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Abstract--The phase distribution nonuniformities near bounding surfaces result in anisotropy and non- 
uniformity of the effective thermal conductivity tensor. For a two-dimensional porous medium made of 
cylindrical particles, we evaluate the properties of this tensor for cases where the medium is bounded by 
the fluid saturating it or by a solid surface. The use of a uniform effective conductivity, such as the bulk 
(far from the surface) value, along with the near surface temperature distribution results in an error in the 
calculated heat flux. We examine this error and the errors resulting from the use of other approximations 
of the effective conductivity near the surface. We also point out a slip in the surface temperature occurring 
when the bulk effective conductivity and the temperature distribution away from the surface are used to 
extrapolate the temperature at the interface. A slip coefficient is used to account for this slip in temperature. 

1. I N T R O D U C T I O N  

UNDER the assumption of  local thermal equilibrium, 
a single energy equation can be written for sol id-  
fluid heterogeneous systems such as saturated porous 
media. This single energy equation includes a local 
effective thermal conductivity tensor Kc which rep- 
resents a local volume-averaged molecular conduction 
through both phases and a local dispersion tensor D ~ 
which represents the local volume-averaged hydro- 
dynamic dispersion. This dispersion results from the 
simultaneous presence of  a temperature and a velocity 
gradient within the pore. Because of  the anisotropy 
and nonuniformity of  the solid matrix structure, both 
Ko and D d are in general anisotropic and nonuniform. 
In this paper we examine the variation of  K, near the 
bounding surface and for a two-dimensional struc- 
ture. In a later paper we will combine the hydro- 
dynamic analysis, already reported by Sahraoui and 
Kaviany [1], with a heat transfer analysis in order to 
obtain the variation of  D ~_ 

Figure 1 (a) is a rendering of  the phase distributions 
near a solid bounding surface where the conductivity 
of  this solid k, b can be different to the solid particle 
and the fluid conductivities k~ and kr. The heat flows 
from the bound medium (here a solid) to the fluid 
phase through A,,r and to the solid phase through 
A~,. We expect each of  the three conductivities k,~, 
k,, and kr to influence the magnitude of  K, at the 
interface. Also, the distribution of  the local porosity 
significantly influences the magnitude of  K~ causing a 
nonuniformity. This nonuniformity near the bound- 
ing surfaces has been recognized by many inves- 
tigators such as Yagi and Kunii [2], Ofuchi and Kunii 
[3] and Matsuura et al. [4].  Ofuchi and Kunii 
attempted to model the nonuniformity of  K0 by 

including a modification which allows for a larger 
porosity near the bounding solid surface of  a packed 
bed of  spherical particles_ This treatment of  the inter- 
face is called the layered model. In this model the 
average porosity for the distance of  one half of  a 
particle diameter from the boundary is used to evalu- 
ate the effective thermal conductivity at the bounding 
surface. This corresponds to an averaging volume 
which, although smaller than the representative 
elementary volume, is too large to represent the point- 
wise effective conductivity needed for the evaluation 
of  the surface heat flux using the pointwise tem- 
perature gradient. The bulk (away from the interface) 
effective thermal conductivity is also used near the 
bounding surface, along with the extrapolation of  the 
temperature field away from the boundary. This, in 
general (and when kr < k,), has resulted in a larger 
surface heat flux or a surface temperature slip. Then, 
attempts have been made to model this temperature 
slip by using a film heat transfer coefficient [4]. 

The existing rigorous analytical-numerical treat- 
ments of  the bulk effective conductivity, which are 
mostly for packed beds of  spherical particles, are in 
general not capable of  handling anisotropy and non- 
uniformity of  the particle arrangements near the 
boundary. The nonuniformity could be modeled using 
a variable k0± and imposing the continuity of  the 
temperature, i.e. no temperature slip is allowed at 
the boundary. This is given by the steady state, one- 
dimensional equation with negligible radiation effects 

d F dT1 

where k,±(y) is the variable local transverse effective 
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N O M E N C L A T U R E  

a side length of square [m] 
Af~ solid-fluid interracial area [m 2] 
br. b, t ransformation vector tin] 
c thickness of connecting arm between 

square cylinders tin] 
d diamcter of circular cylinders tin] 
D d dispersion tensor [ms  2] 
./' function used in the correlation of Ke 
g bulk effective conductivity correlation 
tl width of  plain medium [m] 
I identity tensor 
k conductivity [W m ' K- '] 
K~ effective conductivity tensor 

twin 'K-'] 
/q isotropic effective conductivity 

[ W m - '  K '] 
k~ conductivity of solid bounding medium 

[W m - '  K b] 
k ~ ,  kel transverse and longitudinal 

components  of effective conductivity 
t e n s o r [ W i n  ~K ,] 

/ cell dimension [m] 
f, periodicity vector [m] 
nr, unit normal vector outward from fluid 

phase 
n~r unit normal vector outward from solid 

phase 
q heat flux vector [W m - 21 
q,, q, x- and y-components  of the heat flux 

vector [W m 2] 
q ...... heat flux obtained from the exact 

solution [W m -  2] 
q.o~,r heat flux based on no temperature slip 

[w m -~] 
r radial coordinate [m] 
R radius of circular cylinder [m] 
T local temperature [K] 
AT imposed temperature difference [K] 
T~ fluid-phase temperature deviation, 

T - ( T ) ~ .  [K] 
Th temperature boundary condition at 

_1, = / 7  
T,' solid-phase temperature deviation. 

T--(T>~. [K] 
T,~ temperature of solid bounding surface 

[K] 
<T>.,, local area-averaged temperature 

in the x-direction, 
<T>.,,(x.y) = ~°o.,T(x + x', y ) dx" [K] 

( T )  .... 

( T ) , ,  

(T)~.  

( T ) ;  

V 

X , / '  

local area-averaged temperature 
in the y-direction. 

05 (T)..,,(.v. 1') = S. o 5T(.'.'.y+_v ) dy" [K] 
local volume-averaged temperature. 
(I /V)I, .T dV[KI 
local fluid-phase volume-averaged 
temperature.  (1 / Vr) j',., 7",-d V [K] 
local solid-phase volume-averaged 
temperature.  ( I/V, )f,., L d V [K] 
local representative elementary volume 
[m '] 
Cartesian coordinates tin]. 

Greek symbols 
C~r slip coefficient 
r. porosity 
0 tangential coordinate  
). pore-level length scale 
~b volume fraction of the solid, I -F. .  

Subscripts 
A area 
exact from exact solution 
f fluid 
h at y = 17 
/ at x = / 
s solid 
s, solid bounding wall 
V volume 
x x-direction 
), ),-direction 
0 tangential direction 
[I longitudinal 
J_ transverse. 

Superscripts 
f fluid 
s solid 

deviation 
+ plain medium side 
- porous medium side. 

