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1. Introduction 

Epidemiologic case-control studies frequently have small sample sizes due to 
limited numbers of cases. It is common in such studies for logistic regression 
analyses to be employed, using maximum likelihood estimation and likelihood 
ratio, score, or Wald tests of parameter effects. However, these procedures are 
only asymptotically valid, and depend on the accuracy of the large sample 
approximations employed. The Wald test is attractive due to the ease with which 
it may be constructed. However, it is not invariant to parameter transformations. 
In addition, as Jennings (1986) illustrates it can exhibit unreliable behavior in 
that for a given sample size, parameter estimates farther from the null value 
may be judged less significant than those closer to the null value (see also Hauck 
and Donner, 1977). 
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Numerous methods for drawing inferences about the parameters in the 
logistic regression model have been developed for use in small sample situa- 
tions. Cox (1970) has described an exact approach to inference about a single 
parameter of the model. This approach has been extended and rendered more 
feasible via efficient algorithms for calculating joint and conditional distributions 
of the sufficient statistics (Bayer and Cox, 1979; Tritchler, 1984; Kirji, Mehta 
and Patel, 1987). However, the method still may take hours of computation, and 
current software permits only binary covariates to be included in the regression 
model. 

Moolgavkar and Venzon (1986) have proposed a small sample correction to 
Wald-based confidence regions motivated by differential geometric considera- 
tions. These regions, based on transformations of the standard Wald regions, 
are obtained by solving a system of quasi-linear differential equations and may 
be inverted in the usual fashion to obtain a test of hypothesis. 

Another approach to parameter inference is to improve upon the small 
sample performance of the likelihood ratio test. Bartlett (1937) proposed multi- 
plying the likelihood ratio test statistic by a correction factor so that its 
distribution under the null hypothesis would more closely follow that of a x2 
random variable. This approach, generalized by Lawley (1956), consists of 
matching the first moment of the test statistic to that of a x2 random variable. 
The effect is to bring the moments of the corrected statistic to within O(n-*) of 
those of the appropriate chi-squared distribution (Lawley, 1956). 

In this paper we give explicit expressions for the Bartlett correction factor in 
tests of location parameters in conditional and unconditional logistic regression 
models. In addition, we evaluate the performance of the resulting corrected 
likelihood ratio test statistic and compare its performance to the usual likeli- 
hood ratio, Wald, and score test statistics as well as the Moolgavkar-Venzon 
modified Wald procedure. 

2. Calculation of Bartlett correction factors 

2.1. Introduction 

Let L(p) denote the log lik_elihood function for the p-vector p based on II 
observations, and let L and L, denote the value of the log likelihood evaluated 
at the true parameter vector /3, and the maximum likelihood estimate a, 
respectively. Lawley (1956) showed that under mild regularity conditions 2E(L, 
-L) =p + l p + O(n-*>, where the correction term cp is of order n-l and may 
be written (Cordeiro, 1983) 

Ep = KrSKtU( $Krst, - Kg; + Kzs"'} - KrsKIUKuW 
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Here all of the indices run from 1 to p and the usual summation convention is 
applied. The K’S are defined in terms of L(p) as 

and so on, where p, is the rth component of p. In this notation, the information 
matrix A = { - K,~) and its inverse is denoted A - ’ = ( -Key). 

Suppose that PT = (pr,r,. . . , &, &, . . . , &_J and under the null hypoth- 
esis p2,r = * * * = &,_, = 0. Let L, be the maximized log likelihood under the 
null hypothesis, and l q be the correction term calculated und_er the null model. 
Then dividing the usual likelihood ratio test statistic 2(L, - LJ by the Bartlett 
factor 1 + (eP - eq)/(p - q) will improve the approximation of its distribution 
by a Xi_, random variable under the null model. Generally the correction 
factor will be a function of j3 and should be estimated from the null model via 
maximum likelihood. 

