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Simulation of bright-field convergent-beam electron diffraction (CBED) discs has revealed that, at zone axes where there 
are two strongly excited branches of the zero-layer dispersion surface that may interact with the HOLZ, the deficiency 
HOLZ line positions should be sensitive to changes in thickness. Examination of experimental patterns at carefully chosen 
accelerating voltages have corroborated the findings of the calculations. The effects are subtle; however, they are large 
enough to introduce significant errors into lattice parameter or strain measurements made by monitoring HOLZ positions. 
The magnitude of the effect is considerably reduced at zone axes where the dynamic diffraction is weaker (e.g. (114)), so 
much so that, with care, these axes are suitable for use in strain or lattice parameter determination. 

1. Introduct ion 

The use of the positions of higher-order Laue 
zone (HOLZ) lines, visible in the bright-field 
discs of convergent-beam electron diffraction 
(CBED) patterns, to measure the local lattice 
parameters of phases in the transmission electron 
microscope was first discussed by Jones et al. [1]. 
They were careful to note, however, that while 
HOLZ lines are comparatively insensitive to spec- 
imen thickness, due to the long extinction dis- 
tances associated with HOLZ diffraction, there 
were a number of factors that could affect the 
visibility, width and apparent position of the lines. 
They showed that specimen thickness played an 
important role in the width of the HOLZ line 
detail. Optimum line widths are obtained when 
one balances the narrowing of the lines with 
increasing thickness with their visibility as a func- 
tion of increasing thermal diffuse scattering. Jones 
et al. also noted that line shifts and broadening 
occurred when the zero-layer fringes of certain 
simple string zone axes interacted with bright-field 
HOLZ lines. They did, however, in spite of these 

caveats, test the feasibility of measuring the lat- 
tice parameter of phases by measurement of the 
HOLZ line positions. They used the HOLZ de- 
tail in the bright-field disc of the silicon (111) 
zone axis to test how well absolute determination 
of the lattice parameter of a sample compared 
with X-ray methods. They noted that the tech- 
niques showed promise; however, they were not 
totally satisfied. The simulation of the HOLZ line 
positions via a kinematical approximation yielded 
poor agreement with X-ray results and there was 
evidence that their measurements were being af- 
fected by dynamical thickness dependence of the 
HOLZ line positions. Later, Steeds noted that it 
was more reasonable to measure the changes in 
lattice parameter with respect to a known refer- 
ence with the same crystal structure [2]. 

Since that time there have been a large num- 
ber of studies that have exploited the technique 
and it has become one of the "standard" applica- 
tions of CBED in the analytical electron micro- 
scope (AEM); unfortunately the warnings made 
by Jones et al. [1] are not always heeded [3-6]. 
The technique requires the use of a "standard" 
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of "known" lattice parameter. In order to limit 
the dynamic diffraction effects, the standard and 
the unknown must have similar strength pro- 
jected potentials along the zone axis under study, 
i.e. using gold as a standard to measure changes 
in nickel would not produce accurate results [2]. 
Typically, patterns are recorded from the stand- 
ard, and the HOLZ line detail in the bright-field 
disc is simulated in a computer using the kine- 
matic approximation. The microscope accelerat- 
ing voltage is used as a "free" parameter to 
obtain a best fit of the pattern to the "known" 
lattice parameters. Patterns from the unknown 
phase are recorded and the HOLZ line positions 
are simulated kinematically, the lattice parame- 
ters being varied to obtain the best fit to the 
experimental patterns. Lin et al. [7] discussed the 
errors that arise from using simple kinematic 
theory for lattice parameter measurements, and 
proposed a correction that accounts for the 
movement of the HOLZ line away from its kine- 
matic position which is caused by the shift of the 
dynamical dispersion surface away from its kine- 
matic equivalent. Generally users of this tech- 
nique do not consider the thickness of the sample 
to be a parameter in determining the HOLZ line 
position. This paper describes the results of both 
computer simulations and cold-stage experiments 
in the AEM which show that the apparent posi- 
tions of HOLZ lines at certain zone axes are 
strongly dependent on thickness due to dynamical 
zero-layer diffraction effects. 

