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Abstract

Dinavahi, S.P.G., A streakline method for computing two-dimensional vortical flows, Applied Numerical
Mathematics 11 (1993) 283-308.

A forward time-stepping method is developed for computing free-streamline flows past two-dimensional
bodies. The field vorticity is represented by vortex sheets. The kinematic boundary condition of no flow across
the field vortex sheets is satisfied temporally by shifting the sheets normal to themselves as dictated by the
local field velocities. The Helmholtz vorticity equation is reformulated as a dynamic boundary condition to be
applied along the field vortex sheets. It is demonstrated that for a specified separation point, the solution
evolves toward the Kirchhoff steady free-streamline flow. It is further demonstrated that in shedding vortex
sheets from both corners of a polygonal contour with two corners, the method picks the forward corner as the
separation point. For a circular polygonal contour with eleven corner points, five of which are allowed to shed
vortex sheets, the method picks the corner point at 54 degrees from the forward stagnation point as the
separation point. It is observed that this is close to 55.04 degrees, which is the forwardmost separation point
allowed by the classical free-streamline theory for the circle.

1. Introduction

A new method is developed for arriving at stationary inviscid vortical flows, starting from the
attached potential flow as the initial condition. A vortical flow as referred to in this work is one
where a body is fixed in an otherwise uniform stream of such high Reynolds number that the
vorticity that is present in the field and on the body is in the form of infinitesimally thin sheets.
Here, the boundary layer is detached from the body and its vorticity is convected at order-one
distances from the body along free vortex sheets, unlike the flow within an attached boundary
layer. This is a case where convection overwhelms diffusion. The present study is confined to
two dimensions,

The model consists of a bound vortex sheet on the body contour and free vortex sheets in the
field, which are connected to the body contour at the separation points. The end results of
computation by this new method are, conceptually, the classical Kirchhoff open free-streamline
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flows, where the free streamlines are also vortex sheets. In essence, the method to be outlined
and demonstrated computes the steady Kirchhoff free-streamline flows as the steady-state limit
of an initial value probiem.

Analytic solutions for stationary free-streamline flows past flat plates and polygonal sections

A th Tt A 1
have existed for some time. The formulation is Eulerian and the solution procedure involves

conformal mapping techniques in which the physical plane and the hodograph plane are
mapped conformally onto a parametric plane where the mixed boundary value problem is
solved. In the case of bodies with sharp corners the separation points, which are at the corners,
are known a priori. The solution procedure for the free-streamline flow past curved bodies of
arbitrary section shape was first proposed by Levi-Civita [6] in 1907. The case of circular and
elliptic cylinders placed symmetrical in a uniform stream was studied by Brodetsky [2] in 1923,
Ford [4] in 1928, and Schmieden [11] in 1929. Birkhoff [1] gives a very comprehensive review of
the solution procedure for flow past curved sections of arbitrary shape and presents some of
the results obtained by solving the resulting nonlinear equations numerically.

In the present work, the free-streamline problem is formulated as an initial value problem.
The initial value procedure developed in this work is applied in investigating the possibility of
predicting definite ideal flow separation points on general polygonal contours. First, the
computation procedure is applied to simple shapes, and it is confirmed that the correct
separation points are achieved as the computation proceeds in time. The procedure is then
applied to a semi-circular polygonal contour with eleven corner points. The results are
interesting.

The method developed specifically for the investigations described above can be classified as
a vortex-fitting method. It is termed the “streakline method”. This is because, with a streakline
defined as the line connecting all the particles that have passed through a given point since the
origin of time, this method computes the approximate evolution of streaklines with time. The
streaklines are also the intersections of the two-dimensional solution plane with vortex sheets
which carry vorticity that is shed at the body separation points. The generated streaklines are
conveniently viewed as “vortex tubes” through which the vorticity flows. These are flexible but
inextensible tubes that are convected normal to themselves by the local velocity field. However,
these tubes (vortex sheets) are not free to drift in the field as they are connected to the body at
the separation points. At each time step new segments are added at the downstream ends of
the tubes as needed to prevent the vorticity from flowing out into the field. The flow of vorticity
in the tubes is governed by the Helmholtz vorticity equation, which forms the dynamic
boundary condition.

It is required in pursuing the objectives of this work that the time-stepping calculations be
carried on to a relatively large time. In order to achieve this, it is necessary to avoid the vortex
sheet roll-up and other small scale instabilities associated with the time-varying flow field. The
difficulties in forward time-stepping the Euler equations toward steady-state solutions are well
known. Procedures have been devised for suppressing the unwanted behavior; a recent method
uses the concept of artificial compressibility in the incompressible flow problem formulation
(Rizzi and Eriksson [9]). In the current work, a different approach is devised in developing a
computational method that proceeds toward the steady average state free of the usual
difficulties imposed by small scale instabilities and vortex sheet roll-up.

The general flow can be viewed as evolving on two scales in both length and time. The large
scales represent the evolution of the gross features of the flow toward a steady average
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configuration. The aim of the present work is to retain this character of the flow field. The
small scales, on the other hand, represent the local details in space and time that are so
troublesome in efforts to compute the large scale character of interest. Here, the unwanted
small scale effects are filtered out in the progression of the computation. The small time scale
flow features are eliminated by an averaging filter which averages the velocity field, at each
time step, over some number of preceding successive time steps. The number of averaging
steps, which is equivalent to the filter bandwidth, is adjusted to suit the particular computation.
The spatial smoothing is accomplished by computing the field velocities on a fixed spatial grid,
and then interpolating back to the streaklines in imposing the boundary conditions in the
convection stage of the calculation procedure. In general, the streakline method averages out
the unwanted small scale behavior as it develops, rather than from the final statistically
stationary flow field, as is typically performed with experimental data.

The streakline method was developed in [3]. A brief description of the procedure and results
is presented in the following sections.

2. Equations of motion
2.1. Problem definition

Consider the general two-dimensional flow past a cylindrical body. The stream has uniform
velocity 17; at infinity. The fluid domain is the region denoted as A4, bounded internally by the
body surface contour C, and externally by the circle C, of infinite radius. The governing
equations are:

e Helmholtz’s vorticity transport equation:

D 1

S0t ¥, 1) = 2= Vo(x, v, 1); (1)
e continuity of mass:

V-V=0; 2)
o definition of vorticity:

VX V=wk, (3)

which must be satisfied in A4, with boundary conditions:
V=0 on C,, (4)
V=V, onC,. (5)

In the above equations, w(x, y, t) is the field vorticity, I7(x, y, t) is the field velocity, V is the
gradient operator, and Re is the Reynolds number. Assume that the stream V, is started
impulsively. At this instant, no vorticity has been diffused from the body surface. Hence the
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flow at this initial instant is entirely irrotational [7]. The attached potential flow is therefore the
proper initial condition, i.c.,

—

V=V, att=0. (6)

V, is the field velocity initially.
Integration of (3), subject to (2) and (5), gives the following expression for the field velocity:

I7=I7w+fwa(§, )k X V,G(p, q) d4, (7)
where
1
G(p. )= 5 Inf(x—&)*+ (y—n)’, (8)
8, 0,
Vp—al'f“ 5}. (9)

p(x, y) denotes a field point and g(¢&, n) is a vorticity point.