2.2. Unconditional logistic regression 

The unconditional logistic regression model may be written 

logit P( yi = 1 I xi) =x:/3, i=l 7 * * * 9 4 (1) 

where xi is the p-vector of covariates for the ith observation, the yi are 
independent Bernoulli random variables, and p is a p-dimensional parameter 
vector. The log likelihood is then 

L(P) = 2 [ Yi log{&/(l - Q} + lo@ - eJ] 9 (2) 
i=l 

with 

Oi = exp( .rTp)/{ 1 + exp( XT@)}, 

Cordeiro (1983, equation 81, gives an expression for l p applicable to any 
generalized linear model. Applying his result to (21, we have 

Ep = +tr( HZ:) + +I,TF(2Z’3’ + 3Z,ZZ,)Fl,, (3) 

where the n x n matrices F, H, Z, and Z, are given by F = V(l,, - 201, 
H= 1/(61/-L,), Z =X(XTVX-lXT, and Z, is a diagonal matrix composed of 
the diagonal elements of Z. Here I/= diag{8,(1 - O,)} and 8 = diag{O,} are n x n 
matrices and 1, is an n-vector of 1’s. 

2.3. Conditional logistic regression 

Case-control epidemiologic studies often employ matching or stratification in 
order to increase efficiency and reduce bias. In a regression framework, the 
preferred analysis of highly stratified data involves conditioning on stratum 
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membership (Breslow et al., 1978). The resulting conditional likelihood function 
is then maximized to yield conditional maximum likelihood estimates. 

Consider a case-control study with K matched sets (or strata), where each 
stratum consists of one case and R controls, yt = K( R + 11, j = 0 will denote the 
case in each stratum, so that yOk = 1, and yjk = 0 for j # 0. Here i = 1,. . ., K 
and j = 0,. . . , R. We consider the logistic model 

logit P( yjk = 1 I xjk) = ak +x$p, 

where (Ye depends on the values of the matching variables. Conditioning on the 
1: R structure of the stratum leads to elimination of CX~ resulting in the 
conditional log likelihood function 

L(p) = ; 5 Yjk lOg(Pjk) = 2 l”g(POk)’ 
k=l j=O k=l 

(4) 

Here pjk depends upon the parameter vector p through the pair of transforma- 
tions rjk = exp(xiT,p) and pj, = 5-jk/C5-mk (notation of Pregibon, 1984). Here 
xjk is the p-vector of covariates for the jth individual in the kth matched set 
and rjk is the corresponding odds ratio. The model depends upon /3 only 
through the odds ratio, therefore xsp need not include an unknown constant, 
as it is not estimable. 

The conditional logistic regression model is not a generalized linear model, 
hence the expressions for the correction term l p developed by Cordeiro (1983) 
cannot be applied to (4). 

Since pok + . . . +pRk = 1, 

R 

Xjk = Xjk - c pmkxmk, 
m=O 

can be thought of as ‘centered’ x’s. The Bartlett adjustment for the conditional 
model is a function of the covariates only through the ijk’s. For example, the 
p X p information matrix A, may be written A = { -K,,} = CA,, where A, = 
&Z..~~~_?~~ijTk =J?~W,~k. Here the (R + 1) xp matrix of centered covariates is 

x, = t&k,. . . , &IT, and W, is an (R + 1) x (R + 1) diagonal matrix with ~~~ 
on the diagonal, j = 0,. .., R. It follows that the information matrix can be 
written A =zTIV%, where W is block diagonal with blocks IV,, . . . , W,, and 2? 
is the K(R + 1) xp matrix of centered covariates combined over matched sets. 

The correction term for the one-to-R matched design is 

where Tk = tr(A,A-‘1, and the (R + 1) X (R + 1) matrix U = cw,<gk 
A,12?z)(2)Wk. In addition, P =_f(J?TW%-l%T and Pd = diag(pii>, where pii is 
the ith diagonal element of P, i = 1,. . . , K(R + 1). Pc3) is the matrix whose 
elements are the cube of the elements of P. A derivation of this result can be 
found in the Appendix. Note that our calculations are carried out with respect 
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to the number of strata, K. The moments of the resulting likelihood ratio 
statistics thus are corrected to order 0(K2> (Lawley, 1956). 

It is informative to write (5) as 

Ep = 4P13 
I-2 ++p;,-+p,, 

where p:, = lnTpdTWPVT’dl,, pi, = l~WPC3)Wl,,, and p4 = l~P~WPdl, - 2(1:+, 
UIR+,) - CT:. The terms p:,, pt, measure the squared skewness, and p4 
measures the kurtosis of the score vector (McCullagh and Cox, 1986). 

