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Abstract--Upwind methods for the 1-D Euler equations, such as TVD schemes based on Roc's 
approximate Riemann solver, are reinterpreted as residual distribution schemes, assuming continuous 
piecewise linear space variation of the unknowns defined at the cell vertices. From this analysis three 
distinct steps are identified, each allowing for a multidimensional generalization without reference to 
dimensional splitting or I-D Riemann problems. A key element is the necessity to have continuous 
piecewise linear variation of the unknowns, requiring linear triangles in two space dimensions and 
tetrahedra in three space dimensions. Flux differences naturally generalize to flux contour integrals over 
the triangles. Rce's flux difference splitter naturally generalizes to a multidimensional flux balance splitter 
if one assumes that the parameter vector variable is the primary dependent unknown having linear 
variation in space. Nonlinear positive and second-order scalar distribution schemes provide a true 
generalization of the TVD schemes in one space dimension. Although refinements and improvements are 
still possible for all these elements, computational examples show that these generalizations present a new 
framework for solving the multidimensional Euler equations. 

1. R E V I E W  O F  R O E ' S  F L U X  D I F F E R E N C E  S P L I T T E R  F O R  
T H E  l - D  E U L E R  E Q U A T I O N S  

We begin with a review of Roe's flux difference splitting (FDS) scheme for the 1-D Euler equations 
in a setting very close to the description given in Ref. [1]. In this formulation no explicit appeal 
is made to finite volumes nor to the Riemann problem as a building block for the solution, which 
turns out to be more suitable for a multidimensional generalization--as discussed in Section 2. 
Considering the system of Euler equations in one space dimension in conservation form 
U, + Fx = 0, with U and F the vectors of conserved variables and fluxes, three distinct steps can 
be recognized in formulating Roe's scheme. 

I.I. Wave decomposition step 

In this first step, which is trivial in l-D, the flux divergence is decomposed into a number of scalar 
wave contributions. Starting from an eigenvector projection of the gradient of the conservative 
variable, the decomposition is given by 

3 3 
Ux = ~ atkr k, Fx = ~ 2kctkr *, (la, b) 

k = l  k = l  

where 2K(U) and rk(U) are the eigenvalues and right eigenvectors of A (U) = Fv, the Jacobian matrix 
containing the derivatives of the flux vector with respect to the conservative variables. Hence, the 
decomposition models a general perturbation as a superposition of three simple wave contributions. 
The waves are traveling with speeds :.~x along the x-axis, and have a strength ~t k uniquely 
determined by inverting equation (la), giving ~k = lq3x, where ! k are the left eigenvectors of A such 
that d im= t~k,,, with tSkm the Kronecker symbol. 

1.2. Consemative linearization 

In the second step, a conservative linearization is constructed, which is in fact a discrete 
counterpart for equations (la, b), taking into account some requirements for conservation. For this, 
it is assumed that the solution is sought as a discrete mesh function {U~, i = l . . . . .  N} on an 
irregularly spaced grid with meshpoints x = x;. Precisely as in the finite element method using linear 
elements in space, the solution is represented as a continuous function, piecewise linear over the 
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intervals [x, x~+ t ] with length Axe+ ½ = xi+ ~ - xi. Discrete gradients are defined in a consistent way 
as averages over a cell [x, x~+ t]. once a particular variable Q having linear variation is specified: 

. -  1 i . , . ,  - -  : Ux=Af%½j~ ' Ux(Q) dx, F x =  F~(Q) dx. (2a, b) 
Axi + ½ j. ,  

Straightforward integration of these expressions produces the flux difference and conservative 
variable difference over a cell. Alternatively, one may use the fact that Q~ is constant over the cell 
and write U~ = (0U/~Q) Qx and F~ = (~F/dQ) Qx. Requiring that the integration using the chain 
rule is exact, and hence that the linearized expression is conservative, uniquely defines the linearized 
matrices as 

6~U ! I~,+,OU OF l lx,+,c3F 
= ~ dx ,  = - (3a, b)  - ~  Ax,+½.1x, dQ Ax,+½3x, - ~ d x .  