2. Calculations and experimental techniques 

The observations reported in this paper were 
the result of some preliminary studies to extract 
further information from CBED patterns other 
than symmetries and lattice parameters. Bright- 
field CBED patterns were calculated by a com- 
puter program that calculates the diffracted beam 
intensities by matrix diagonalization of the 
many-beam equations. The program is written in 
FORTRAN 77 and has evolved from code origi- 
nally developed by Baker [8]. The program has 
been simply modified to run on a number of 
processing units N and each unit calculates 

1/Nth of the pattern. For this study we have 
employed a parallel computing cluster main- 
tained by the University of Michigan Computer- 
Aided Engineering Network. This cluster cur- 
rently consists of 8 IBM RS/6000 Model 320H 
workstations connected by a localized ethernet 
network. The parallel processing is performed 
under the Parallel Virtual Machine system, a 
parallel processing environment developed by 
Oak Ridge National Laboratory [9]. The parallel 
operation of the program allows the simulation of 
well converged patterns (which include 37 zero- 
layer reflections and 33 reflections from the 
FOLZ), with a high angular resolution (up to 
601 × 601 pixels), that are also corrected for ab- 
sorption [10]. The CBED disc diameter, i.e. the 
probe convergence, was chosen such that the 
discs along the direction of the smallest recipro- 
cal lattice vector would be just touching one 
another. 

In order to compare simulated patterns with 
experimental data recorded in the microscope, a 
series of silicon (111) pattern thickness se- 
quences were simulated at accelerating voltages 
between 115 and 125 kV. The small triangle of 
HOLZ deficiency lines that are visible in the 
centers of patterns simulated at around 120 kV 
are the {5,7,1-1} family. As the voltage of the 
simulations is increased to 122 kV, the triangle of 
intersection of these lines collapses to a single 
cross-over. Clearly, this cross-over can be used to 
measure the true accelerating voltage of the mi- 
croscope. 

Thin foils of (111) single-crystal silicon were 
prepared by mechanical polishing to less than 30 
ttm thickness and argon-ion milling to electron 
transparency. The foils were loaded into a Gatan 
No. 673 liquid-nitrogen cold stage and then ob- 
served in the JEOL 2000FX in the North Campus 
Electron Microbeam Analysis Laboratory at the 
University of Michigan. In each experiment sam- 
ple temperatures were maintained at ~ 90 K in 
order to reduce the Debye-Waller scattering and 
to avoid carbon contamination of the sample. 
Examination of the (111) pattern in the micro- 
scope, and adjustment of the accelerating voltage 
in steps as small as one tenth of a kilovolt, 
allowed the {5,7,1-]} family of lines to be brought 
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to a cross-over. The microscope voltage at this 
cross-over was 121.1 kV, a deviation of less than 
0.74% from the theoretical value. 

Once the cross-over voltage had been reached, 
the accelerating voltage was held constant and a 
sequence of diffraction patterns were recorded at 
a range of thicknesses. The thickness sequence 
was recorded from an area of the sample that was 
as flat and defect-free as possible. On-line thick- 
ness measurements, performed by digitization and 
analysis of CBED two-beam conditions on an 
Apple Macintosh II computer  [11], indicated that 
the area of the sequence varied from less than 
100 to over 350 nm. 

determine lattice parameter  and strain variations 
in samples in the microscope [3-6]. Clearly the 
movement as a function of thickness will add 
uncertainty to such measurements, and it is im- 
portant to understand which zone axes and H O L Z  
lines will be thickness-sensitive in order  that lat- 
tice parameter  measurement may be performed 
under conditions where the effect is minimized. 
In order  to explain the apparent  motion of the 
H O L Z  deficit lines, it is necessary to consider 
how their intensities arise. 

4. Theory 

3. Results 

Fig. 1 shows a thickness sequence of [111] 
bright-field silicon CBED discs calculated at 122 
kV in steps of 25 nm. There  are 601 pixels across 
the bright-field discs. As one examines each pat- 
tern of the thickness sequence one can see that 
most of the H O L Z  lines appear to move slightly. 
This is most obvious at the cross-over of the 
{5,7,1-i} family. The cross-over opens up into a 
triangle as the thickness increases. The move- 
ment is most clearly seen if the discs are shown as 
a rapid sequence of images or "movie" on the 
screen of a small personal computer or worksta- 
tion [12]. Note that at the lower thicknesses, the 
width of the H O L Z  lines increases, as was ob- 
served by Jones et al. [1]. The magnitude of the 
change in line width decreases as the thickness 
increases, and for silicon does not change a great 
deal for samples thicker than 200 nm [1]. 