Other symbols 
< >r volume averaged over the fluid phase 
< >~ volume averaged over the solid phase 
( >.~ area averaged in the x-direction 
< )A,.  area averaged in the ) '-direction 
< >.  volume averaged. 

conductivity of the medium. This equation applies to 
both the porous and plain media, but for the former 
the temperature is written as either the area- or the 
volume-average (i.e. <T)A or <T>v). In the porous 

medium and away from the interface, k o l O , - ,  - c o )  
is a constant  and corresponds to the bulk effec- 
tive conductivity k~ and in the plain medium 
k c ± O ' > O ) = k f  or kolO'>O)=k~h depending on 
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FIG. I. (a) Rendering of the phase distributions near a solid bounding surface, (b) two-dimensional unit- 
cell models for nonconnected and interconnected square cylinders, (c) the periodic temperature boundary 
conditions used for the computation of the bulk effective conductivity for a circular cylinder, and (d) the 

computational domain used for the study of the slip and no-slip temperature boundary conditions. 

whether the plain medium is the fluid or another solid. 
When the temperature slip is allowed, a constant 
kcl = k ~ i s u s e d f o r - o o  < y < 0 .  

As mentioned earlier, a slip at the interface occurs 
when the temperature at the interface is found by the 
extrapolation of  the temperature distribution in the 
bulk of  the porous medium. In order to model this 
slip, we construct a temperature slip boundary con- 
dition similar to that of  Beavers and Joseph [5] for the 
hydrodynamic boundary condition at the porous-  

plain media interface. The temperature slip boundary 
condition is given by 

d(T),,  ar 
dy I.,.=o = ~ - ( T - - T + )  (2) 

where ~r is the dimensionless slip coefficient, T -  the 
porous medium interfacial temperature, T ÷ the plain 
medium interfacial temperature, and 2 a pore-level 
length scale_ The length scale 2 is expected to be the 
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order of the unit-cell length. Here we will use ). = / 
where / is the average linear dimension of the unit cell_ 
In equation (2) the temperature gradient is evaluated 
on the porous medium side, however, it can also be 
written in terms of the temperature gradient on the 
plain medium side, but ~r will be different. Using 
the bulk kc and if the plain medium is the fluid, the 
continuity of the heat flux gives 

k~ d(dTv)' .... o = k r ~ '  - .  - (3) 

which is the second boundary condition that has to 
be used along with the slip boundary condition. Using 
this continuity of heat flux, equation (2) can then be 
written in terms of the plain medium temperature 
gradient. Note that in the hydrodynamic problem the 
condition given by equation (3) for the shear stress is 
not satisfied. This is because generally the Darcy law 
is used for the porous medium, and therefore, the 
boundary shear stress in the porous medium is 
generally neglected. 

Prat [6,7] considers heat conduction adjacent to 
the bounding surface of a two-dimensional porous 
medium. He describes [6] the different levels of 
description (microscopic and macroscopic) of the 
boundary condition for the Dirichlet- or the 
Neumann-type boundary conditions. He uses a per- 
iodic structure made of square cylinders. For this 
model he solves for the energy and the b equations (b 
equations will be defined in the next section)_ He 
reports a negligible difference in the interfacial tem- 
perature obtained using the macroscopic or the vol- 
ume-averaged microscopic (local) model. By an order 
ofmagnitude analysis, Prat shows that the error intro- 
duced by using the macroscopic boundary con- 
dition is of the order of the temperature deviation 
about the mean (i.e. T ' =  T - - ( T ) . . ) .  This error is 
larger for the Neumann boundary condition and 
increases as kJkr  increases. Prat [7] extends his inter- 
facial examination to a plain fluid layer bounding 
the porous medium. He considers two macroscopic 
models, one having a constant k,± and the other a 
variable k,~. Again, he finds the difference to be small. 
As will be shown, this error is more noticeable when 
the bounding medium is not the fluid saturating the 
porous medium. For the variable effective con- 
ductivity model, Prat [7] calculates the local transverse 
conductivity using equation (1). To find k~±(y), he 
assumes a linear variation of the area-averaged tem- 
perature to obtain the volume-averaged temperature 
( T ) r .  Therefore, his calculated k~l(y)  depends on 
several parameters such as k jkr ,  the width L h of 
the porous medium, and the size of the averaging 
volume_ However, we expect kolO') to depend only 
on the local parameters and this will be examined 
further. 

Since the bulk effective conductivity is used in the 
temperature slip model, we now examine the existing 
treatments of the bulk k~. The problem of heat con- 

duction through a fully saturated porous medium has 
been extensively examined both experimentally and 
theoretically. Most of these studies have focused on 
the bulk properties of the porous medium. The exper- 
iments are generally for packed beds of randomly 
arranged spherical particles, The theoretical inves- 
tigations are for a variety of unit-cell and phenom- 
enological models, with porosity ranging from that for 
dilute suspensions to that for consolidated particles. 
A variety of particle-to-particle contacts have been 
assumed [8,9], from point contact to compaction 
under gravitational and applied compacting forces. 
An extensive review of the literature on conduction 
in packed beds, giving the available correlations, is 
provided in Kaviany [I0]. 

Nozad et al. [11] conducted experiments with ran- 
domly packed beds of spheres. In these experiments 
the solid to fluid conductivity ratio k~/kr spans a wide 
range by using different solid (aluminum, bronze, 
stainless-steel and urea-formaldehyde) and fluid (air, 
glycerol and water) pairs. The effective conductivity 
is also calculated using the finite-difference method 
for a periodic structure of in-line nonconnected square 
cylinders, as shown in Fig. l(b). Their numerical 
results show that for high kJk f  the effective con- 
ductivity reaches an asymptote. However, the exper- 
iments for randomly close packed beds of spheres show 
that the effective conductivity increases monotonically 
with k~/kr. This is due to the contacts occurring 
between the spheres. Then in order to simulate the 
packed beds of spheres, Nozad et al. allow for contact 
between the particles by using connecting arms (or 
contact areas) of thickness c having the same con- 
ductivity as the solid as shown in Fig. l(b) With this 
geometry the solid phase becomes continuous (while 
the fluid phase becomes discontinuous). The thickness 
of the contact area is found by matching the computed 
effective conductivity for e = 0.36 to the experimental 
results for 0.39 -%< e -% 0.41. Nozad et al_ report that 
c/a = 0.02 gives the best fit to the experimental results. 
In a later communication by Shonnard and Whitaker 
[12] an error in the Nozad et al. analysis is acknowl- 
edged and the ratio c/a is changed to 0.01. As we 
will show below, even cla = 0.01 overestimates the 
experimental results by 300%. This will be discussed 
further in Section 4.2. 

The problem of heat conduction in a bed of non- 
consolidated particles is also studied by Saez et al. 
[13] for a three-dimensional medium made of cubic 
particles with k~ = 0. They study the effect ofstructure 
anisotropy by considering rectangular cross sections. 
They report that for isotropic structures the effective 
conductivity depends only on porosity and the three- 
dimensional effects are not very important. 