The choice of the primary variable (e.g. the conservative, or some primitive variable) with linear 
variation is based solely on the ease of computing equations (3a, b) analytically. A particularly easy 
form is obtained, which is, moreover, identical to Roe's FDS scheme, if one selects for Q 
the parameter vector Z = (z ~, z:, z3)r= x/~(l ,  u, H) r as the variable with linear variation over a 
cell such that its gradient is constant over the cell, given by Zx = Zx = (Z~+~- Z~)/Axi+½. The 
reason for using Z as the primary unknown is precisely that each component of the conservative 
variable U and the flux vector F is a bilinear function of the components of Z, and as a consequence 
dU/aZ = Mz and aF/c~Z = Az are just linear functions in the components of Z [2]. Therefore, 
integration over the cell as needed in equations (3a, b) reduces to taking the arithmetic mean, giving 

A A A 
Ux = Mz , F~ = Az(7,) Zx, (4a, b) 

where 

p,/gT,+,) 
2 

z = z , + z , + , =  .,./g, +.,+, p./~,+, (5) 
2 2 

-,+, 
2 

As a result, the linearization (4a, b) is conservative in the sense that the gradients, multiplied with 
the length of the corresonding cell, telescope, i.e. their sum involves only contributions from 
meshpoints xm and xN. Equations (4a, b) give the linearization in terms of Zx; the linearization of 
the flux divergence in terms of Ux is simply obtained by inverting equation (4a) and substituting 
in equation (4b). Since the matrix Az(Z)M~,~(Z)= (OF/aU)(Z)= A (Z) is precisely the Jacobian 
m a t ~  of the_fl~Aes with respect to the conservative variable, the flux divergence can also be written 
as Fx = A(Z)Ux. This expression is easily recognized as the familiar expression for the flux 
difference over a cell in Roe's FDS. The conservative decomposition under the form of equations 
(la, b) is then easily found as 

A U i + l - U i  3 A I". F~+I-Fi  3 I-. 
Ux=  = ~ ~,p, Fx = = ~ k ~ , ~ .  (6a, b) 

Ax,+½ k=l AX,+½ ,=l 

The wave strength is again computed by inverting equation (6a), giving 

A 
a~ = l~ ,Ux  =]~ Ua+ l - U,  

Ax,+½ ' (7) 

while the linearized eigenvectors and eigenvalues are just the analytical expressions for the Jacobian 
A, evaluated in the state Z. For example, in the state Z, one has 

)5 u,+, 
: = p (Z )  = + ~ ' ,  a = u (Z)  = 

2 ' , / 7 +  p,/77,+, 
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R =  H ( Z ) =  / ' ~Zu  ~/:---vw,,___~+y__~Hj+,, ~2=(y _ 1)[/7_½~2] ' (Sa-d) 
~/Pi + x/Pi+ i 

giving for the eigenvalues and right eigenvectors 

= a ,  = a + e ,  = a - c ,  

P =  t/ , [.2= ~/+0 , ~3= t ~ - ~  • 

2 \17 + ~ /  J~ - -  U-C 

Because of the simpler algebra it is often preferred (e.g. [3]) to compute the discrete wave 
strengths using the primitive variable V = (p, u, p)X and the corresponnding left eigenvectors I~. Care 
has then to be taken in a consistent definition of the gradient V~. The crucial relations to be 
preserved are equations (6a, b) and hence equation (7) has to be satisfied exactly, written for all 
components together using the matrices of left eigenvectors L for the conservative and Lv for the 
primitive variable [3]: 

F\ 
~x3 / 

1 [e2A 

1  [Fx 
1 

(9) 

Hence, the gradient in primitive variables has to be defined as 

V"~ = L 71 (~)L(~)U'~" ov(z)"Ux ov - - -  

However, the matrix OV/OZ is not linear in the components of Z, and the consistent derivative 
is no longer identical to the differences over a cell. Instead, it is given by 

\P,,/ 

2 - l 

~V r 

? - 1  :-_I":..-"- I" 

-7 

1 I.Pi+~--P~ 1 

ax,  + ½ (u, + , - u,) , 

[. p i + , - p ,  J 

(lO) 

where P = x/~Pi+ ~ is the well-known Roe averaged density [1, 3], while 
PA-- P~(~) -- [(~-~ + ~ )/212 is the consistent definition introduced before. Indeed, substituting 
Px, ux and p~ in the consistent expressions (9), one sees that the consistent averaged density 
cancels, and one obtains the usual expressions needing only the definition of/~. The use of the 
consistent formulation is however necessary if one wishes to generalize the expressions in two space 
dimensions. 

Equations (6a, b) have the important property that whenever U,, U;+, are such that they can 
be connected by a single shock wave or a single contact discontinuity, only one nonvanishing term 
in the expansion remains, and equation (6b) reduces to the Rankine-Hugoniot jump relations, with 
2 ~ the speed of the discontinuity, thus ensuring uniform validity of the linearization both in smooth 
flow and near discontinuities. 