Equations (1) and (7) with the boundary condition (4) and the initial condition (6) is the
general formulation to be solved. Now assume that the Reynolds number is high enough such
that, in any fixed field of vision, the body boundary layer appears as an infinitesimally thin layer
coincident with the body contour. Hence the body surface is represented as a vortex sheet. The
assumption of high Reynolds number allows the reduction of the general formulation to a
generalized potential flow problem in which field vorticity is concentrated into thin layers. The
flow is potential outside these thin layers, but there is a mechanism for producing vorticity at
the solid boundaries. Assuming that the field vorticity is concentrated into infinitesimally thin
sheets, it is represented as

w(x, y, t)=vs, t)8(n), (10)

where 8(n) is the Dirac delta function, y; in the vortex sheet strength per unit length, s is the
coordinate tangent to the vortex sheet, and » is the normal coordinate. The curvilinear
coordinates s and n are fixed in space at the given instant of time. There are M such vortex
sheets present in the field at a given time. The expression for w from (10) is substituted into
equation (7) and integrated across each of the M vortex sheets along n. The total field velocity
is the summation due to the M vortex sheets present in the field and that due to the bound
vortex sheet on the body. This is expressed from (7) and (10) as

M
V= Vw+9SC yok X V,G(p, q) ds, + Zl fc vik X V,G(p, q) ds,. (11)
b m= m

The superscripts b and f for vy, refer to the body and the field vortex strengths, respectively. C,,
is the contour of the mth vortex trailer.

2.2. Boundary conditions on free vortex sheets

2 < PR 14

In this paper, the terms “vortex sheet”, “vortex trailer”, “vortex tube”, and “streakline” are
all used synonymously. They all refer to the intersection of a three-dimensional vortex sheet
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with the two-dimensional solution domain, Actual “vortex lines” are perpendicular to the
solution plane and extend to infinity in both directions.

The vorticity transport equation (1), which governs the vorticity development in the field, can
now be reformulated as an equation that governs the distribution of vorticity along the free
vortex sheets in the field. Equation (1) is transformed into the s—n coordinate system, where s
and n are the instantaneous tangent and normal directions to the field vortex sheet respec-
tively, to obtain,

dw U, dw U, dw

R —__+__—
o8 h, 0s h, on
1 1 {hzazw 6(h2)8w h, ¥w a(hl)aw}

= — _— 4t — | — B —
Re hhy | b, 3s*  ds\h, on

+——+—
ds  h, an*  on

i (12

Here w = w(s, n, t), hy=1+n/p, h, =1, v, is the velocity along tangential direction s, v, is
the velocity in the normal direction n, and p is the local radius of curvature of the vortex sheet.
Similarly, the continuity equation (2) can be written in the curvilinear coordinates as

1 a(h2us) 1 a(hlun) 0
hh, ds hh, on B

(13)

By (10) the field vorticity is concentrated into vortex sheets which are viewed as stationary
instantaneously. Allowing the sheets to move with the fluid in the n direction, through the time
increment At =t — ¢, equation (10) takes the form

w(s, n, t)=y,(s, 1)d(n—0). (14)

By substituting the above form for w in equation (12) and integrating across the vortex sheet,
we obtain the vorticity equation along the vortex sheet:

oyl dlvyf U, 1 [yl yf

_4+LL)+;),;_=— —zq —Z (]_5)
ot as p Re | ds p

As the Reynolds number Re — «, the above equation reduces to
dy!  dfoy! v,
—"+——( i) +y, = =0. (16)
at as p

This is the vorticity transport equation governing the flow of vorticity along the vortex sheet
and can be viewed as a dynamic boundary condition to be satisfied on each of the M vortex
sheets implied in (11).

The M vortex sheets that are present in the field are material surfaces. Further, each vortex
sheet at any given time is composed of all the particles that have been shed through the
separation point on the body contour. Therefore the vortex sheet is a streakline of the
developing flow. Since the vortex sheets are material surfaces there is no flow across the vortex
sheets and they must move with the local flow. Each vortex sheet is a free surface with both
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unknown position and strength. Therefore, two boundary conditions are required for its
complete specification. The dynamic boundary condition (16) on each sheet is:

dyl  dlvy! v,
_G+M yiL =0, m=1,2,..., M. (17)

A g .
of s P

The required kinematic boundary condition is,

D 0 .
D—tF'"(x’ y, t)= aFm(x, y, )+ V-VF (x,y,t)=0, m=1,2,..., M. (18)
Here F,(x, y, t) = 0 is the surface equation of the mth vortex sheet. Equation (18) governs the
rate at which the surface moves normal to itself. The rate of extension of the vortex sheet is
determined by the local tangential velocity at its downstream end.

2.3. Boundary conditions on the body

The boundary condition to be satisfied on the body contour C, is (4). This can be expressed
as

V-Ai=0 onC,, (19)

V-§=0 onC,, (20)

where 7 and § are the contour unit normal and tangential vectors, respectively.

Here, consistent with the view that this model represents the infinite Reynolds number limit
of a real flow, with the attached boundary layer being the bound vortex sheet, the material
contour of the body is actually the inside contour of the bound vortex sheet. The no-slip
condition of (20) must therefore be invoked upon approaching the contour from the inside. If
this is done, the interior flow, corresponding then to a rigid body, is identically zero. The
normal boundary condition, according to (19) is then identically satisfied on both sides of C,,.
This view of a potential flow as satisfying the complete body boundary conditions in the infinite
Reynolds number limit is expounded by Lighthill [7] among others.

By requiring the tangential velocity to vanish according to (20) on approaching the contour
from the inside, a Fredholm integral equation of the second kind in terms of the unknown
vortex sheet strength is obtained from (11):

—

M
- %7’; +¢é ’)"?qu ds, + 2 fc ’)’qupq ds, +V,-5,=0. (21)
b m=1 m

Here, counter-clockwise vorticity is considered positive. §, is the unit tangential vector to the
body contour at point p and the positive direction for s is obtained by traversing the body
contour in the counter-clockwise direction. K, is the induced tangential velocity at point p
due to a unit point vortex located at the point ¢ and

K, =3, kxXVG(p,q). (22)

p
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3. Computational procedure

The forward time-stepping of the initial value problem formulated as equations (17), (18),
and (21) involves a recurring sequence of computations. In general, a new time step is executed
with the application of the kinematic boundary condition, (18), to move the field vortex
segments to a new position and to add a new segment at the downstream ends. This is followed
by the application of the dynamic boundary condition, (17), to redistribute the vortex strength
along the field vortex sheets. Next, the body contour vortex strength is resolved for the altered
onset flow from the new configuration of field vortex sheets using (21). Finally, the time step is
concluded with the computation of the field velocities over a fixed grid using (11), for the
purpose of applying the kinematic and dynamic boundary conditions in the next time step. The
five computation steps, or stages, constitute the streakline method. These stages in the
streakline method are explained in more detail below.