In this study the effective conductivity for periodic 
arrangements of circular and square cylinders is deter- 
mined using the volume-averaging technique and the 
pointwise solution to the conduction equation_ For 
the bulk effective conductivity kc the effects of the 
porosity e, the arrangement, the particle shape, and 
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k~/k., on k¢ are examined. Both the no-slip tem- 
perature boundary condition, using a variable effec- 
tive conductivity, and the slip condition, are 
examined. The effects of~, k~/kr, k~,/kf, and the phase 
distributions near the bounding surface, on ko jO') and 
k~Av) are examined. 

2. LOCAL V O L U M E  AVERAGING 

In the following we briefly review the existing theo- 
retical treatment of the effective conductivity tensor 
by Carbonell and Whitaker [14]. Starting from the 
energy equation for the solid and the stagnant fluid 

V ' k # T , = O  and V ' k # T f = 0  (4) 

with the boundary conditions on A,  

n f , ' k # T f  = n , ' k # T ,  and Tf = T~. (5) 

By using the theory of local volume averaging and 
under the assumption of local thermal equilibrium 
[I 5], a single heat conduction equation is written as 

V-(K~ 'V<T) , , )  = 0 (6) 

where K~ is the effective conductivity tensor. The local 
volume-averaged temperature is defined as 

'I ( T ) v  = ~ T d V  = E~(T); + E f ( r ) I .  (7) 

The effective conductivity tensor is defined through 
the volume-averaged energy equation which contains 
the local deviation T[ 

(8) 

where 

Tf = T--<T)[.. (9) 

In order to relate the local temperature deviations to 
the gradient of the volume-averaged temperature, the 
following transformations are introduced : 

T[=hr'V<T>,. and 7".,'=h,'V<T>,.. (10) 

Then the effective conductivity tensor is given by 

kf--k, fa Kc=[e, k r + ( l - E ) k , ] l + ~  n,brdA. (11) 
f ,  

The b, and br vectors are found by solving the b equa- 
tions given by 

V 2 b r = 0  and 7 2 b ~ = 0  (12) 

with the boundary condit ion on A,  

krnr," Vbr = k~n." Vb, +nr , (k , - k r )  and b r --- b,. 
(13) 

The periodic boundary conditions are given by 

b r ( x + [ , )  = br(x) and b~(x+/ , )  = b,(x) (14) 

where [, is the periodicity vector. 

3. SOLUTION M E T H O D  

The two-dimensional steady-state heat conduction 
equation is solved for a periodic structure of circular 
and square cylinders using the finite-difference 
approximations. The unit cells used in the com- 
putations are shown in Figs_ l(b) and (c). For the 
square cylinder shown in Fig. l(b) the porosity, 
including the areas of the connecting arms, is given 
by 

e, = 1 -  ~ + _ (15) 

and for the circular cylinder shown in Fig. I(c) the 
porosity is 

7[ d 2 
e =  1 - - 4 / ~ .  (16) 

For a unit cell having a circular cylinder, a cylin- 
drical-Cartesian grid overlaying scheme along with 
a bilinear interpolation are used to communicate 
between the two coordinates [l]_ The governing equa- 
tion in the Cartesian coordinates is 

O_v k ox + ~y k ~_v/=O (17) 

and for the cylindrical coordinates we have 

F /.2 

These equations are nondimensionalized using ," as 
the length scale, and AT for the temperature. This 
temperature difference AT is the change in tem- 
perature that occurs over one cell and away from the 
interface_ In the subsequent sections all the tem- 
peratures and lengths are dimensionless, unless other- 
wise specified. Variable conductivities are assumed in 
equations (17) and (18) in order to accommodate the 
step variation in the conductivity across the solid- 
fluid interface (instead of using the continuity of heat 
flux given by equation (5)). This step variation in 
conductivity is modeled using the harmonic mean 
given by Patankar [16]_ 

When a circular cylinder is used, iterations are per- 
formed alternatively in the two grid nets, and the 
values of the unknown at the boundaries of these grid 
nets are obtained using the bilinear interpolation. This 
bilinear interpolation is performed in the overlaying 
region, which extends 3-4 grid nodes. An unknown 
temperature on the boundary of the cylindrical grid 
net is obtained by the bilinear interpolation, using the 
four surrounding nodes in the Cartesian grid. The 
same procedure is used for the temperature on the 
boundary of the Cartesian grid net_ In order to solve 
for the temperature field, five iterations are carried out 
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in the Cartesian domain. The bilinear interpolation is 
then used to find the boundary conditions for the 
cylindrical domain, where the next five iterations are 
performed. After these iterations, interpolations are 
made back to the Cartesian grid (for every cylinder in 
the domain). 

The applied boundary conditions differ depending 
on the region examined (i.e. the bulk or the interfacial 
region). When a unit cell is used to compute the bulk 
effective conductivity of the packed bed, the boundary 
conditions used are those given in Fig. l(c) (for in- 
line and staggered arrangements of circular cylinders)_ 
Periodic boundary conditions are used in both direc- 
tions_ For the interfacial region, shown in Fig. l(d), 
the periodic boundary condition given by 

T(0,y) = T(/-,y) (19) 

is used in the x-direction_ In the)'-direction prescribed 
temperatures 

T(x ,h)= Th and T ( x , - - L , ) = O  (20) 

are used at the upper and lower boundaries. Figure 
l(d) shows also the condition 

T(x, I - L , )  = I (21) 

resulting from the use of the temperature difference 
AT across the lower cell for the normalization. In 
practice, for a given phase distribution near the 
surface, Th is adjusted such that the equality given by 
equation (21) is satisfied. Note that since ( T ) . , O '  = 
- L . )  = 0 we have 

A 7 " =  [(T)..,,O, = I - L , ) - ( T ) . , , ( _ v  = - L , ) ]  

= ( T ) . , . ( ) , =  l - - L , )  (22) 

where we now have used (T)A, which is the area- 
averaged temperature in the x-direction and is defined 
a s  

(T) , , , (x ,y)  = T (x+x ' , y )  dx'. (23) 
0.5 

Since the periodic boundary conditions are used in 
the x-direction ( r )A , (x , y )  reduces to (T),j ,(y).  A 
similar area average in the y-direction is defined by 

(T)A,(X,y) = T ( x , y + y ' )  dy'_ (24) 
0.5 

The effective conductivity for a unit cell can be 
calculated using equation (11), requiring the solutions 
to the h equations (12). However, the effective con- 
ductivity can also be computed directly by using the 
temperature field_ This is preferred because the b equa- 
tions and their boundary conditions are more com- 
plicated than the energy equation. By taking the 
volume average of the pointwise temperature field 
defined by 

( T ) v ( x , y )  = T ( x + x ' , y + y ' )  dx" dy" 
0.5 0.5 

(25) 

the effective conductivity tensor becomes 

K¢ 
(q),. = -- k~.V(T). . ,  (26) 

The volume-averaged heat flux vector is 

For the unit-cell models shown in Figs. l(b) and (c) 
the area-averaged x-direction heat flux, with average 
taken over), is independent ofx, i.e. 

f ~.s k 8T(x, y) J , 
(q~).,,(x) = o.5 kr ~ o) = (q.,.).,,(x = 0). 