3. Numerical comparisons 

3.1. Study design 

To assess the agreement between the nominal and actual level of the adjusted 
likelihood ratio test statistic in unconditional and conditional logistic regression, 
and to explore the power of the test, a numerical study was conducted compar- 
ing the score, likelihood ratio, and Wald tests to the Bartlett corrected likeli- 
hood ratio test when testing a single element of p to be equal to zero. In 
addition, these results were compared to the confidence interval based test of 
Moolgavkar and Venzon (1986). 

For each of several sample sizes iz, B replicates of the basic experiment were 
performed. For each replicate, an n-vector x of independent pseudo-random 
Uniform (0, 1) deviates was generated. For y1 I 10, the exact level and power 
were calculated eased on a complete enumeration of the possible 2” response 
vectors y, each weighted by its likelihood. Computing restrictions required 
simulation of the y vectors from the logistic model when y1 > 10. These values 
were generated from another set of Uniform (0, 1) deviates. The multiplicative- 
congruential uniform pseudo-random generator of the GAUSSTM system was 
employed. For each sample size, we report the observed level and power as the 
mean rejection rate of the null hypothesis over the B replicates. 

3.2. Unconditional logistic regression results 

Here we used the model XT@ = PO + plxi, and compared the level and power of 
the five methods for testing the null hypothesis p1 = 0 at nominal level (Y = 0.05. 

For this model with p = 2, the Moolgavkar-Venzon limits for p require the 
simultaneous solution of the following equations: 
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Table 1 
Comparison of average rejection rates for five tests, at nominal level (Y = 0.05, of HO : PI = 0 in an 
unconditional logistic regression model. n = total number of observations. Columns 3-7, average 
rejection rate X 100. Column 8, maximum standard error across the five averages x 100. 

PI n Wald 

0 10 0 

20 3.35 

40 4.56 

1 10 0 
20 4.94 

40 12.52 

2 10 0 

20 6.09 
40 30.24 

Moolgavkar- 
Venzon 

9.00 

7.22 
6.15 

10.96 
12.72 

16.22 

13.97 
24.71 
39.45 

Score 

5.68 

5.58 
5.31 

7.42 
9.73 

14.31 

11.01 
15.99 
34.77 

Likelihood Bartlett Maximum 
ratio corrected std. error 

9.01 6.35 0.27 
6.42 5.28 0.25 
5.73 5.14 0.15 

11.76 8.44 0.28 
11.22 9.52 1.05 

15.37 14.21 0.70 

18.15 13.35 0.79 

19.19 16.33 3.56 

37.41 35.25 1.45 

with p(O) = p^, L(p) and oi defined in (1) and (2). Here Z,,, is the (1 - Lu/2)th 
percentage point of the standard normal distribution and sg = - 1, + 1 for the 
lower and upper confidence limits respectively. These equations are integrated 
from t = 0 to 1. The solution to these equations can be obtained numerically 
using the Adams-Gear algorithm (Moolgavkar and Venzon, 1986). 

Results are presented for 12 = 10, 20, 40, with PO = 0 for all runs. In Table 1 
we give the estimates of level, and power for /3r = 1, 2, for each of the five 
methods. Table 1 also includes the maximum standard error of the mean over 
the five tests, calculated from the B replicates. For y1 = 10, B = 25 replicates 
were used, while for II = 20 and 40, we took B = 5 replicates of 5000 simulations 
each. 

We see that the poor performance of the Wald statistic was markedly 
improved by the Moolgavkar-Venzon correction. The score test and the Bartlett 
corrected likelihood ratio test both outperform the likelihood ratio test in the 
level (pr = 0) runs, the latter being too liberal. Even though the Bartlett 
correction factor is designed to improve performance in small samples, at the 
smallest sample size (n = 10) it performed slightly worse than the score test. 
However, for y1 = 20 and 40, rejection rates for the Bartlett corrected likelihood 
ratio test were closest to the nominal level. 

The likelihood ratio test and Moolgavkar-Venzon test are both rather liberal, 
which translates into greater power, as seen in the & = 1 and & = 2 runs, 
where their rejection rates are all greater than those of the score and Bartlett 
corrected likelihood ratio test. For these runs, the power for the score and 
Bartlett corrected likelihood ratio test are very close. 