1.3. Scalar distribution scheme 
In the third step, a scalar upwind distribution scheme is applied to each part of the decomposed 

flux residual given by equations (6a, b), depending on the orientation of the...corresponding speed 
Ix. For example, in the classical first-order upwind scheme, the terms ~, ~, [k corresponding to 
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2 -~ t> 0 are used to update Ui+ I, while the parts corresponding to 2 k ~< 0 are used to update U~. Other 
schemes, like the Lax-Wendroff or Fromm schemes, can be recovered by selecting other 
distribution coefficients [1]. The key observation is that the problem is reduced to the design of 
accurate and oscillation-free distribution schemes for a scalar advection equation. Because of the 
conservative linearization, the fluxes at the meshpoints are never needed. It is sufficient to compute 
the linearized eigenvectors and speeds, and the wave strengths over a cell. Hence, the standard 
first-order finite volume scheme can be written in the following alternative formulation: 

I. Compute for each cell the conservative residual 
3 3 A 

Ri+½ = E R/k+½ = - A x i + ½  ~ ~ko~krk" (11)  
k=l k=l 

2. Send for each cell the contribution (At/Axi)R/k+½ to node i if 2k~>0 and 
(At~Axe+ i) R~+½ to node i + 1 i f~  k < 0, where Axi is the length of the median dual 
cell around meshpoint i, given by Ax~ = ½(Ax~ ½ + Axe+½). 

Hence, the scheme sends contributions from two adjacent cells to a given node, and the general 
update identical to the standard first-order finite volume scheme can be written as 

. At 3~ rl]i l]kR k .x (~,+½]R,+½+u-,_2j ,_~j, U~ + |  = U i - ~ - ~ X / k ~ _  1 i k k (12) 

where the downstream distribution coefficients fl have been defined for each meshpoint of a cell, 
given by 

i+ k [fli+½]*=0, [fl,+!] = 1 for ~k>/0 (13a) 

o r  

i + k ~k [/~+½]k= 1, [fli+~] = 0  for <0 .  (13b) 

2. M U L T I D I M E N S I O N A L  G E N E R A L I Z A T I O N  

Consider now the 2-D Euler equations in conservation form: 

U,+Fx+ Gy = 0, 

where F and G are the Cartesian components of the flux vector in 2-D, with Jacobians A (U) = Fu 
and B(U) = Gu. Each of the steps used in the formulation of Roe's classical scheme as described 
in the previous section generalizes in a quite straightforward way. 

2.1. Multidimensional eigenvector decomposition 
In two space dimensions, an eigenvector decomposition of the flux divergence Fx + Gy is needed, 

starting from a decomposition of the space gradient of the conservative variable. Different 
approaches have been formulated [4, 5], but because of limited space, we restrict ourselves to a brief 
discussion of  Poe's simple wave decomposition [4]. It is based on a superposition of  simple wave 
solutions, assuming linearized flow, and is defined by 

Uk(x, y, t) = ctkrk'(xn k +yny* _ 2,0,k (14) 

* = sin 0 k where ~t k is again the strength of the wave, n k = cos 0 k and ny are the components of the 
unit vector ~ in the propagation direction 0 k and r ~ is a right eigenvector of the Jacobian An*~ + Bnky 
with the corresponding eigenvalue 2 k. Each simple wave is associated with a scalar advection 
equation in 2-D with advection speed vector J[~ = ~.~ii~. Hence, the 2-D generalization of  equation 
(la, b) is given by 

eU = ~ ~*rqlk, Fx + Gy = ~ ).~*rk. (15a, b) 
k k 

Matching the local gradient with a superposition of simple waves of the above type defines the 
decomposition, precisely as in I-D, equation (la). In I-D there is only I degree-of-freedom per 
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wave, namely its strength 0t k, and the basis consists of 3 independent eigenvectors, while the space 
derivative Ux has 3 components. Therefore, equation (la) leads to a system of 3 equations for the 
3 strengths, and the decomposition is unique. 

In two space dimensions, the matching equation (2a) provides 8 equations, 4 for the x-derivative 
and 4 for the y-derivative. On the other hand, each simple wave has two parameters, its strength 
*t k and its normal iik. Therefore, if all angles and strengths are left free, only 4 waves can be retained 
in the summation, e.g. corresponding to 1 entropy, 1 shear and 2 acoustic waves. However, the 
algebra which comes out of this model is too complex and other models have been proposed, adding 
more waves by specifiying the additional degrees of freedom based on physical arguments. For 
example, simple algebra results if one considers the following 6-wave model: 

(1) One entropy wave with unknown direction and intensity: 2 unknowns. 
(2) A shear wave with unknown strength traveling in a specified direction. 
(3) Four mutually perpendicular acoustic waves, contributing 5 unknowns: 1 

direction and 4 strengths. 