(28) 

This is because the periodic (or adiabatic) boundary 
condition is used in the )'-direction. From equation 
(28), we obtain the volume-averaged x-component of 
the heat flux vector (equation (27)) to be 

(q , . ) , .  = (q~) , ,  (x)  = (q. , ) . ,~(x  = 0). (29) 

The gradient of the volume-averaged temperature is 
the temperature gradient imposed as the boundary 
condition (Le. dimensionless AT). Then, the effective 
conductivity becomes 

ko (q.~)A,(X = O) 
(30) 

kf - AT 

We have compared the bulk effective conductivity 
calculated using equation (30) and the one using the 
solution to the b equations for a periodic structure of 
square cylinders, and an agreement of less than 0.1% 
is obtained. All the results presented below are com- 
puted using the pointwise temperature field. 

4. B U L K  E F F E C T I V E  C O N D U C T I V I T Y  

In this section, the bulk effective conductivity for a 
unit cell is computed using the unit cells shown in 
Figs. I(b) and (c). In these computations the effects 
of k~/kr, porosity, particle geometry, and arrange- 
ment, on the effective conductivity are examined. 

4.1. Nonconnected particles 
We will first examine nonconnected particles (i.e. 

discontinuous solid phase), where an asymptotic 
behavior for kJkt  is found for ks/kf--* oo. 

4.1.1. Artangement. The effect of the particle 
arrangement on the bulk effective conductivity is 
examined using both the in-line and the staggered 
arrangements of circular cylinders. In the staggered 
arrangement, compared to the in-line arrangement, 
the two adjacent columns are dislocated up or down 
by one half of a unit-cell size. 

The effect of the particle arrangement on kJkr, for 
several porosities, is shown in Fig. 2(a) for circular 
cylindrical particles_ As expected, for high porosities 
(i.e. t,/> 0.8) the effective conductivity does not 
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depend on the arrangement. In this range of  porosity 
the scaled particle diameter is smaller and the influ- 
ence of  the neighboring particles becomes less sig- 
nificant. As the porosity decreases, this interaction 
becomes more important  and the difference between 
the effective conductivity of  the two arrangements 
increases. Figure 2(a) shows that the in-line arrange- 
ment results in a larger effective conductivity. This is 
because in the in-line arrangement adjacent cylinders 
are closer than in the staggered arrangement. For  
the lowest porosity used in this study (e, = 0.4), the 
difference in the effective conductivity, between the 
staggered and the in-line arrangements, is about  18%. 

4.1.2. Part ic le  geometry_ The effect of  the particle 
shape on the effective conductivity is examined by 
using circular and square cylinders and the results are 
shown in Fig_ 2(b). As with the particle arrangement, 
at high porosities the particle shape did not influence 
the effective conductivity. However,  as the porosity 
decreases the effect of  the particle shape becomes sig- 
nificant_ For  porosities larger than 0.5, the effective 
conductivity for a bed made of  square cylinders is 
larger than that for circular cylinders_ Away from the 
center of  the cylinder, the distance (in the heat flux 
direction) between two adjacent circular cylinders 
increases. This increased distance represents extra 
resistance ( k J k f  > 1) to the heat flow and the effective 
conductivity of  the medium decreases. For  porosities 

less than 0.5, the circular cylinders have a higher effec- 
tive conductivity than the square cylinders. This is 
because for the same porosity, near the center of  the 
cell the surfaces of  two adjacent circular cylinders 
are closer than the square cylinders. As the distance 
between adjacent cylinders becomes smaller (i.e. lower 
porosity), the heat flux through the center of  the par- 
ticle becomes more significant compared to that away 
from the center. Thus, the effective conductivity of  the 
circular cylinders becomes larger_ 

4.1_3. Correlat ions.  In order to provide a correlation 
between the effective conductivity of  a bed of  non- 
touching particles and the bed parameters (e, and k j k f )  
curve fits are made through the numerical results pre- 
sented in Figs. 2(a) and (b). As a theoretical guide, we 
consider a simple model for the nontouching square 
cylinders. In this model, we assume a one-dimensional 
heat conduction through a composite slab having a 
parallel and series arrangement of  resistances. We 
apply the equivalent thermal circuit and obtain the 
effective conductivity of  the composite slab. For  the 
nonconnected square cylinder shown in Fig. 1 (b), k j k r  
is written in terms o re  and k j k r  as 

ko ~4' '-+(I -~) 

kr k~ __@ I -~) 
k~4,'.-~(l +(i-4,',;)2+4, '2 

(31) 

(o} 

s ~ a ~ r  e f n d ~  
-- s-k~md ~ = o.4 
- - i n - - - r r l e  . ~ - - . . . . . . . .  

4 
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FIG. 2. (a) Effect of the particle arrangement on kc/kr = (k jk f ) (k jkr )  using in-line and staggered arrange- 
ments of circular cylinders, (b} effect of the particle geometry on ko/kf = (kjkf)(k,/kr) using circular and 
square cylinders, and (c) comparison of kc/kr = (ko/kf)(kJkr) from the numerical results for interconnected 

square cylinders with the available experimental results for packed beds of spheres. 
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Table I. Correlations for function.f(¢), used for the pre- 
diction of the bulk k, for 0. I ~< ¢ ~< 0.6 

Geometry or 
arrangement Expression 

in-line circular 
cylinders 

Staggered 
circular 
cylinders 

In-line square 
cylinders 

f ( ¢ )  = 0.88-0.380+0.93¢-' 

f ( ¢  ) = - 0.21 + 2.770 - 6.77¢ 2 + 10.82~b 3 

f(~b) = 0.83 +0.18~b 

where ¢ is the volume fraction of  the solid phase (i.e. 
q5 = I - D -  For  large k J k ,  the numerical results in 
Figs. 2(a) and (b) approach the expected asymptotes. 
These asymptotes are also obtained from this circuit 
model for kJkf ---, ~ ,  and the result is 

k,(k,__, ) I 
E\k, ~-~ - l - ~ ' :  (32) 

The model assumes that the heat conduction is one- 
dimensional in each component  of  the slab. However,  
the heat conduction is two-dimensional, especially for 
large kJk ,  In order to include these two-dimensional 
effects, a coefficient f ( ¢ )  is introduced in the numer- 
ator of  equation (31). This coefficient is introduced to 
match the asymptotes at large kJkr. Then. the effective 
conductivity given by equation (31) becomes 

kf g ~b, 

.1.(¢) ~ ~ , 2 +  (I - - ¢  "2)+[1 -f(~b)]~b I]2 

= ks i ,  (33) 
kf4'  - ( 1 - ¢ ' " 2 ) + ( 1 - ¢ " 2 ) 2 + ¢ ' 2  

The third term in the numerator  is introduced to 
satisfy the limit kdkr = 1, when k~/kf = I. By taking 
the limit of  equation (33) at large k~/kf, we find that 
t i C )  is given by 

) .f(q~) = (1-q~ - ) ~ \ k r  oo . (34) 

The curve fits for the function f(~b) are found using the 
value obtained from equation (34) and the numerical 
results for (kJkO (kJkf = 104). These functions are 
given in Table I. The expressions for kdkf are in very 
good agreement with the numerical results especially 
for large k~/kf (as expected). The error using the 
expressions is about  0.5% for large k~/kf (>. l03) for 
circular cylinders, and it is about  4% for kJkr = 5 (for 
the in-line arrangement, and e = 0.9). 