3.1. Computational stages

3.1.1. Initial condition

The flow is started impulsively from rest. The body contour vortex strength y® corresponding
to the attached potential flow solution provides (6), the starting point for the computation. This
solution is computed from the boundary integral equation (21) with field vortex strengths y' set
to zero. The body surface is divided into N panels. Each panel is assumed to have a constant
vortex strength. Thus, there are N unknowns. Panel mid-points are chosen as control points.
Equation (21) is discretized and applied at the N control points on the body, giving the
following N simultaneous linear algebraic equations in N unknowns,

N
—Lyb+ 2y;[A K,, ds,=-V.-§,, p=1,2,...,N. (23)
=1 As

»
qFp

These equations are inverted for y".

3.1.2. Kinematic boundary condition

Here, the kinematic boundary condition (18) is imposed along each of the vortex trailers
present in the field. In the first time step, vortex segments are extended into the field from the
sharp corners of the contour. Each such segment is an extension of the panel that is
immediately upstream of the corner from which it is extended. The segment is extended
tangentially from the parent panel with a strength equal to that of the parent panel. The length
of each segment is equal to the product of the time step, A¢, and the tangential velocity v,
along the parent panel. The tangential velocity ¢, is equal to y°, the vortex strength of the
parent panel.

Throughout the computation, the lengths of the individual segments of the field vortex
sheets are kept constant. As a result, the vortex sheet can be viewed as a chain of rigid vortex
segments which can only rotate at the joints. Consider a vortex trailer as shown in Fig. 1 after
m time steps. The trailer is attached to the body at the sharp corner P and there are
segments. In order to find the new position of the trailer, the calculated normal velocities in the
previous time step are used to rotate the segments. The segments are rotated successively
starting from the first segment. The segments of a vortex trailer are numbered successively
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i+2

Fig. 1. Boundary conditions on a streakline.

starting from the one that is attached to the body. That is, the first point of the first segment,
which is also a corner of the body, is fixed for all time steps:

x)=x]=xi= - =xm, (24)

yi=yi=yi= - =ym. (25)
In the above and the following equations, superscripts denote the time steps and subscripts
identify either a segment or its end point.

To find the new position of a particular trailer, segment 1 is rotated first about end point 1.
The rotation A, determines the new position of point 2 relative to point 1. Now, segment 2 is
given the same amount of translation as that of point 2. In addition, segment 2 is also given a
rotation AB,. This finally fixes the position of end point 3. Similarly considering a general
segment j, it is given the same amount of translation as the point j, and the rotation ApB ; fixes
the position of end point j + 1 relative to j. The amount of rotation of each segment is given by
the relative velocities normal to the segment at the two end points of the segment. The
computational procedure is summarized in the following equations (refer to Fig. 1):

N™ = —Sin(B7)é, + Cos(B")é,, (26)
Vi =Nm- (Vi - vim), (27)
AB" =V, At/As;, : (28)
x/t=xt + As; Cos(B) + ABY), (29)
vt =y + As, Sin(B* + AB), (30)

BTl =B+ AR (31)
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Here ]\7;-’" is the normal to the jth segment in the mth time step. B]" is the angle made by the
jth segment with the x-axis in the mth time step. As, is the length of the jth segment which is
between the end points j and j+ 1. Unit vectors é, and é, are along x and y directions,
respectively.

At the end of this normal movement, a new segment i1s added at the downstream end of the
trailer. The length As;,, is equal to the product of the tangential velocity, (v,),, , at its last
point and the time step Ar as shown on Fig. 1. If the calculated length is below a minimum
length, then As,. ; is set to this minimum length. There are two reasons for this. One is to
prevent the segments from rotating excessively for given normal velocities (refer to (28)). The

other reason for a minimum trailer segment length has to do with satisfying the dynamic
boundary condition. Both these aspects are discussed in further detail in Section 3.2

3.1.3. Dynamic boundary condition

The vorticity along the trailers is to be redistributed according to the vorticity transport
equation (17). For this purpose, the tangential velocities calculated in stage 5 are used. The
usual upwind differencing is employed to discretize the vorticity transport equation (17). The
last term yu, /p drops out for the following reason. v, /p represents the rate of stretching due
to the normal movement of a circular-arc material segment while subtending the same angle at
the center. In the current procedure, as described above, the individual segments are kept rigid
and new segments are added at the end of the trailer to take into account stretching due to all
the different mechanisms. Also since the kinematic boundary condition is applied first, i.e., the
segment is moved normal to itself so that the normal velocity is zero in its new position,

dy (g
¥, (v) _ ,
ot ds
,y]m+l _ ')’} _A+[(Us,y)jm _ (US‘Y);rill — )\_[(US'Y)71+1 - (Usy);ﬂ] ’ (32)
where
V= AI/AS (33)
and
. {At/As, if v, | ,<0, (34)
0 otherwise,
A+={AI/AS, lfV+1/2>0 (35)
0 otherwise.

The superscript m denotes the time step number in the above equations. This is an upwind
finite-difference scheme which automatically changes the direction of differencing depending
on the convection velocity, v,, along the trailers. In this scheme, the velocities are known at
panel end points denoted as j — 3, j + 3, etc. The vortex strengths are given at panel midpoints
denoted by j — 1, j, j+ 1, etc. The number v is evaluated by (33) at the panel end points.
As;_,,, and Asj+1/2, to be used in the evaluation of v at the end points, are taken as the
averages 1(AsF1 + As;) and (As + As,, ), respectively. The Courant—Friedrichs—Lewy (CFL)
stability condition imposes a relatlonshlp between At and As, and they cannot both be chosen
arbitrarily, since v, is determined by the flow field. Special care has to be exercised at the first
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panel where the vortex trailer joins the body. Here the first panel of the vortex trailer can be
fed vorticity from either or both of the body panels k — 1 and &, depending on the velocity on
the body contour. (See Fig. 1.) Equation (32) in general has to be applied twice at the contour
corner points.

After the vorticity redistribution is completed, the strengths of the newly added segments
during this time step are checked against a minimum cutoff value. If the magnitudes of the
vortex strengths of the added segments are below the cutoff value, they are discarded. Hence
the vortex tube is extended into the field only as fast as it can be filled. This results in a more
efficient computation. Further, empty tube segments successively added at the end tend to roll
up. Therefore, the empty segments are discarded as they are generated.

3.1.4. Body boundary condition

At this stage of the computation, the velocity field around the body has changed. The
boundary integral equation (21) is therefore re-solved. Here, the field vortex strengths ' are
not zero; the discretized integral equation is obtained as,

Nm
> vK,, ds,=V,-§,, p=1,2,...,N. (36)
1g=

The first term on the right-hand side of (36) is the contribution of the shed vortex segments.

N,, is the number of vortex segments constituting the mth field vortex sheet.