Considering the relative ease with which the score test may be calculated, and 
the similarity between its behavior and that of the Bartlett corrected likelihood 
ratio test, based on these results it would appear that the score test is the 
preferred method of testing in this situation. 
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Table 2 
Comparison of average rejection rates for five tests, at nominal level (Y = 0.05, of H,, : p, = 0 in a 
conditional logistic regression model. R = 1, K = number of strata. Columns 3-7, average rejec- 
tion rate x 100. Column 8, maximum standard error across the five averages X 100. 

Pl K Wald Moolgavkar- Score Likelihood Bartlett Maximum 

Venzon ratio corrected std. error 

0 5 0 1.00 1.25 10.75 7.50 0.68 

6 0 4.25 3.00 9.00 6.63 0.64 
7 0 6.44 3.81 8.19 6.19 0.41 
8 0 7.63 3.75 6.91 5.44 0.38 
9 0 8.36 4.06 6.94 5.31 0.32 

10 0 8.25 4.17 6.71 5.29 0.24 
20 2.12 6.97 4.77 5.87 5.13 0.51 
40 3.89 5.77 4.82 5.29 4.93 0.14 

1 5 0 0.96 1.78 13.22 9.43 0.81 
6 0 5.21 4.33 11.84 9.01 0.77 
7 0 8.13 5.87 11.48 8.95 0.63 
8 0 10.23 6.34 10.67 8.70 0.60 
9 0 12.13 7.08 11.19 8.92 0.44 

10 0 12.82 7.63 11.34 9.31 0.47 
20 6.34 16.23 12.38 14.54 13.14 1.77 
40 21.76 27.17 24.71 25.99 25.04 1.44 

2 5 0 1.16 3.18 19.57 14.45 1.40 
6 0 7.07 7.96 19.25 15.31 1.40 
7 0 12.38 11.51 20.16 16.37 1.37 
8 0 17.60 13.58 20.66 17.54 1.44 
9 0 21.69 15.51 22.44 18.72 1.19 

10 0 24.20 17.31 23.64 20.27 1.30 
20 20.85 40.18 33.69 37.27 34.95 6.13 
40 65.06 70.97 68.38 69.86 68.82 3.20 

3.3. Conditional logistic regression results 

Here the Moolgavkar-Venzon confidence interval is obtained by solving two 
related differential equations. For p = 1, the interval endpoints are found by 
integrating 

from t = 0 to 1, with p(O) = p^ and Tj,(t> = exp{xiT,P(t>}. Numerical solutions 
are obtained using the Adams-Gear algorithm. 

For the conditional model, the performance of the five methods was com- 
pared in the one-to-one matched case-control (R = 1) model with one covariate 
via a test of the null hypothesis p, = 0 at nominal level (Y = 0.05. 

Results are presented for K = 5(1)10, 20, 40 matched sets. Table 2 gives the 
simulation estimates of level and power (for p, = 1, 2) for each of the five 
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methods and the maximum standard error of the mean, across the five tests. For 
K I 10, B = 25 replicates were used, while for K = 20 and 40, B = 5 replicates 
were run of 5000 simulations each. 

In general, the simulation results for the conditional model parallels those of 
the unconditional model. For small sample sizes, the score and Wald tests are 
generally too conservative, while the likelihood ratio test and Bartlett corrected 
likelihood ratio test are too liberal. The Moolgavkar-Venzon procedure per- 
forms rather erratically (moving from conservative to liberal as K increases) and 
poorly overall when compared to most other methods. The rejection rates for 
the Bartlett corrected likelihood ratio test, with the exception of the K = 6 run, 
are closest to the nominal level. 

In the power runs, p, = 1, 2, the Bartlett corrected likelihood ratio test 
clearly performed better than the score test. The Moolgavkar-Venzon test and 
likelihood ratio test exhibited the highest power, but this performance should be 
discounted by their liberal results in the level runs. 

4. Discussion 

For the conditional analysis of one-to-one matched data with a single covariate 
(p = l), the Bartlett correction for the null hypothesis /3i = 0 has a particularly 
simple form. Let zjk =xjk -X,k, the stratum mean centered covariate, and let S; 
be the variance of xjk within the kth stratum. Then & = & = Tf/K and 
p4 = (f, - 3C*)/K, w h ere q1 and q2 are the standardized skewness and kurtosis 
of Zjk (j=O )...) R,k=l,..., K), respectively, and C is the coefficient of 
variation of S; (k = 1, . . . , K). Thus pi = (59: - 3q2 + 9C2)/(12K). 