The choice of the direction of the shear wave leaves some room for discussion. Roe proposed the 
direction perpendicular to the streamlines (model B). A better choice (model C) [6], is the direction 
of the pressure gradient. In any case, closed-form expressions are obtained for the angles and wave 
strengths, just like in 1-D for the wave strengths. 

2.2. Conservative linearization in 2-D [8] 
The generalization of the continuous, piecewise linear representation of the unknowns requires 

a discretization on triangles with unknowns defined at the vertices, precisely as in the finite element 
method using linear elements. Discrete gradients are again defined as exact integrals over a triangle 
T with surface Sr, assuming linear variation of a particular variable Q to be chosen below: 

1 f f s  I.. 1 f ; s  I.. 1 f f s  ~ ' U = S r  •U(Q)dS, F x = ~ r  r Fx(Q)dS, G y = ~ r  Gy(Q)dS. (16a-c) 
T T T 

Since all integrations are exact, the contour integral of the fluxes over a triangle is given by 

A A  

~itdl = (Fx+Gy)dS=ST[Fx + Gy]. (17) 
T T 

Hence, for any choice of the underlying variable Q having linear variation over the triangle, the 
flux contour integrals over the triangles will telescope over the domain, provided that the 
integrations in equations (16a--c) are exact, thus generalizing the telescoping property of the flux 
differences in 1-D. Moreover, for the same reasons and following exactly the same steps as in l-D, 
choosing the parameter vector Z = (z 1, z 2, z 3, z4) r = x/~(l ,  u, v, H )  T leads to an exact linearization 
of the form 

F x + Gy =A(Z)  + B(Z) Uy, (18) 

where the linearized Jacobians are again the analytical expressions A = F v and B = Gv, evaluated 
at the state 7,, which is now the arithmetic average of the values at the vertices of the triangle: 

z,+z,)= r 1 
/ + + (19) 

Once a conservative linearization in the form of equation (18) has been achieved, the conservative 
residual is easily decomposed using the 6-wave model [equation (15b)], giving the 2-D generaliz- 
ation of equation (11): 
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~ S  /~ .  1-.. 6 6 RT = -- l~f id l  = -ST(F~ + G ~ ) =  -ST ~, ~[*o2' f k =  ~, R k, (20) 
r k = l  k f f i l  

where the linearized eigenvectors and eigenvalues are again the analytical expressions resulting from 
the model, evaluated in the state Z. For example, in the state Z, one has 

9 

ulx/~| + u2x/~2 + u3x/~3 
+,/p,+ Jp, 

VlX/~l + v2x/~2 + v3x/~3 

HlN/PI JI- H2%/~2-JI- H3%//p3 
%//pl --~- %//p2 .-F- N//-p3 

Again as in I-D, it is preferred to compute the wave strengths and propagation angles using the 
matching equation in the primitive variables V = (p, u, v, p)T, because the algebra involved is much 
simpler [4]. Thus, the strengths and angles are computed by solving the following system instead 
of using equation (15a): 

6 /~ .  
¢v = Z ~ ,  (21) 

1 

where ~v are the right eigenvectors in primitive variables, evaluated in the state 7.. The consistent 
expression equivalent to equation (10), to be used in the LHS, is given by Ref. [9]: 

¢ f  = = 

Lc4 

2~/-~ ~z l 

1 
x/~ [~z2-  ~ z l ]  

1 i] [~' z 3 - ~ z 

y - l v/-~[Fl~z , _ a ~ z 2 _ ~ z 3 + ~ z ,  --¢- 

(22) 

Because of our assumptions, the gradients of the parameter vector components in the RHS are just 
constants, easily evaluated for a given triangle. 

2.3. Scalar distribution schemes in 2-D 
Since each part 7Ck~kf k of the decomposed residual is associated with a particular advection speed 

k vector ~ with known orientation in the 2-D plane, the downwind distribution schemes discussed 
in section 1.3 generalize naturally as follows [7, 9]: 

1. Compute for each triangular cell T the conservative residual 
6 6 /~ .  

~T= Y, R~ = - s T  Z 7 ~ e k .  (23) 
k = l  k = l  

2. Send for each cell and for each wave k the contribution (At/Sp)[13~-]kR*r to the 
vertices p, where the coefficients ~er]k for the three vertices sum up to one for a 
given wave, while the area Sp is the surface of the median dual cell around 
meshpoint p, given as one-third of the area of the triangles surrounding p. 