3.1.5. Field velocity computation

The field velocity is needed for applying the boundary conditions in the next time step. The
total velocity due to the uniform stream and the bound and field vortex sheets is calculated at
fixed grid points in space by (11). The equation is discretized into the form:

V=V, + quf kaG(p q) ds,

+ f g‘, f kXVG(p q) ds,. (37)

In using this formula, the induced velocity at any grid point falling within a specified radius
from the midpoint of a vortex segment is approximated to be zero. This produces a spatial
smoothing of the velocity field. The field velocity calculated at each grid point is saved for
several successive time steps for the purpose of short time averaging to further smooth the
velocity in time.

Velocity components at segment end points along each trailer are obtained by spatial
interpolation of the short time averaged velocities at the fixed grid points. This produces yet
another form of spatial smoothing of the velocity field. Spatial and temporal smoothing are
further discussed in the following section.
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The calculated velocities are resolved along the tangential and normal directions to the
trailer segments for the purpose of applying the kinematic and dynamic boundary conditions in
the next time step.

Velocity due to vortex trailers and the uniform flow is calculated at the body control points
to be used for solving the body vortex strengths from (36) of stage 4. Velocity at the corner
points of the body is calculated as the average of the velocities at the two adjacent panel
midpoints.

This completes one time step. The time step is now incremented and the computational
procedure returns to stage 2.

3.2. Discussion

In order to achieve steady flow in the near field of the body, it is obviously necessary to
perform the sequence of computations outlined above for a large number of time steps. It is
convenient to view the flow field as evolving on multiple time and length scales. The large time
and length scales are associated with the gross features of the global flow, which are the
characteristics of interest here. The small time and length scales, on the other hand, are
associated with the instabilities and vortex sheet roll-up, which are not of interest in the present
study, but which tend to limit computations of this type to relatively small time. The
troublesome small scale features are eliminated here by filtering, or smoothing the flow field as
it evolves in time and space.

Filtering or smoothing in time is accomplished by averaging the velocity field over a
pre-selected number of successive time steps as given below:

Fo g 38
= — .
51‘/,75,‘ ( )

Here V refers to the time averaged field velocity. The integral in the above equation is replaced
by a summation over a number of time steps n,,,, where 6t =n,  Af, giving

5 01 o 1 oS
V=— Y Var=— Y V~ (39)
bt k=m-—n,, avg k=m—n,,

In satisfying the kinematic (18) and dynamic (17) boundary conditions in stages 2 and 3
above, velocities are needed only along the field vortex sheets. However, the time averaging
must be performed at fixed points in space, rather than along the field vortex sheets, which
move with time. For this reason, field velocity calculations are performed on a fixed grid. A
rectangular grid is generated in the field. A triangular grid is generated in the local region of
the body for accuracy in matching the general body contour. Refer, for example, to Figs. 2 and
3. The triangular mesh is such that the vertices of the triangles that fall on the body contour are
made to coincide with the end points of the body panels.

Smoothing of the flow field in space is accomplished primarily by spatial interpolation of the
field velocities. The induced velocities due to the trailers are calculated at the fixed grid points
in the field, and then interpolated back to the trailers in satisfying the boundary conditions. In
maintaining a field grid with spacing much greater than the length of the longest field vortex
segment, a spatially smooth velocity field is naturally achieved at the trailers, except in the case
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where a vortex segment falls in the immediate vicinity of a grid point. In such a case, the
limiting far field representation of the vorticity shear layer as a vortex sheet is not appropriate.
The alternative limiting near field model is used instead. This is an infinite uniform vorticity
field surrounding the grid point, for which the induced velocity is identically zero. The decision
on which of the two limiting cases to use in any particular situation is decided on the basis of a
pre-selected “cutoff radius”. The maintenance of a large cutoff radius further smoothes the
velocity field by removing large velocities that occur at points in the vicinity of the vortex
segments, due to the thin layer approximation of the field vorticity. This “cutoff radius” is
denoted as r;. A cutoff radius of 3.0 means that the induced velocity at a point due to a vortex
segment of length As is zero if the point lies in a circle of radius 3.0As centered at the
midpoint of the segment. This removes the artifice of infinite velocities in the neighborhood of
the singularities used to represent the flow. It is justified by the argument that in the local near
field, the vorticity is distributed rather than compressed into an infinitesimally thin sheet.

Vortex sheet roll-up is further suppressed by selectively adding new trailer end segments, as
cited earlier. Recall that a new segment is added at the downstream ends of the vortex sheets
at every time step in satisfying the kinematic boundary condition. The newly added segments
have zero vorticity. Vorticity flows into them during the dynamic boundary condition stage as
dictated by (32). After satisfying the dynamic boundary condition, the magnitude of the vortex
strengths are checked against a minimum value. If the vortex strength of a particular new end
segment is smaller than this minimum value, then the newly added segment is discarded. The
vorticity that is present in this discarded segments is assumed to be lost to the field and
dissipated there. If new segments are indiscriminately added during every time step, then there
will be many end segments of very small vorticity level. This leads to a situation where the rate
of extension of the vortex sheet is higher than the rate of change of sheet strength. This further
leads to roll-up of the sheet. By preventing the unchecked extension of the sheet, the roll-up of
the “empty” vortex sheet ends is eliminated, which is the desired goal.

4. Results

The streakline method has been applied to calculate the free-streamline flow about the
following contours: a knife edge, a rectangular box, a circle represented by a polygon, and a
circular arc represented by a polygon. Results for the rectangular box are not presented here
and the reader is referred to [3]. For all these shapes the x-axis is in the horizontal direction
and the y-axis in the vertical direction. The dimensions, the orientation with respect to the
uniform flow and the near field grid are shown in Figs. 2 and 3. These problems are
non-dimensionalized by the uniform free-stream velocity and a characteristic body dimension.
In the cases of the knife edge and the rectangular box, the half height is chosen as unity. The
radius is set to one in the two circle cases. In all of the calculations, the flow is assumed to be
symmetric about the horizontal axis and the condition of zero circulation is identically satisficd
for all time because of the prevailing symmetry.

A study was undertaken during the course of the calculations to examine the sensitivity to
the different parameters that have to be selected a priori. The parametric study is presented
first, before presenting the computed results for the four cases identified above.
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4.1. Parametric study

Being the simplest shape, the knife edge of Fig. 2 was chosen for the parametric study. The
dimensions of the knife edge are: the half height (above the x-axis) is taken as 1.0 and the
width as 0.2. The edge angle is 45 degrees, as indicated on Fig. 2. The half body contour is
divided into 20 panels of equal length.

For this case, there are two sharp corners at which the flow can separate from the body. The
flow is allowed to separate from only the forward of the two sharp corners, which is numbered
point 11 on Fig. 2. Although vortex sheets would be shed initially from both the corners, only
the one shed from the forward corner would persist at large values of time. Using only the
forward separation point was found to satisfactorily serve the purpose of the parametric study.

Table 1 identifies the various parameters involved in the calculation.

