices 
are rearranged and partitioned to reflect the patterns of missing data for each. To 
facilitate comparison, we use the S computed above; it would, of course, change 
slightly if cases 11 and 12 were omitted from the computation. We also use + as com- 
puted previously. 

For monkey 11, we have 

and 

1.1756 0.3145 1.3718 

Sll = 0.3145 3.4451 4.1221 1.3718 4.1221 8.2715 1 
s*2 = pi E] = s;, 

and 

s22 [ 3.8451 4.2699 = 
4.2699 7.0954 1 

Then x2 is estimated by 

12 = W2i + S2iSii’ (XI - Wii) = 
32.633679 

[ 1 42.642340 

To illustrate the computation of R2, we randomly select one of the N = 10 cases 
with complete data. If, e.g. this were no. 7 with xi = [25.4,33.4,38.0,42.7,43.1] then 
the fitted values for no. 7 are 
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Then 

From this we choose the 2nd and 4th elements so that 

Thus the final values for case 11 are 

The procedure for case 12 is the same. In this case 

and 

Sll = 
3.8451 2.9876 
2.9876 3.4451 1 
0.7236 4.2699 
0.3145 3.4747 

4.6906 1 4.1221 = f321 

and 

1.1756 0.7314 1.3718 

s22 = 0.7314 7.0954 1.3718 7.2139 7.2139 1 8.2715 

We compute 22 and 82 = ji2 + e, where e is the residual for another randomly 
selected case, as before. 

The complete, filled-in 12 x 5 data matrix X can now be named and saved in an 
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ASCII file. On the screen, X’s real values appear in a color different from that of 
the imputed values. 

The example considered above was intended to illustrate the partitioning of x, W 
and S; and how It2 is modified to produce the final value Q. It was convenient to 
use i and S as computed in Ref. 1 for this purpose. The following example will show 
how the technique works in practice. We use the same data set, but randomly delete 
10% (6 data points) of the observations, viz., we delete x15, x33, x6], xM, xg3, and 
x12,5. We have N = 7, n = 5 and the data are entered as 

27.3 32.1 37.0 41.8 
26.0 34.5 39.0 42.3 
25.5 29.5 34.4 38.3 
25.4 33.4 38.0 42.7 
27.2 34.8 37.2 44.0 
28.5 33.8 38.0 39.2 
27.0 31.2 36.0 41.7 
25.2 29.0 33.6 35.2 
26.3 30.7 . 38.0 

26:0 
26.0 

32.5 36.3 
34.5 
33.0 40:2 

43:5 
42.5 

43.5 
44.4 
37.9 
43.1 
44.0 
42.0 
43.8 

38:9 

43.8 
43.8 

The data set is filled-in using the estimated values ?i5 = 33.9, $3 = 35.8, .?,ji = 27.3, 
2, = 42.6 and Lkl2,5 = 47.1 

From the data set with imputed values, we find 

S = 

and 

0.9761 0.7170 0.3708 0.6466 
0.7170 3.8452 3.0494 4.2721 
0.3708 3.0494 3.5166 3.5564 
0.6466 4.2721 3.5564 7.1740 
1.3098 5.4448 5.7512 8.6933 

[26.477, 32.417, 36.964, 40.983, 42.1821 

1.3098- 
5.4448 
5.7512 
8.6933 

12.6964_ 

i’ = t18.68, 8.617, -0.7581 

It is seen that these values are in generally good agreement with those computed 
using the complete data set, shown earlier. 

We can also compare the confidence intervals for the elements of T and the con- 
fidence bands for the AGC The confidence intervals are 

Coefficient Complete Augmented 

71 (16.41, 20.70) (16.94, 20.41) 

72 (7.211, 10.43) (7.491, 9.742) 
73 (-1.055, -0.5571) (-0.9589, -0.5571) 
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and the confidence bands for the AGC at the five time points are 

Time Complete Augmented 

1 (24.90, 28.21) (25.12, 27.94) 
2 (3 1.45, 34.38) (32.15, 33.60) 
3 (35.39, 39.88) (36.31, 39.10) 
4 (37.84, 43.59) (38.51, 43.51) 
5 (38.60, 45.72) (38.75, 46.87) 

It is seen that the confidence intervals for the elements of r are somewhat narrower 
when the missing data points are imputed, as are the confidence bands for the AGC 
(with the exception of t = 5), but the differences are relatively minor. 

While the estimates of the elements of T are quite similar in the example under con- 
sideration, the confidence intervals and bands are somewhat narrower when missing 
data are imputed than when the original, complete data set is used. The extent to 
which this may be a general phenomenon will require further investigation. It does 
seem clear that the direct use of g2 as computed in Eqn. (8) would tend to 
oversmooth the data. The addition of random residuals is an attempt to restore some 
of the noise to the system, noise which was smoothed out by the regression function. 
However, it is less clear that this restores the appropriate amount of noise. We sug- 
gest that the problem will not be serious as long as the use of the program is limited 
to situations in which n is small relative to N. See Ref. 18 for a more detailed 
discussion. 

It is also important that the missing data be ‘missing at random,’ i.e., that if x has 
some missing entries, this fact does not depend on the values of the elements which 
were actually observed. A good discussion is given by Rubin [33] and a procedure 
which can be used to test for this when data are missing due to droputs is given by 
Diggle [34]. 
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Appendix - Computer Implementation 

This program can be obtained on a 5.25” or 3.5 ” diskette (please request type) 
by sending $25 to defray the cost of handling and licensing fees. The progam requires 
a 80386 or 80486 based personal computer (PC) running the MS-DOS operating 
system (version 5.0 or higher is recommended, although versions as low as 3.3 will 
suffice). 80386 Computers must also be equipped with a 80387 math coprocessor. At 
least 4 megabytes of memory is required, and must be available to GAUSS386, i.e., 
not in use by memory resident programs such as Windows. EGA or VGA graphic 
capabilities are required to display the color graphics; VGA or SVGA is suggested 
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to display optimally the graphic results. Runtime modules are supplied with the pro- 
gram so that no additional software (i.e., compiler or interpreter) is required to run 
this program. One can create and edit ASCII data sets for use by this program using 
the full screen editor supplied with MS-DOS version 5.0. The program is written in 
GAUSS386, version 3.0, requires no additional installation or modification and is 
run with a single command. When requesting the program, address inquiries to the 
corresponding author and make checks payable to Baylor College of Dentistry. 
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