The distribution coefficients ~er]k are again determined in an upwind manner, depending on the 
orientation of the advection speed vector ~ .  For example, if the triangle has a single inflow side 
for a given advection speed vector ~[k, there is only one downstream vertex and the corresponding 
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coefficient [fl~]* can be chosen as unity, such that the entire residual R~ will be sent to that 
downstream vertex, exactly as in the 1-D case discussed before. 

Similar to the 1-D case, the scheme sends contributions from all cells surrounding a given node, 
and the updating formula generalizing equation (12) for a given node i can be written as 

U? +t U" At 6 = , + ~ Z ~ ~-" t~'rjr~pi ~+R +r, (24) 
k = l  T 

where the second summation extends over all triangles with common vertex i. 
The key observation is again that the problem is reduced to the construction of  accurate 

and monotonic schemes for a scalar advection equation in 2-D. A general theory for con- 
structing such schemes has been developed [7, 9], based on the concepts of  positivity and 
linearity preservation. Positivity imposes a maximum principle on the discrete solution, 
thus providing stability and monotonic discontinuity capturing, while linearity preservation 
guarantees that an exact steady-state solution is preserved by the scheme whenever such an 
exact solution has linear variation in space. Precisely as in 1-D with the TVD schemes, non- 
linear schemes are needed if one wishes to combine both properties, even for a linear advection 
equation. 

Another remarkable property is that scheme (24) is conservative, while no flux evaluations are 
needed: summing up equation (24) for all meshpoints one obtains in the RHS a summation of  all 
the cell residuals which telescope because of  the conservative linearization (20), thus leaving only 
the boundary contributions of  the fluxes. 

3. C O M P U T A T I O N A L  EXAMPLES AND C O N C L U S I O N S  

The first example, shown in Fig. 1, is the reflection of an oblique shock on a flat plate with an 
incoming Mach number of  2.9 and an incident shock angle of 29 °. The second test case, shown 
in Fig. 2, is a supersonic flow in a channel with bump of 2% thickness, with an incoming Mach 
number of  1.4. In both figures, the solution is presented in the form of iso-Mach lines superimposed 
on the grid. For both computations a nonlinear positive and linearity-preserving distribution 
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Fig.  1. O b l i q u e  s h o c k  ref lect ion wi th  a n  u p s t r e a m  M a c h  n u m b e r  o f  2.9 a n d  a s h o c k  ang le  o f  29 °. I s o - M a c h  
lines wi th  i n c r e m e n t  0.05,  s u p e r i m p o s e d  o n  the mesh  (1235 vertices).  W a v e  mode l  C, N N  scheme.  

............................................ +: ..... _,. ...... +,. . . . . . . . . .  

,*****~'.<,,~.,~,~:+-+,. ,-p,-,-+-.-~-~-p+-~ -.-,+, -,+- . , . . . .  +.+ +. +-+-~. 
.=,¢+*~,~,~+'.¢:++~,&-'.-,~-.~+:¢.¥.¢ "~ . . . .  ,~,...;,., .; ' . ; ,  ~,.'; ¢+;, +'.~.,., 

,$~mm'Car '* . ,+~ ' . i , :~ . -~ ,o~ ' , , -~ .  ~--.~,-, , , 

i "'''++ '+  . . . . .  . . . . . . . . . . . . . . . . . . . . . .  

Fig.  2. Supe r son i c  c h a n n e l  f low wi th  a n  inlet  M a c h  n u m b e r  o f  1.4. I s o / M a c h  lines wi th  i n c r e m e n t  0.05,  
s u p e r i m p o s e d  o n  the  m e s h  (1977 vertices).  W a v e  m o d e l  C,  N N  scheme.  

C A F  22-2/3--1  
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scheme ( N N  scheme, [7]) with model  C has been used. Shock cap tur ing  within a layer  o f  a b o u t  
2 cells is ob ta ined ,  wi th  little influence by the grid. 

These results are  numer ica l  evidence tha t  the mul t id imens iona l  genera l iza t ion  o f  Roe ' s  scheme 
as descr ibed in this pape r  represents  a viable a l ternat ive  for  the wel l -es tabl ished d imens iona l ly  spli t  
(or locally I -D)  T V D  upwind  solvers, in par t i cu la r  on uns t ruc tured  grids composed  o f  tr iangles.  
Nevertheless ,  the results ob ta ined  to da te  should  only be viewed as pre l iminary ,  especial ly for  
subsonic  and  t ransonic  flow. The mos t  cri t ical  i tem requir ing add i t iona l  refining is p r o b a b l y  the 
mul t id imens iona l  e igenvector  decompos i t ion  (section 2.2), since only one o f  the models  cons idered  
so far (6-wave model ,  C) gave sa t is factory  results for all the test cases cons idered  [9]. 
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