The time step size At can actually be viewed as an independent variable. This being an
explicit method in time, the time step size At must be small in order to achieve computational
accuracy. The time step size chosen for these calculations is 0.005. Once the time step size is
selected, the minimum length of the newly added trailer segments is automatically limited. The
time step size and minimum segment length are selected such that together they satisfy the
required dynamic (CFL) and kinematic stability conditions as discussed before. The smallest
segment As_. that can be added at the downstream ends of the vortex sheets is taken as 0.015.
As discussed earlier, the vortex strength of the newly added segments is checked against vy, ;,
after applying the dynamic boundary condition. If the strength of the newly added segment is
below v,,,, then this segment is discarded. This is merely to prevent accumulation of almost
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empty segments as the downstream ends of the vortex trailers, as previously discussed. For this
study, v,,, is selected as 0.01.

The remaining three parameters of Table 1, i.e., r5, n,,,, and h, were varied systematically in
computations with the knife edge. The results are summarized in Fig. 4. The developing vortex
sheets are shown in Fig. 4, with the number of time: steps corresponding to each configuration

Table 1

Computation parameters

Symbol Parameter

At Time step size

(AS)pin Minimum segment length to be added

Ymin Value of y below which the newly added end segment is discarded
s Cutoff radius in the velocity calculation

n Number of time steps over which the field velocity is averaged

avg -
Rectangular grid size
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Fig. 4. Parametric study.

identified. Four test cases are performed for flow past the knife edge. In all these cases, At and
As_;, are held fixed at the above values.

In all of the cases that follow, the triangular grid in the immediate vicinity of the knife edge
was not changed, only the surrounding rectangular grid size was varied. This is considered to be
permissible on the basis of the observation that computational instabilities, if they develop,
always develop well after the flow has commenced, and after the trailers have convected well
into the rectangular grid region. The flow always seems to start out cleanly almost regardless of
the parameter values. This can be observed from Fig. 4. At 50 time steps, all the four cases look
very much alike. Also observe from Fig. 2 that the extent of the triangular grid around the body
is very limited.

Case 1: Here, the three parameters are chosen as follows: the cutoff radius r; = 0.01, field
velocity is not averaged, i.e., n,,, = 1, and the size of the rectangular grid, outside the triangular
grid, is chosen as 0.025, i.e., & = 0.025. Observe that the mesh size 0.025 is of the same order of
magnitude as the minimum segment length of 0.015. The cutoff radius rs is only 1% of the
segment length.

Referring to Case I on Fig. 4(a), it is clear that the calculations become unstable very quickly.
The breakdown commences even before 100 time steps. Even though the streakline appears to
have become smooth after time step 250, the calculations could not be carried out beyond 300
time steps, where a numerical breakdown occurred.

Case 1I: This case is chosen to demonstrate the effect of variation of the cutoff radius, r;.
The cutoff radius is increased from 0.01 to 0.1. All the other parameters are kept the same as in
Case I. The parameters are listed again for reference as: r; =0.1, n,, =1, and h = 0.025. The
mesh size is the same as in the previous case and field velocities are not averaged. The cutoff
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radius now is ten times greater than that in the previous case. This implies greater spatial
smoothing, as the field velocity gradients in the vicinity of a vortex segment are reduced.

From Fig. 4(b) it is clear that the calculation in Case II is more stable than in Case I
However, small kinks can be observed as the calculations progress. Furthermore, starting from
time step 250, a definite roll-up can be observed. By time step 500, the vortex sheet is rolled up
into a very tight spiral at its end and the computations were stopped. By comparing Cases I and
I1, it is obvious that the cutoff radius plays a major role in smoothing the flow field. However,
the vortex sheet shows a tendency to roll up at its end.

Case 111: Here, the effect of time averaging the velocity field is demonstrated. The cutoff
radius and the mesh size are taken 0.01 and 0.025 respectively. These values are the same as in
Case I. The field velocities are stored over five successive time steps and are averaged. i.e,
R, = 5. From Fig. 4(c), up to time step 250, Cases II and III are quite similar. Subsequently
the roll-up of the vortex sheet in Case II is replaced in Case III by an increasing general
irregularity. The irregularity reflects the small (Case I) cutoff radius. The roll-up is avoided in
Case III by the time averaging. Mechanically, the time averaging produces a phase shift
between the self-induced velocity at the trailer end, and the position of the trailer end. The
trailer end essentially “out-runs”, downstream, the self-induced velocity tending to roll it up.

Case 1V: In this case, the grid size is varied. The grid size is increased from 0.025 to 0.1.
Now, the grid size is 6.7 times the minimum vortex segment length. As discussed earlier, the
sheet model of the vorticity shear layer is a far field approximation. Therefore, the larger the
grid size in relation to the segment length, the better the velocity calculation as a far field
approximation. Grid size is obviously an additional spatial smoothing parameter. The larger the
grid size, the farther away are the vortex segments and the smoother the velocity field. The grid
size of course could be made excessive. Then the required velocities along the trailers are
interpolated from too large a region, not reflecting well enough the local velocity field
characteristics. It can be seen from Fig. 4(d) that the Case IV sheet is quite smooth, where at
the same time possessing the same global character of the sheets of Cases II and III. Observe
that increasing the grid size also has some effect in suppressing the sheet roll-up.

Therefore with proper selection of the respective parameters, two-dimensional vortical flows
can be time-stepped to average steady state with the streakline method, without serious
difficulty imposed by the persistent small scale flow structure along the way.

We now return to the subject computations with the flow cases of Figs. 2 and 3. The values
of the cutoff radius employed in each of these cases are much larger than the values of 0.1 and
0.01 selected for the parametric study. In retrospect, a much smaller r; could probably have
been used. The larger values were arrived at by consideration of the order of magnitudes of the
induced velocities. The magnitude of the velocity at a distance rs;As induced by a point vortex
situated at the midpoint of a vortex segment of length As and strength vy is

yAs vy

rsAs B r_a'
For the cases under consideration, vy is initially between 1.5 to 3.0. As time progresses, the
strength decreases toward 1.0. Hence taking the order of magnitude of y as 1,
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Fig. 5. Flow development past the knife edge with one separation point. The letters a, k, and q denote the time steps
120, 1220, and 2420, respectively. The streaklines are shown at an interval of 100 time steps between a and k and at
an interval of 200 time steps between k and q.

The onset stream velocity is of magnitude 1.0. If a cutoff radius r; =0.1 is selected, the
magnitude of the induced velocity is then 10 times that of the onset velocity. Since this can lead
to numerical instabilities, r; was selected such that the induced velocity is only a fraction of the
onset velocity, although much smaller r; could have apparently been used.

The results obtained from the streakline computations for the four different shapes cited are
presented in the following sections.

4.2. Knife edge with one separation point

Here the analysis of the knife edge with one separation point (Fig. 2) is continued with a
finally selected parameter set. Referring to Table 1, the following parameter set used is:
At =0.005, (As) i, = 0.015, ¥y, = 0.01, r5=3.0, n =35, and h =0.1. The time-stepping was
carried to 2420 non-dimensional time steps.