4.2. lnterconnected particles 
When solving b equations (12)-(14), Nozad et al. 

[11] encounter numerical instabilities for kdkr > 100. 
They use a perturbation method with (kdkr)- ~ as the 

perturbation parameter to remedy this problem. They 
solve the b equations for the various orders of  the 
perturbation. The effective conductivity is computed 
using equation (1 I). In the next step of  the derivation, 
by taking the limit when kJkf--* oo, the integral con- 
taining the first-order term of  the expansion was 
dropped from equation (5.1-2) in Nozad [17] and 
equation (3.23) in Nozad et al. [1 I]. This produces an 
overestimation of the contact area. This over- 
estimation can be shown by replacing the inter- 
connected square cylinder shown in Fig. 1 (b) by a slab 
placed in the center parallel to the direction of  the 
heat flow and having a uniform thickness c (same as 
before). In this geometry, the heat conduction is one- 
dimensional and the heat flux is less than the cor- 
responding two-dimensional heat flow for the inter- 
connected geometry shown in Fig. l(b)_ The pre- 
diction of  Nozad et al. is lower than this one- 
dimensional case, As was mentioned earlier, this error 
was later noted [12] and a c/a = 0.01 was suggested_ 
However, our results (Fig. 2(c)) show that this thick- 
ness overpredicts the effective conductivity for a 
packed bed of  spheres. To validate our results for 
c/a = 0.01 we use an approximation where the tem- 
perature of  the square cylinder is constant for very 
large kJkf (>_-103). This assumption of  constant tem- 
perature for the square cylinder is verified by our 
numerical results. For  very large ks/kf, the heat flow- 
ing through the thickness c/a constitutes nearly all the 
heat flowing through the cell_ Using the one-dimen- 
sional conduction for the arm length 1 - a / f ,  thickness 
c/a, kJkr, and the temperature difference (AT = 1), the 
effective conductivity can be estimated from equation 
(30). This approximation gives an effective conduc- 
tivity, for e = 0.36, c/a = 0.01, and k~/kf = 104 which 
is higher by 20% compared to our numerical results 
and higher by 300% compared to that of  Shonnard 
and Whitaker  [12]. 

In Fig. 2(c) we show the results for two ratios of  
c/a (0.002 and 0.004) in order to cover some of the 
scatter in the experimental data at high kJkf. As is 
shown, a c/a = 0.002 is more appropriate for repre- 
senting the experimental results. The experimental 
results presented in Fig. 2(c) were obtained by Nozad 
et al. [11] and Jaguaribe and Beasley [18]. Nozad et al. 
perform the experiments for a packed bed of  spheres 
using different solid (aluminum, bronze, stainless steel 
and urea-formaldehyde)  and fluid (air, glycerol and 
water) pairs. In the experiments conducted by 
Jaguaribe and Beasley the packed beds are made of  
glass spheres and steel balls. The fluids used in these 
experiments are hehum, carbon dtoxide, water and 
air. 

5. NEAR B O U N D I N G  SURFACES 

In this section, we study the anisotropy in the phase 
distributions, and therefore, in K~/kf near the interface 
of  a porous medium and a bounding medium which 
can be either the fluid saturating the porous medium 
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or a solid. Near the interface, the local porosity (in 
an areal sense) changes and consequently the local 
effective conductivity changes_ Using the pointwise 
solution to T(x,y) the variation of K~0,)/kf is exam- 
ined using the local volume-averaging technique. The 
slip boundary condition is also examined using the 
local volume-averaging technique. The size of the 
averaging volume is varied with the position such that 
a large averaging volume is used in the bulk region of 
the porous medium, while an infinitesimal volume is 
used at the interface. More detailed discussion about 
the averaging volume can be found in our treatment 
of the hydrodynamics near the interface [12]. The 
averaging volume used at the interface is the small 
grid size used in the numerical integration, and a unit- 
cell size for y~< -1 /2 ,  and - 2 y  for any point in 
between. The volume-averaged temperature for 
01> y >/ - 1 / 2  is 

< T > , . ( x , y ) = ~  , 0~ T(x + x', y') dx' dy'. 

(35) 

Since a variable averaging volume is used here, the 
derivation of the averaged energy equation has to be 
modified. This modification arises from a change in 
the volume averaging theorem when accounting for 
the variable averaging volume. The averaging theorem 
is modified by Gray [19] and is given by 

1£ 
( V T ) , . = V ( T ) , , + ~  TndA 

+ < T > , ' -  ~7 ,aa, ' / 

The terms between the parentheses are due to the 
variable averaging volume and vanish if the averaging 
volume is constant. Gray shows that if the condition 

(l£k ) 
I, ~ V T d V  = 0  vv. A, EVrdA- 

(37) 

is satisfied, then the averaged transport equation 
derived for a constant volume is applicable. For con- 
vection heat transfer, the convective flux term is also 
included in equation (37)_ Note that the VV vector 
only has a y-component, since the averaging volume 
does not vary in the x-direction. In the y-direction, 
the area- and volume-averaged y-direction heat flux 
are the same_ This is due to the periodic boundary 
conditions used in the x-direction. Therefore, the term 
on the right-hand side of equation (37) is identically 
zero_ Thus, using the averaged energy equation, i.e. 
equation (6), near the interface, is appropriate. 

All the numerical results reported below are for 
circular cylindrical particles. The particles are non- 
connected, and therefore, the solid phase is dis- 
continuous. 

5.1. Slip boundary condition 
The slip boundary condition allows for the slip in 

the temperature at y = 0 and accounts for the local 
variation of the effective conductivity. The variation 
of the effective conductivity near the interface is 
lumped into the empirical slip coefficient ~r- As men- 
tioned in the introduction, the slip boundary con- 
dition has been previously used for heat transfer 
experiments in packed beds of spheres (e.g. Matsuura 
et al. [4]). In these experiments, the spheres in the 
packed bed are in direct contact with the bounding 
wall_ Ideally, this problem is modeled by a porous 
medium having a prescribed temperature Ts~ at the 
boundary. Then, the boundary condition given by 
equation (2) is replaced by 

d<T), .  
],.=o = c~r(T- -T~,)_ (38) 

The temperature distribution for the one-dimensional 
heat flow with negligible radiation effects is found by 
solving 

d2(T>. 
d)'-' - 0. (39) 

The boundary condition given by equation (38) is 
used at the interface (y = 0), along with 

( T > v ( 0 ) = T -  and ( T > , . ( - L 0 = 0 .  (40) 

By solving equation (39) using the given boundary 
conditions, we have for T 

~ 7"Tsb 
T - (41) 

1 
~ r - t ,  

The model used to study this boundary condition is 
shown in Fig. l(d). In our numerical simulations we 
assign a very large conductivity for the bounding solid 
(k~Jkr = 104) and this allows us to obtain a constant 
temperature (T, = Tj,) at the nominal interface 
(y = 0). 