In the case of one-to-one matching (R = 11, q, = 0 and E, may be simplified 
to 

1 c @Ok _-Xlkj4 
El = - 

2 
‘Ok - ‘lk)*)* ’ 

where sums in the numerator and denominator run over k = 1,. . . , K. This 
expression may also be written in terms of deviations xjk -X,k. In either form, 
the correction is essentially a measure of the kurtosis of the distribution of the 
covariates. 

If in addition, xjk is a binary covariate, then pi = (2m)-’ where m is the 
number of strata in which xok + xlk (0 I m I K), so that the Bartlett factor 
becomes 1 + (2m)-‘. Here the likelihood ratio test statistic may be written 
2m{log2 + r logr + (1 - r) log(1 - r)}, where r is the proportion of the m strata 
for which xok # xlk and xok = 1 (so that 1 - r is the proportion for which 
Xik = 1). Performing calculations similar to those of Frydenberg and Jensen 
(1989) for this likelihood, we found the order of the correction in this case to be 
less than O(Kp’). This agrees with their findings that in the case of fully 
discrete data, the Bartlett correction offers little, if any, improvement. More- 
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over, for up to at least K = 50 strata, the tail-area probability of the Bartlett 
corrected likelihood ratio test is the same as for that of the score (McNemar) 
test at size (Y = 0.05. This stands in contrast to our results for the continuous 
covariate case (Table 2), where the Bartlett corrected likelihood ratio test 
performs better than the score test. 

The results of our runs for both the conditional and unconditional models 
indicate that the computational burden of obtaining the Moolgavkar-Venzon 
interval may not be worth its modest performance when used for testing. Instead 
of trying to improve the Wald test, better results are had by improving the 
likelihood ratio test via the relatively simple Bartlett correction. 

Many factors may conspire to render even a data set with a large number of 
observations one in which standard large-sample asymptotics do not provide 
sufficiently accurate approximations. These include extreme response probabili- 
ties, many estimated parameters with respect to the number of observations, 
sparse corners of the covariate space, and link functions that yield relatively flat 
likelihood functions. In such situations, it may be prudent to use a Bartlett 
corrected likelihood ratio test. For the logit link case we have studied here, the 
score test is also to be preferred over the Wald and likelihood ratio test. 

Appendix: Derivation 

From the definitions 
established: 

5 /-Q&k = 0, 
j=O 

a 

a 

of (5) 

of pjk and ijk following (4), these identities are easily 

(A *I) 

(A.2) 

R 

rijk= - C Pmkxmk’Tmk= - C P,ki,k’FTmk’ 
w m=O m=O 

(A.3) 

Taking second partial derivatives of the log likelihood in (4), and making use of 
the identities above, gives 

where ijkr is the rth element of the p-vector +Cjk. As the elements of the second 
partial derivative matrix in (A.41 are non-stochastic, it follows that the right-hand 
side of (A.41 is -K,,. Hence 

A= 2 ~~~~~~~~~~ 
k=l j=O 

which also may be written A = X’JKf. 
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From (A.41 it also follows that &) = ~,,t, K:) = ~,,t~, and so on. Therefore 
the expression for the Bartlett correction may be written 

Ep = ~K~~K~~K,,~, - Kr’KtUKuW{~KrtuKSUW + ~K,~~K,,~}. (A.3 
Taking partial derivatives of K,~ from (A.41, and employing the identities 

(A.lNA.31, the expression for a mixed third partial derivative of L(p) is 
written 

a”L(p) K R 
K 

‘St = a&a&a& 
+ C C Pjkijkrijks’j.4t’ 

k=l j=() 

(A-6) 

The expression for a mixed fourth partial derivative of L(p) is obtained from 
K rSt in a similar fashion, yielding 

d”L(P) 
K 

rStU = ap,ap,ap,ap, 

= f 5 pjkijkrijksijktijku 
k=l j=O 

- 5 @krsAktu +AkrtAksu +AkruAkst), 
k=l 

(A-7) 

where Akrs = CT=()pjk%jkr%jks. 

Substituting the expressions (A.41, (A.6) and (A.7) into (AS) and employing a 
fair amount of matrix algebra inspired by McCullagh (1987, page 2181, and 
equation (11) of Cordeiro (19831, we obtain the matrix form for the Bartlett 
correction given in (5). 
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