Fig. 2 contains a number of experimental 
CBED bright-field discs from the same axis. Here  
too the cross-over opens into a triangle as the 
thickness increases. Examination of a number of 
other multiple H O L Z  line interactions in both 
the experimental and theoretical patterns reveals 
that a number of the H O L Z  lines in the patterns 
behave in a similar manner  to the {5,7,1-]-} family. 
These intersections are important since the 
changes in the dimensions of the small shapes 
defined by these intersections (small rhomboids, 
diamonds and triangles) are frequently used to 

A three-state Bloch wave model has been de- 
veloped that treats the H O L Z  poten t ia l  as a 
perturbation on the basic zero-layer potential [13]. 
The diffracted wave amplitude for the bright-field 
disc at orientation K is given by:' 

A o ( K ,  t )  = Y'.eJCJo e x p ( - i s J t / 2 k ) .  (1) 
J 

The C j and s j are the coefficients and trans- 
verse energies respectively of Bloch wave j, t is 
the crystal thickness and k the fast electron 
wavevector. For  simplicity, we ignore absorption 
and in the absence of H O L Z  diffraction the 
excitation amplitudes E j are constant and are 
given by C~* To keep the model as simple as 
possible we assume that only two branches (a and 
b) are significant. In this case (1) becomes 

Ao( g ,  t )  = ~ac~ e x p ( - i s a t / 2 k )  

+ ,bCb o e x p ( - - i s b t / 2 k ) .  (2) 

For simple string-zone axes this two-branch 
approximation is often justified, particularly for 
orientations close to . the zone axis. F o r  example, 
for both Si [111] and Si [114] only branches 1 and 
2 are highly excited. 

In order  to study the effects of H O L Z  diffrac- 
tion the H O L Z  potential can be treated as a 
perturbation on the basic zero-layer potential [13]. 
Again for simplicity, we consider the effects of a 
single H O L Z  state c, which is assumed to be a 
plane wave, exp[i(K+ GH). R], with transverse 
energy s c= ( g  + Gn) 2. G n is the component of 
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the  H O L Z  g-vec tor  p e r p e n d i c u l a r  top  the  zone  
axis. This  t h r e e - s t a t e  m o d e l  is suff icient  to  ex- 
p la in  the  obse rved  H O L Z  l ine movemen t .  A s  in 
the  gene ra l  H O L Z  theory  we analyze  the  in ter -  aEb(z)  
sec t ion  of  the  H O L Z  s ta te  wi th  one  ze ro - l aye r  Oz 
s ta te ,  which  we t ake  as s ta te  b. In  this  case  E a is 
cons tan t ,  E b and  the  exci ta t ion  of  the  H O L Z  ~EC(z) 
s ta te  E c will  vary with  d e p t h  t h rough  the  crystal ,  ~z 

Z. This  va r i a t ion  is expressed  as a pa i r  of  coup led  
d i f fe ren t ia l  equa t ions  [13] 

/3 
2]-k exp[  - i ~ z  ] e c ( z ) ,  (3 )  

/3* 
= 2 ik  e x p [ i ~ z ] ' b ( z ) '  (4)  

Fig. 1. Calculated (111) Si bright-field CBED discs at a series of 8 thicknesses (a-h), starting at 125 nm and increasing in steps of 
25 to 300 nm. There is clearly a difference in the height of the triangle of {5,7,1i} lines. Note also the changing areas of the small 

shapes formed by crossing HOLZ lines (an example is marked with arrows in (h)). 
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where • = (sC/2k-g~-sb/2k) and 13 is the 
matrix element linking states b and c. 