The temperature slip coefficient :~r is calculated 
using equation (38), and the result is 

d(T) , .  

y =  0 - 

(42) 
~r (T-  -T~,)  

The temperature T-,  shown in Fig. 3(a), is found 
by the extrapolation of the temperature distribution 
using the results away from the boundary (y = - 1). 
The temperature gradient in equation (42) is also 
calculated using the results away from the interface. 

When the particle is in direct contact (point contact) 
with the bounding surface, the particle conductivity 
kdkf significantly influences the heat flux at the wall. 
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Table 2. Effect of the particle conductivity on the 
slip coefficient for circular cylinders in contact with a 
solid bounding medium of high conductivity 

(k~/kj = I0 ~, e. = 0.5) 

k,/kr k j k r  aT T - T~ q . . . . . .  q . o~ , r  

5 2.01 7.11 0.14 2.01 [.72 
10 2.42 4.58 0.21 2.42 1.59 
50 2.92 2.90 0.34 2.92 1.23 

This is shown in Table 2, where the results show that 
the slip in the temperature increases as k,/kr increases. 
In experiments for heat transfer in a packed bed of  
particles or a porous medium bounded by a solid wall 
the heat flux could be calculated by measuring two 
temperatures, onc is the wall temperature and the 
other is at the vicinity of  the wall. Note that this 
approach does not allow for slip at the interface. Here 
we show the error that could be caused by not allowing 
slip in computing the heat flux. The heat flux is cal- 
culated using the bulk effective conductivity, the tem- 
perature at the interface (i.e_ T,,) and the temperature 
one cell length away from the interface (i.e. 
( T ) r ( y  = - I)). The no-slip heat flux is then given by 

q,L,,.,r, = [ L , - ( T ) v ( 3  . . . .  l ) ] ~ .  (43) 

In Table 2 q,o~,p is compared to the heat flux obtained 
from the exact solution. The difference between the 
two heat fluxes increases with the solid conductivity 
and a difference of  60% is obtained for k,/kr = 50. 

An attempt is made to find a correlation between 
the slip coefficient ~r and the bed parameters ~ and 
k,:/kr. We have found that these variables can be 
separated, i.e. 

o~7(kc/kf,t~) = o:r,(k,:/kr)OtT~_(E). (44) 

Then, the correlation is found to be 

(ko  1.92 
C~r = 10.07k, kr j 

f o r 0 . 5 ~ < e ~ < 0 . 7 a n d ~ " =  104. (45) 

Figure 3(a) shows the distribution of  the volume- 
and area-averaged temperatures for k~/kr = 50 and 
e = 0.5. From this figure we notice that the boundary 
effect is limited to about half of  the cylinder diameter. 
It also shows that the extrapolated temperature T-  at 
the interface is higher than the prescribed temperature 
of  the interface. Note that in the available exper- 
imental results for packed beds of  spherical particles, 
the extrapolated T-  is lower than the prescribed tem- 
perature. This is due to the different (e)A(Y) near 
the boundary found for the periodic arrangement of  
circular cylinders and that of  the random arrangement 
of  spheres_ For  the packed bed of  spheres, the porosity 
near the wall is higher than in the bulk and the local 

effective conductivity is lower. For  this reason a higher 
temperature gradient exists near the wall. For  the 
circular cylinders depicted in Fig_ I(d), the porosity 
near the wall is lower than in the bulk and this results 
in a higher local effective conductivity and a smaller 
temperature gradient near the interface. The packed 
bed of  spheres can be simulated by moving the solid 
away from the surface tangent to the first layer of  
cylindrical particles. When the interface is placed at a 
distance of  I/2 away from the center of  the particle, 
the slip in temperature is zero. When the interlace is 
placed at a distance further than I/2 a temperature 
slip similar to the one in the packed bed of  spheres is 
obtained. 

The slip boundary condition is also used for the case 
where the bounding medium is the fluid saturating the 
porous medium. In Fig_ l(d) the solid wall is replaced 
by the fluid (k,Jkf = 1). The results of  the area- and 
volume-averaged temperature for kJkr= 50 and 

= 0.5 are shown in Fig. 3(b). The temperature T- is 
extrapolated in the same way as done above for the 
solid bounding wall. From Fig. 3(b) we notice the 
boundary effect does not penetrate into the plain 
medium and T + does not have to be extrapolated. 
The slip boundary condition is examined for different 
e and kJkf. The slip coefficient was calculated using 
the same approach outlined when the particles are 
touching the bounding surface and the results of  these 
calculations are given in Table 3. The results for aT 
are also shown in Fig. 3(c). These results show that 
ar  does not change significantly as the bulk porosity 
changes and is of  the order of  10 for kJkr= 5. The 
slip in temperature occurring at the interface is also 
reported in Table 3 to indicate the error caused by 
the no-slip one-dimensional analysis. The difference 
between the heat fluxes evaluated using the local 
simulation and that using the no-slip one-dimensional 
model is also shown. The one-dimensional no-slip 
heat flux is calculated in the same way as the solid 
bounding wall using equation (43) with T,~ replaced 
by T ÷. The largest difference is about 9.5% and is for 
the lowest porosity (e = 0_5). 

The effect of  the particle conductivity on the slip 
coefficient is also examined for e = 0.5. The results 
which are given in Table 4 show that over a wide range 
of  k~/kr the slip coefficient changes significantly. As 
the conductivity of  the particle increases, the slip in 
temperature increases, because the local conductivity 
deviates more from the bulk effective conductivity due 
to the lower local porosity near the interface. For  a 
given porosity and a variable bulk effective con- 
ductivity, the same behavior of  a t  for a fluid bounding 
medium as that of  the solid bounding medium is 
observed. Thus, we at tempt to find a correlation simi- 
lar to the one for the solid bounding medium given 
by equation (44). This relationship is given by 

1 
ar  = 2.59kc e --'°4 

kr 
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FiG. 3. (a), (b) Volume- and area-averaged temperature distributions for heat conduction in an in-line 
arrangement of  circular cylinders (e, = 0.5, kJkr = 50) at the interface with (a) a near perfectly conducting 
solid bounding surface (k~/kr = 10 ~) and (b) the fluid bounding medium (k~/kf = 1), (c) variation of the 
slip coefficient with the porosity for a packed bed of  an in-line arrangement of  circular cylinders 
(k~/k r = 5, k~b/k r = 1), (d), (e) constant temperature contours I'or transverse (v-direction) and longitudinal 

(x-direction) heat flows, respectively (k~/kf = 5, k,./kr = 1). 

for  0.5 ~< e ~< 0.8 and ~ r  ~ = 1. (46) 

5.2. No-s l ip  boundary  condi t ion 

T h e  phase  d i s t r ibu t ions  near  the in ter face  are bo th  
an i so t rop ic  and  n o n u n i f o r m .  Thus ,  the effective con-  
duct iv i ty  for this t w o - d i m e n s i o n a l  s t ruc ture  has  two 

var iable  componen t s_  These  are the longi tud ina l  
k , ( y ) / k f  in the x -d i rec t ion  and  the t ransverse  c o m -  
p o n e n t  kc±(y ) / k r  in the  y-d i rec t ion .  