The streakline configuration versus increasing time steps is shown in Fig. 5. The dashed line
is the well-known Kirchhoff free-streamline solution for stationary flow past a normal flat plate
situated at the forward face of the knife edge. The analytical solution is given by Lamb [5]. The
characteristics of the analytical solution are as follows. The flow separates at the tip of the flat
plate and a free streamline proceeds downstream toward infinity. A cavity, open at infinity, is
formed below the free streamline and behind the body. Within this cavity there is no flow. The
velocity on the free streamline is equal to that of the free stream at infinity. Hence the free
streamline is also a vortex sheet with vortex strength equal to —1.0. As the time-stepping
proceeds to some large values of time, the calculated solution for the knife edge should match
the Kirchhoff free-streamline solution for the flat plate, since at steady state the shape of the
body below the free streamline is inconsequential because of stagnant flow condition that exists
within the cavity region.
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The solid lines shown in Fig. 5 are the positions of the vortex sheet at the different time
steps indicated. As can be clearly seen, the shed vortex sheet is moving toward the analytical
solution, but very slowly. Of course, infinite time would be required in order for the calculated
solution to match the analytical solution exactly but a better near field comparison than that
shown in Fig. 5 would be expected within some large but finite number of time steps.

The computations were not continued beyond the 2420 step maximum of Fig. 5 largely
because of limitations of the Apollo mini computer system on which the programs were
developed. The major limitation was the computing time and storage space for the field grid
velocities. The complete computation of Fig. 5 with more than 2420 time steps, required
approximately 72 hours of CPU time of an Apollo DN 3000 mini computer. The field grid
spanned two plate breadths in the x direction and one-and-a-half plate breadths in the y
direction, and the n = 2420 trailer was composed of 216 segments. For the more conventional
Lagrangian computations involving, say, N point vortices at some time step, the number of
induced velocity computations is N2, since velocity is computed at each point vortex. With
velocity computation on the fixed grid, and interpolating back to the vortex segments, the
number of computations is necessarily larger. For N vortex segments, and with grid dimen-
sions, say, M X K, the number of computations is of the order N X M X K. With a grid covering
the entire extent of the trailers downstream and above the axis, as was employed in the
examples demonstrated here, this computation could become on the order of N3, as the grid
must expand to contain the growing trailers. An adaptive grid generation scheme is the obvious
recourse here. By maintaining an active field grid only large enough to surround the trailers for
N, SUCCESSIVE time steps, the computations should be reducible to nearly order N?. However,
the achievement of near field steady-state solutions is not considered necessary to the main
objective of the work, which was to investigate ideal flow separation point selection on general
polygonal contours, as discussed in the introduction. It will be demonstrated in several of the
following examples that the separation point selection process is clearly completed within a
number of time steps of the order of the maximum of Fig. 5. The question of convergence to
steady Kirchhoff flow is important however, as that is the solution to which the computation
must extrapolate if it is to be judged accurate for any purpose. This interest in the steady flow
limit was the primary motivation for selecting the final example presented in this section. By
the analytical theory, the separation streamline of the 124.21 degree circular arc forms a
separation cavity which closes in a cusp on the x-axis at infinity downstream. Thus the domain
of the steady streamlines in that case are of much less extent than for any of the other cases,
whose cavities are open, with infinite width, at infinity. Here, as will be shown, a satisfactory
level of convergence toward the cusped analytical solution in the near field is considered to
have been achieved.

The velocity field corresponding to the streakline position at time step 2421 is plotted in Fig.
6 as a vector field. Arrows indicate the direction of the velocity and the lengths of the arrows
indicate its magnitude. The tail of the arrow is plotted at the point of calculation. An
arrowhead with zero length indicates that the velocity at that point is zero, or very close to zero.
By observing the plot, it is obvious that the evolving solution is developing the essential
characteristics of the Kirchhoff analytical solution for steady free-streamline flow. The veloci-
ties behind the body and below the free streamline are quite small and a jump in tangential
velocity is apparent across the streakline. The enlarging cavity under the streakline is fed by the
local reversed flow through the channel under the streakline end. This flow circulates around
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Fig. 6. Velocity vector field at time step 2421 for the flow past the knife edge with one separation point.

and upward inside the tip to provide the normal velocity for the streakline cavity growth
downstream.

The vortex strength along the sheet of Fig. 6 is plotted on Fig. 7 versus distance along the
sheet measured from the origin, at the separation point, for the different time steps. The
dashed line is the line of magnitude — 1.0, which is the required vortex sheet strength for the
ultimate steady flow. The vortex strength of the evolving sheet has decreased in magnitude
continuously from —2.0 to nearly —1.5. Note also that the magnitude is nearly constant over
the entire length, except very near the ends where it decreases sharply. This is because time is
required to fill the newly added segments with vorticity by convection from upstream; the
streak tube lengthens at a rate necessary to contain the flowing vorticity.

0.0

Fig. 7. Vortex strength along the streaklines at different times for the knife edge with one separation point. The
letters a, k, and q denote the time steps 120, 1220, and 2420, respectively. The streaklines are shown at an interval of
100 time steps between a and k and at an interval of 200 time steps between k and q.
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The vortex strength is converging toward the value of —1.0, but indeed slowly. The vortex
strength +y at the knife edge tip (s = 0), versus the natural logarithm of the time, is plotted as a
function of time (not shown) to see the rate at which the vortex strength is approaching its
asymptotic value. The plot of vortex strength versus time is nearly a straight line with negative
slope, indicating that the decay rate of the vortex strength is exponential. The slope is —0.1914
and the y-intercept is 2.042. From this, the time needed to reach a steady-state strength of
—1.0 is estimated to be 231.4 non-dimensional time units. At a time step size of 0.05, this
implies 46,278 time steps from the start-up to achieve the steady-state vortex strength of —1.0.

Another calculation was carried out to study the effect of shedding vorticity from the two
sharp corners, 9 and 11, shown in Fig. 2. Vortex sheets are shed simultaneously from both the
corner points 9 and 11 of the knife edge of Fig. 2. The most interesting feature of this
calculation is that the vortex sheet shed from the downstream corner “dies” slowly with time.
The strength of the downstream vortex sheet at time step 2420 was —0.1 compared to —1.5 of
the leading sheet. “Death” of the vortex sheets occurs for two reasons:

(a) As the flow develops, a vortex tube may be fed positive vorticity from one body panel and
negative vorticity from the adjacent panel, leading to vorticity cancellation. Here,
redistribution along the sheet obviously results in a net weakening of the sheet vortex
strength.

(b) As previously described, a new segment is added at the end of the vortex trailer only if,
after redistribution of the vorticity, its strength is higher than a cutoff value. In steps
where a new end segment is not added, a small amount of vorticity “dribbles” out of the
tube ends into the field, where it is assumed to be dissipated.

The latter process represents a numerical artifice, whereas the former is rigorously justified. Of
the two possible separation points on the knife edge, the calculation method picks the upstream
corner, which is obviously the physically correct separation point.