These equations are solved subject to the 
boundary conditions that ¢c(0)= 0 and ¢b(0)= 
Co b*. The solution to second order in/3 (which is 
sufficient to analyze the form of the HOLZ line 
in the bright-field disc) is: 

~b 
- -  = 1 - a S  

Cbo* 
1/312t2[ 1 + [ i~ t ]  - exp[i~t]  ] 

= 1 - ~  [ ~Tti ]' (5) 

where a = 1/312t2/4k2 and S is the "shape func- 

Fig. 1 (continued). 
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Fig. 2. Experimental (111) Si bright-field CBED discs at three different thicknesses, the exact thicknesses are unknown; however, 
they are not too different from the theoretical patterns. The shift in HOLZ line positions is dearly visible at the pattern centres. 

tion" associated with the H O L Z  deficiency line. 
a is a measure of the basic H O L Z  line strength, 
and for the second-order result to be valid we 
need a << 1. 

Table 1 
Parameters used to calculate HOLZ deficiency line profile for 
Si (111) 

Parameter Value 

R 0.31 
262.9 

k 189.3 A-  1 

G H 15.52 A-  1 

0.55 

The exact H O L Z  intersection corresponds to 
¢P = 0. We consider small orientation changes 
( g g )  about this point such that the Z O L Z  eigen- 
values and eigen-vectors and the matrix element 
/3 do not change significantly. To first order, we 
can then write 

8cP ffi 8K.  VKcb -- 8K.  Vxs*/2k = 8K G n t / k ,  

where 8K is the magnitude of 8K in the direc- 
tion perpendicular to the H O L Z  line. The shape 
function S is thus a function of ( g K G H t / k )  and 
so the same function can be used in all circum- 
stances with appropriate values of Gn, t and k. 

A/ o 
--4~r 

' -0 .4  
0 --41r 

! 

I 

0 4~r 

~ A  

4 ~  

0.4 

Fig. 3. (a) Real and (b) imaginary parts of the shape function S in terms of the dimensionless variable 8 ~  ffi 8 K G n t / k .  



or alternatively The real and imaginary parts of S are plotted in 
fig. 3 showing that the real part is symmetric 
about the H O L Z  line intersection while the imag- 
inary part is anti-symmetric. 

Eq. (2) now gives 

Ao(SK, t )  = I C~l 2 e x p ( - i s a t / 2 k )  + I C0bl 2 

X e x p ( - i s b t / 2 k )  (1 - aS(SK)) ,  
(6) 

(7) 

Ao(SK, t) = I C~I z e x p ( - i s a t / 2 k )  

iCobl2 
X 1 + i c - ~ e x p ( - i 2 " n ' t / ¢ )  

X(1 - a S ( ~ K ) ) ] ,  

1.606 I 

50nm 

1.596 i 
-0.3 
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0 0.3 

0.96 

J 

0.89 
-0.3 

150nm 

J 
I 

0 0.3 

0.57 

0.47 
-0.3 

250nm 

0 0.3 

1.05 

350nm 

0.7 
-0.3 0 0.3 

Fig. 4. Bright-field HOLZ line profiles (intensity versus 6K in A -1) for (a) 50, (b) 150, (c) 250 and (d) 350 nm. Intensity is in 
arbitrary units but is consistent between plots. 
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where ~ = 4~'k / (s  b - s  a) is the extinction dis- 
tance. The intensity is then given by 

I = IA012 at I1 + g exp( - i 2 7 r t / ~ ) ( 1  - aS)  I 2, 

(8) 

where R ( =  I Co b L 2/I C~ I 2) is the relative excita- 
tion of branches b and a. 

Expanding (8) to first order in a we obtain 

Iot  1 + 2R c o s ( - 2 w t / ~ )  + R  E 

- 2RmqZ[S exp( - i 2~ r t /~ ) ]  - 2 R 2 a j l ( S ) ,  

(9) 

where ~ represents the real part. The first three 
terms in (9) provide the basic Z O L Z  intensity. 

Fig. 5. Calculated (114) Si bright-field CBED discs at a series of 8 thicknesses (a-h) ,  starting at 125 nm and increasing in steps of 
25 to 300 nm. The H O L Z  lines at the pattern centre are unchanged with changing thickness; however, those that interact with the 

zero-layer fringes do appear to shift with thickness (an example is marked with arrows in (d)). 
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Fig. 5 (continued). 