In o r d e r  to de t e rmine  kc±() , ) /k f ,  we imposed  a 

t e m p e r a t u r e  g rad ien t  in the y-d i rec t ion ,  while in the 
x -d i r ec t ion  the per iod ic  b o u n d a r y  cond i t i ons  are 
used_ A schemat i c  o f  the c o m p u t a t i o n a l  d o m a i n  is 
s h o w n  in Fig. 1 (d). W h e n  the fluid b o u n d s  the po rous  
m e d i u m ,  the solid b o u n d i n g  m e d i u m  in Fig. l (d)  is 
replaced by the fluid. I so the rma l  c o n t o u r s  are s h o w n  
in Fig. 3(d) for the t ransverse  hea t  c o n d u c t i o n  wi th  

k~b/k f = 1. F o r  the  eva lua t ion  o f k c l ( ) ' ) / k f ,  we imposed  
a t e m p e r a t u r e  g rad ien t  in the  x -d i r ec t ion  s imilar  to 
the  one  cell m o d e l  used to c o m p u t e  the bulk effective 

conduc t iv i ty  m Sect ion  4. The  ad iaba t i c  b o u n d a r y  
cond i t i ons  are used at  the lower  and uppe r  bound -  

Table 3. Effect of bulk porosity on the slip coefficient for an 
in-line arrangement of  circular cylinders bounded by the 

fluid (k~/kr = l , k Jk r  = 5) 

e ko/kf aT T -  -- T + q ...... q,o~.r 

0.5 2.01 10.52 0.095 2.01 1.82 
0.6 1.73 9.95 0.093 1.73 1.57 
0.7 1.50 10.74 0.087 1.50 1.37 
0.8 1.31 13.24 0.077 1.31 1.20 

Table 4. Effect of the particle conductivity on the slip 
coefficient for an in-line arrangement of circular cylinders 

and a fluid bounding medium O: = 0.5) 

kJkr ~r T -  - T + q ..... q.o~hr 

5 10.52 0.095 2.01 1.82 
I 0 7.69 0.130 2.42 2. I 1 
50 5.73 0.174 2.92 2.41 
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aries. Isothermal contours for the longitudinal con- 
duction are shown in Fig_ 3(e) for k~,/kr = 1. 

5.2.1. Transz'erse cffectiee c'onducticity. Here we 
begin by reporting on the results for k~,/kr = I. Using 
the volume-averaged temperature distribution and the 
imposed temperature gradient in the y-direction, 
k ~ O ' ) / k  r is evaluated using the y component  of  equa- 
tions (26) and (27), i.e. 

k<±(.l ')~'(T),. / k  ~T~ (47) 
k,. 4 r  - i:r ?'_l'l, 

For the same reasons discussed in Section 3, the volume- 
averaged heat flux in the y-direction is independent of  
y and is given by 

~T 
-k ,  ~_,, = <q"L',(Y= -L,/. (48) 

Then, k~(_r)/k r is given by 

k° ~ (_t') - (q.,.).,,(y = - L , )  
- ( 4 9 )  

kr ~ ( T ) , .  
_ _  _ (j.) 

The distribution of  the effective conductivity com- 

puted using equation (49) is used in equation (I) to 
confirm the validity of  the model given by equation 
(1) and to justify the use of  the variable averaging 
volume near the interface. This is done for the same 
temperature boundary conditions as the pointwise 
solution for e, = 0.5 and k j k f  = 50. The agreement 
in heat flux between the pointwise solution and the 
solution to equation (I) is very good (i.e. 0.1% differ- 
ence). Thus, the use of  variable averaging volume in 
conjunction with equation (1) near the interface is 
justified 

The results for k<.±(.r)lkf for several k~lkr and r, = 0.5 
are shown in Fig. 4(a). Note  that k ,±(y) /k f  depends 
strongly on kUkr for - 0 . 5  < y < 0. This is due to the 
higher solid phase fraction (i.e. lower porosity) in the 
averaging volume near the interface. In Fig. 4(b) the 
dependence of  k~( .v) /kr  on the porosity is demon- 
strated_ As the porosity of  the porous medium 
increases, the solid fraction decreases in the bulk and 
near the interface leading to a lower local effective 
conductivity. The effect of  porosity near the interface 
is also evident in the experiments o rYag i  and Kunii ; 
howcver, their rcsults are for k~,/kf > 1. 

The computed local effective conductivity at the 
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FIG. 4, (a) Distribution of the local transverse effective conductivity for an in-line arrangement of circular 
cylinders for different solid conductivities (e = 0.5, k~/kr = 1), (b) effect or the bed porosity, for an in-line 
arrangement of circular cylinders, on the distribution of the local transverse effective conductivity 
(kUkr = 5, k~/kr = 1), (c) distribution near the interface for the transverse effective conductivity using 
different models (kjkr = 50, e = 0.5), and (d) distribution of the longitudinal local effective conductivity 

for an in-line arrangement of circular cylinders, for different solid conductivities (e = 0.5, k~b/k f = I). 
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Table 5. Effect of the bounding solid conductivity on the 
transverse effective conductivity at the interface (e = 0.5, 

k~/kr = 5) 

k%/kf k~L(), = O)/kf 

I 1.05 
10 1.80 
50 2.01 
104 2.09 

interface (i.e. k~LO'= O)/kf) is presented in Table 5 
for various k,Jkr. This local effective conductivity is 
evaluated using the derivative of  the volume-averaged 
temperature in the porous medium. The results show 
that as the k~Jkr increases, the k:,(j: = 0)/k,. increases. 
This is due to the smaller resistance in the bounding 
medium which results in a larger heat flow in the 
particle. The conductivity of  the wall determines the 
distribution of  the heat flux over the interface and into 
the porous medium. This is shown schematically in 
Fig. 1 (a) where, as depicted, more heat flows through 
the solid portion, especially when the solid is in direct 
contact with the bounding surface. These effects also 
become evident by examining the slope of  the volume- 
and area-averaged temperature distributions at the 
interface (i.e. y =  0) in Figs. 3(a) and (b). These two 
cases exhibit different slopes indicating a change in 
the local effective conductivity. 