Similar calculations are carried out for flow past a rectangular box. Vorticity is shed from the
two top corners and just as in the case of a knife edge, the vortex sheet shed from the
downstream corner dies down and the one from the upstream corner prevails for longer times.

4.3. Circle

The semi-circular cylindrical case of Fig. 3(a) represents the modelling of a smooth contour
by a polygonal contour with a multiplicity of “corners” serving as streakline separation points.

An analytical solution procedure for stationary free-streamline flow past curved obstacles
was first formulated by Levi-Civita [6] in 1907. In the 1920s and early 1930s, the problem was
further studied by Brodetsky [2] and in greater detail by Schmieden [10-13]. The Levi-Civita
solution method and solutions for several cases are well documented by Birkhoff [1]. The
particular case of interest here is the circular cylinder. The analytical free-streamline solution
for symmetric flow past an obstacle is indeterminate to one degree. In order for the solution to
be unique, the separation point must be specified from the set of all the feasible separation
points. For the particular case of the circle, the flow can separate from the body anywhere
between angles of 55.04 and 124.21 degrees, where the angle is measured from the forward
stagnation point. The only streamline that has a continuously concave curvature towards the
x-axis is the one that separates at 55.04 degrees, which is the forward extremity of the feasible
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solution range. The streamline that separates at the after extremity at 124.21 degrees has
continuously convex curvature towards the x-axis and ends in a cusp on the x-axis at infinity.
This cusped solution forms a closed separation cavity with zero drag. All other streamlines
separating between these two extremes are initially convex towards the x-axis, but have an
inflection point further downstream resulting in an open cavity with concave curvature at
infinity. [t is therefore not at all clear, beforehand, how the streakline method will perform with
regard to this indeterminacy in the steady analytical solution for the circle.

Referring to Fig. 3(a), a unit radius is used for the circle represented by an inscribed
polygon. The semi-circle contour is divided into ten panels of equal length. The computation
parameters are: At = 0.005, (As),;, = 0.025, y,,;, = 0.05, r; =5.0, and & = 0.1. Special numeri-
cal problems arise in applying the streakline method to a polygonal contour with many corners.
Ideally, vortex sheets are shed from all the corners. There is a tendency, however, for the
closely spaced streaklines to intersect each other in the initial stages of the flow development.
This can apparently be avoided by the use of a very small time step until the trailer
configuration spreads sufficiently with time. For the present calculations, however, the time
step of 0.005 was used throughout, but streaklines were shed from alternate corners on the
contour to avoid the numerical “clashing” problem. The vortex sheets are shed from corners 2,
4, 6, 8, and 10 counting from the rear stagnation point in the anti-clockwise direction as shown
in Fig. 3(a). Due to the close proximity of several vortex sheets to a given grid point, high
velocities may be induced at this grid point. For this reason the cutoff radius, r;, is chosen to be
higher than the value of 3.0 used in the previous cases. Further, to avoid excessive rotation of
the individual segments due to higher induced velocities, As is also chosen to be higher than
the previous value of 0.015.

In the preceding knife edge and step cases it was clear that the boundary layer would
separate at both corner points in proceeding forward in time from the initial attached potential
flow. For the case of the circular polygon, however, the boundary layer does not necessarily
separate at all of the corner points, at all times. Specifically, some of the corners on the forward
face would not be expected to shed streaklines, but which ones do and which ones do not is not
known a priori. In fact, shedding from the face points may change over the course of the flow
development as induced velocities change over the polygon face. In the interest of dealing with
this complexity so as not to bias the computation, streaklines are given the opportunity to shed
from all of the chosen shedding points over the entire contour at every time step. Generally,
the streakline is shed from a given corner for several successive time steps after start-up. If
none of the several segment end points of the new streakline have moved farther than 0.2% of
the circle radius into the field, then the streakline is eliminated, and restarted from the point as
a new streakline in the next time step.

A radius criterion of 0.09% is used as a standoff limit in the kinematic boundary condition
for field trailers migrating back toward the contour. If at any time in the course of the
computation a trailer segment moves inside the 0.09% limit, the segment is moved to a radius
of 1.002, with the positions of the other trailer segments adjusted according to the kinematic
boundary condition algorithm as given in Section 3.1.2.

Figure 8 shows the vortex sheet configurations at four time steps. The shedding is allowed to
occur from the alternate corners, numbered 2, 4, 6, 8, and 10.

By time step 820, shown in Fig. 8(b), the boundary layer is clearly separating from 54 degrees
(corner 8), as the vortex sheets from the corners 2, 4, 6, and 8 have cleared the contour and are
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Fig. 8. Flow development past a circle. (a) At time step 420, (b) at time step 820, (c) at time step 1020, and (d) at
time step 2420.

well established as field trailers. The vortex sheet from corner 10, which is being repeatedly
extended into the flow along the tangent to the forwardmost contour panel, is being repeatedly
absorbed back into the bound vortex sheet by the criterion previously described. This occurs
because the net normal convection in the vicinity of the forward stagnation point is inward,
being dominated by the axial uniform stream velocity component.

Note the reversed flow developing at the rear of the cylinder, as evidenced by the continuous
upturning of the corner 2 trailer in Fig. 8 at time step 1020. Figure 8(c) shows that this reversed
flow is fully established by this time step, as the corner 2 trailer has rotated into a fixed attitude
coincident with the tangent up the back of the cylinder. By time step 1620, not shown, the two
outer vortex sheets from corners 6 and 8 have begun to null the interior flow. The strengths of
the two outer trailers at n = 1620 are —0.28 and — 1.2 respectively, on average, over their
lengths versus —0.15 and +0.09 for corner 4 and 2 trailers, respectively. By time step 2420, in
Fig. 8(d), the growth in length of the three inside trailers has largely ceased, and their strengths
are diminishing relative to the outer sheet, which would become the free streamline upon
reaching the steady flow state. The velocity field at time step 2521 is plotted in Fig. 9.

The dashed line superimposed on Fig. 8(d) is the analytical solution for the circle corre-
sponding to the separation angle of 55.04 degrees. This is the forwardmost of the infinitely
many possible separation points between 55.04 and 124.21 degrees according to the classical
theory [1].

Of course, the computed result of Fig. 8 is fortuitous to the degree of latitude allowed in the
selection of the separation point position on the polygonal contour. With the contour repre-
sented by ten panels, with shedding from alternate panel corners, the only separation points
available for the streakline method to select from were 18, 54, 90, 126, and 162 degrees. Three
of the five possibilities do however lie essentially within the range of the indeterminacy, 55.04
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Fig. 9. Velocity vector field at time step 2521 for flow past the circle.

to 124.21 degrees, of the analytic solution for the smooth circle. Further study would be
required in order to clarify the implications of this result.

4.4. Circular arc

On reviewing the analytic theory in connection with the preceding circular polygon example,
it was noted that the two extremes of the indeterminate solution are a maximum drag solution
corresponding to a continuously convex streamline separating at 55.04 degrees, and a zero drag
solution with a continuously concave (towards x-axis) streamline separating at 124.21 degrees.
The concave streamline ends in a cusp on the x-axis at infinity, implying zero drag for the latter
case. The aftermost 124.21-degree case allowed is the only one of the infinite number of
allowed separation points that has a cusped closure. The separation streamlines corresponding
to any other point within the allowable range are open at infinity. The preceding example,
which allowed the streakline method limited freedom in picking its own separation point from
the five candidate points on the circular polygon, indicated a strong choice for the forwardmost
55.04-degree position. As a final test, the streakline method has been evaluated in application
to the aftermost of the possible separation point positions allowed by the analytical solution for
the smooth circular contour. The separation point is fixed at 125 degrees on the truncated
circular polygon, shown in Fig. 3(b). At the steady flow limit, the shape of the contour inside
the separation streamline is irrevelant because of the stagnant cavity flow. Truncation of the
circle to the circular arc therefore represents no loss of generality in this regard. The primary

T T T ~——
1.0 2.0 3.0 4.0 5.0

Fig. 10. Flow development past a circular arc. The letters a, r, and z denote the time steps 220, 3620, and 5620,
respectively. The streaklines are shown at an interval of 200 time steps between a and r and at an interval of 250
time steps between r and z.
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interest in this example is to determine whether the streakline method will predict the cusped
cavity predicted by the classical theory.

The computational parameters used with the model in Fig. 3(b) are: At =0.005, n,, =S5,
As in=0.02, y..,=0.05, r;=0.02, and A =0.1. The calculations are carried out for 5620
non-dimensional time steps. The streakline development is shown in Fig. 10. The time step
numbers are indicated by the letters “a”, “r’” and “z” at the streakline ends. The corresponding
step numbers are given in the caption.

The dashed line shown in Fig. 10 is the cusped analytical solution. It can be observed from
Fig. 10 that at 3620 time steps the computed solution is continuously approaching the cusped
analytical solution. However, after 3620 time steps it is not clear that the computed solution
will form a cusp on the x-axis. The computations are carried further to 5620 time steps. The
figure on an expanded scale (not shown) clearly shows the cusp formation on the x-axis from
time step 4370 on. With the cusped cavity closing toward the x-axis, less time is required here
in order to obtain a given degree of convergence toward the analytical solution. Immediately
behind the body, the computed result is quite close to the analytical solution at 5620 time steps.
The vortex strength of the streakline remains nearly constant over the entire length of the
trailer except at the ends, where the strength drops off sharply. This is entirely consistent with
the other cases presented in the preceding subsections.

5. Conclusions

The streakline method developed here is unique as to its formulation. The shed vortex sheets
are true continuous sheets, represented by chains of rigid, hinge-connected vortex segments
versus point vortices or unconnected vortex segments as used in other vortical flow formula-
tions. The free vortex sheets, representing the separated body boundary layer, are convected in
space by the velocity field acting through a kinematic boundary condition. New links are added
at the downstream ends of the sheets as needed to contain the flowing vorticity. The vorticity
flows along the sheets according to a dynamic boundary condition, which is actually the
Helmbholtz vorticity equation compressed into the infinitesimally thin rotational flow domain of
the vortex sheets.

The streakline method views the flow as evolving on different scales in both space and time,
but the method has the objective of retaining only the global features of the large scale flow
existing at large values of time. The small scale flow details that tend to be so troublesome in
attempts to forward step initial value Euler formulations to the steady state are avoided in the
formulation by filtering the numerical data, in both space and time, as it evolves. This filtering
is accomplished by computing the induced field velocities on a fixed grid covering the solution
domain. The time filter is then applied by back-averaging the velocities at each field grid point
over some number of successive time steps. The number of successive time steps reflects the
filter band width. Spatial filtering of the flow details takes the form of a smoothing accom-
plished primarily by interpolating the field grid velocities back to the vortex sheets in applying
the boundary conditions versus the direct vorticity self-induction usually implemented. A cutoff
radius between the free vortex sheets in the field and the field grid points is maintained to
further smooth the field by limiting the velocity gradients induced by the evolving sheets.

The details of the formulation and computational procedure are covered in the first three
sections.
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On specifying the separation point on the two-dimensional contour, it is demonstrated that
the streakline method numerical solution evolves toward the Kirchhoff steady free-streamline
flow as time progresses.

For polygonal body contours with “corners” where ideal flow separation can occur, the
method allows the shedding of vortex sheets from any number of corners beginning at the
initial time. Only one separation streamline, per side, can exist at the steady flow limit in
two-dimensional symmetric free-streamline flows. The streakline method is essentially assigned
the task of picking the correct separation point from the candidate points assigned on the
polygonal contour. For the knife edge and the step, where both the separation points are
allowed the freedom to shed, the streakline method picks the physically correct point, that
being the forward point, in both cases.

The possibility of establishing the position of separation points on general two-dimensional
polygonal contours from purely ideal flow considerations was investigated further by applying
the streakline method to a semi-circular contour, modelled as a polygon. Here, shedding was
allowed from five of the eleven polygon corner points. Vortex sheets separated initially from
four of the five points. At the fifth point, on the forward face of the semi-circle, the vortex
sheet chose to remain attached to the contour throughout the entire solution time. The vortex
strengths of three of the four free field vortex sheets that were shed initially ultimately decayed,
or were decaying, to negligible levels when the computation was terminated. The single
remaining vortex sheet is progressing, in both position and strength, toward the solution for the
forwardmost separation point allowed by the classical free-streamline theory for the circle. The
steady free-streamline solution for the circle is indeterminate as to the separation point
position, establishing only the angular range of possible separation point positions over the
circular contour. The forwardmost position, at 55.04 degrees from the forward stagnation point,
corresponds to the maximum drag solution.

Returning to the flow past a circle, it is tempting to conceptually extrapolate the results
found for the semi-circular polygon contour to general smooth contours by letting the flat
polygon sides become infinitesimal in length but infinite in number. However, indications are
that for smooth contours, the ability to achieve smooth separation from Euler equation
formulations depends on the “artificial viscosity” created by numerical discretization. Such
damping effects are created purposely in the streakline method by the temporal and spatial
smoothing performed in the process of the computation.

The aftermost separation point position from the analytical solution for the circle, at 124.21
degrees, is the only position which gives a closed cavity downstream; all of the others
correspond to open streamlines at infinity. This aftermost limiting case is a zero drag solution,
as the free streamline closes in a cusp on the x-axis at infinity. This is the last analyzed case
using the streakline method. Here the separation point was fixed at 125 degrees. It is clearly
demonstrated that the cusped streamline, closing on the axis, is being captured by the
streakline method numerical solution.

It is possible to extend this methodology to three dimensions, however, the modifications
involved are not trivial. In two dimensions the free vortex sheets must realistically close in a
slope singularity, reflecting the effects of turbulent dissipation in the wake. Open free-stream-
line solutions in two dimensions are therefore of limited practical value in themselves. In three
dimensions, however, closure of the free vortex sheets is not required in view of the convection
in the third direction.
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