As an alternative to the direct simulation, phenom- 
enological models can be developed for k~±(y)/kf. We 
consider three models for the variation of  the trans- 
verse effective conductivity near the interface. The first 
is the layered model used by Ofuchi and Kunii,  where 
the effective conductivity within the distance of  a par- 
ticle radius is assumed constant and different from the 
bulk effective conductivity. This effective conductivity 
is determined using the average porosity within this 
distance. The second model uses the local variation 
of  the volume-averaged porosity (or solid fraction 
(~b).,O')) and uses a correlation relating the local 
porosity to the effective conductivity, similar to the 
correlation given by equation (33) and by Table 1, i.e. 

k~(t')~_ - 9[(~b), (.1'),~1. (50) 

The third model uses the bulk effective conductivity 
of  the packed bed. The distribution of  kc±(y)/kt for 
the three different models are shown in Fig. 4(c) for 
k~,/kf. In this figure, the exact local conductivity 
obtained from the volume-averaged local solution is 
also shown and compared to the results of  the three 
models. These models are used to solve equation (1) 
for the one-dimensional version of  Fig. 1 (d) with the 
boundary conditions 

( T ) , ,  0 , =  - L , ) = 0  and ( T ) , , O ' = h ) =  Th. 

(51) 

Equation (I) along these boundary conditions is 
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solved numerically using the finite-difference method. 
This heat flux is then normalized using the tem- 
perature difference across the interfacial cell, i.e. 
[ ( T )  ,,(y = 0) - (T)v (Y = - 1)]. This problem is equi- 
valent to the experimental procedure where two tem- 
peratures are measured and equation (1) is integrated 
to find the heat flux at the interface. This approach 
allows us to examine the ability of  the different effec- 
tive conductivity models in predicting the heat flux 
when two temperatures near the interface are known. 
The results of  these different models are shown in 
Table 6. The heat flux for the exact solution is 
obtained from the local solution using the model 
shown in Fig. l(d) and then normalized using the 
temperature difference across the interfacial cell as 
mentioned above. As expected for the exact solution 
the heat flux through the cell for the case of  solid 
bounding mcdium (k~Jk, >> I) is higher than the case 
of  the fluid bounding medium (k~Jkr = 1), when the 
same tempcrature difference is used across the last 
cell. Table 6 shows that the layered and the volume- 
averaged porosity models give the same heat flux 
within a negligible numerical error for both solid and 
fluid bounding media. This is because these models 
would not distinguish between solid and fluid bound- 
ing media. The results for the heat flux in Table 6 
indicate that the layered model gives a better agree- 
ment than the volume-averaged porosity model when 
compared to the exact solution. This is because on 
average the transverse effective conductivity is higher 
for the layered model than the porosity model as 
shown in Fig. 4(c). For  this case of  a packed bed of  
in-line bed of cylinders it is better to use the layered 
model which is easier to use since a closed form solu- 
tion can be found. From these results it is obvious 
that using the bulk effective conductivity with no slip 
gives the largest error in estimating the transverse heat 
flux at the interface. 

5.2.2. Longitudinal effective conductivity. Similar 
to the transverse component,  the volume-averaged 
temperature distribution and temperature gradient in 
the x-direction are used to compute the local variation 
of  kcu(y)/kr using 

1 kr Ox - ~ f x -  . or kr - O<T>v 

?x 

(52) 

Table 6. Comparison of the interracial heat flux resulting 
from different models used for transverse effective con- 

ductivity (~ = 0.5, k~/kf = 50) 

Model q(k~,/k r >> 1) q(k~/kf = I) 

Exact 4.43 3.53 
Layered 3.37 3.35 
9(( c~ )v, &/kf) 3.13 3.11 
Bulk 2.92 2.92 
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The results for k~,l(y)/k f are shown in Fig. 4(d) and 
the same behavior  is observed as that  reported for 
k~l(y)/kf. However,  the results in Figs. 4(a) and (d) 
indicate that  kJkf  does not  influence the local value 
of k~l(y)/kf as much  as kol(y)/kr. These results show 
that  there is a significant difference between the two 
componen t s  which show the extent of  the anisot ropy 
in KJkf  near the interface. F rom these results, we 
notice that  the error  in the longi tudinal  heat  flux, 
in t roduced by assuming a cons tan t  longi tudinal  effec- 
tive conductivi ty,  is smaller than that  for the trans- 
verse heat  flux_ The three models used above  for the 
transverse case are also used here and the results for 
the heat flux through the interracial cell are compared  
to the exact solution. The cell-averaged dimensionless  
heat flux through the interfacial cell is given by 

the average porosi ty at the vicinity of  the interface 
results in a bet ter  predict ion of  the heat  flux compared  
to the variable k~l(y)/kf obta ined  from the kJkr 
correlat ions.  It is also shown that  using the bulk kJk f  
for the t ransverse effective conduct ivi ty  causes a 
significant error  in the heat flux. However,  for the 
predict ion of  longi tudinal  heat flux the cons tan t  kJkt- 
model is the most  accurate,  while the layered model 
is the least accurate  

In the near  future we plan to examine the non-  
uniformity  and  anisot ropy of  the dispersion tensor 
near the interface. There,  because of  the non-  
uniformity  of  the flow field, the slip in the tempera ture  
is expected to be more pronounced .  The effective con- 
ductivi ty tensor  ob ta ined  here will be used in the 
evaluat ion of  the dispersion tensor. 

f ~ k=l(y ) d ( T ) , .  
(JT = I kr dx  dy. 

(53) 

Because the temperature  is normal ized using the tem- 
perature  difference across one unit  cell, the gradient  
in the x-direct ion of  the volume-averaged tempera ture  
is unity. Thus,  the x -componen t  of  the heat  flux in 
equat ion (53) is equal to the integral of  the local 
longitudinal  effective conductivi ty.  Compar i son  with 
the exact solution reveals that  the bulk effective con- 
ductivity gives the most  accurate predict ion of  the 
heat flux_ As expected, this model underes t imates  the 
heat  flux by 6% while the layered and the volume- 
averaged porosi ty models overest imate by 8 and 15%, 
respectively. This shows that  the layered model which 
is the choice model for the t ransverse case is no t  satis- 
factory for the longi tudinal  case_ 

6, S U M M A R Y  

The problem of  heat  conduc t ion  in porous  media 
is treated for the bulk of  a two-dimensional  porous  
medium and also near  its bound ing  surfaces. For  the 
bulk effective conductivi ty,  it is found tha t  at low 
porosities (i.e. 0.4 ~< e ~< 0.7) the effects of  the particle 
shape (square or circular cylinders) and a r rangement  
(in-line or staggered) are significant. 

For  the slip bounda ry  condi t ion,  we found that  the 
slip coefficient 0~r depends on e, ks/kr, and k~Jkr. The 
slip in temperature  is more significant when the par- 
ticles are in direct contac t  with a solid bound ing  
medium having a larger conduct ivi ty  than  the fluid. 

For  the no-slip bounda ry  condi t ion,  we examined 
the dis t r ibut ion of  the local effective conduct iv i ty  in 
the longi tudinal  and transverse directions. We found 
that  the local effective conduct ivi ty  tensor  depends 
strongly on  the bulk and the local porosity,  and  on 
ks/kf and k~b/k f. We also found that  near the interface 
the var ia t ion of  k=Jkr is much larger than  k, Jkf  and 
examined different models  for these t ransverse and  
longitudinal  componen t s  of  the effective conduct ivi ty  
tensor. It is found that  the layered model which uses 
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