The final term (introducing only the real part of 
S) is an event function providing a symmetric 
H O L Z  deficiency line, but the remaining term 
which describes the in te r fe rence  be tween  
branches a and b mixes in the imaginary part of 
the shape function. It is this term which provides 
the thickness dependence of the Holz line profile 
and, because it contains an anti-symmetric part, 
leads to the deficiency line appearing as a couplet 
of bright and dark lines. As the thickness changes 
the relative magnitude of the even and odd parts 

of S vary, leading to the observed change in the 
H O L Z  line profile and its apparent movement 
with thickness. It can be seen from (9) that the 
period of the movement will be the same as that 
of the underlying zero-layer contrast, namely the 
extinction distance for branches a and b. From 
fig. 3 we can see that the maximum effect will be 
a movement of order  two to three times the basic 
H O L Z  line width. It is illuminating to consider 
two limiting cases of (9) when R >> 1 and R << 1. 
In the former, the even R 2 term dominates lead- 
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ing to a symmetric, thickness-independent HOLZ 
deficiency line. This corresponds to a strong per- 
turbed branch b interacting with a weak branch 
a. This, for example, would be the case for a 
branch 1 intersection near the zone centre of Si 
(114) where the weak branch 2 has little effect 
on the branch 1 HOLZ line. 

When R << 1, all the additional shape func- 
tion terms become small and it becomes difficult 
to record any deficiency lines, e.g. branch 2 lines 
are not readily observed in Si (114). For the 
greatest thickness dependence, we need R -- 1. In 
this case, the magnitudes of the odd and even 
contributions of the shape function become com- 
parable and a coupled of highly thickness-sensi- 
tive lines will be visible. This is the effect we 
observe in Si (111) where branches 1 and 2 have 
comparable excitation. 

From computed patterns of Si (111) at 122 kV 
we have identified the {5,7,1-i}-type HOLZ lines 
intersecting near the axis of the bright-field disc. 
These HOLZ lines are intersecting with branch 2 
of the zero-layer dispersion surface. A full many- 
beam calculation gives values for the quantities 
which appear in (9) (see table 1). The ratio of the 
two zero-layer amplitudes R ~-1, which means 
that the interference effect will be most notice- 
able at this axis. 

A thickness sequence of line profiles about 
K = 0 is shown in fig. 4. Comparing these with the 
experimental results and full simulations shown 
earlier, a very good agreement with the theoreti- 
cal model can be seen. The model dearly shows 
the couplet of bright and dark lines created by 
the interference Of the two branches and also 
mimics the formation of the bright-only intersec- 
tion at around 250 nm. 

5. Discussion 

The apparent motion of deficit HOLZ lines in 
bright-field CBED discs was first reported by 
Rackham [14]. He noted that the crossover of the 
{ 9  11} family of HOLZ lines, that occurs at 103.5 
kV at the silicon (111) zone axis, opened into 
small triangles as a function of thickness. Rack- 
ham attributed the motion to interaction between 

the zero-layer fringes and the HOLZ lines, as 
described by (9). In their comparisons of calcu- 
lated and experimental FOLZ line profiles Jones 
et al. [1] also observed line shifts as a function of 
thickness. Microdensitometer traces, plotted as a 
function of thickness, across the {~  11} lines re- 
vealed that the lines moved a distance of approxi- 
mately one and a half times their width. Rack- 
ham [14] deduced that if {b'-511} HOLZ lines were 
used in lattice parameter measurements, the re- 
suits would have an uncertainty of = 5 × 10 -4. 
This is two and a half times greater an uncer- 
tainty than is usually quoted for such measure- 
ments (typically 2 x 10 -4) [2]. Our analysis sug- 
gests that the apparent movement of the HOLZ 
lines may be as much as three times their width 
and therefore the uncertainty in measured lattice 
parameter could be as large as 1 x 10 -3. 

The philosophy behind using CBED to meas- 
ure lattice parameters rests on the ability to mea- 
sure small changes in small volumes of material 
with accuracies that approach those of X-ray 
techniques. However, if zero-layer dynamic 
diffraction effects introduce large and perhaps 
variable uncertainties in the line positions, it is 
necessary to perform the measurements at zone 
axes that have weaker dynamic diffraction. The 
silicon (114) zone axis bright-field disc usually 
contains a zero-layer fringe pattern, although the 
contrast is somewhat reduced compared with the 
(111) axis. Thus, for comparison, (114) patterns 
were calculated at 122 kV for a range of thick- 
nesses. Fig. 5 is a thickness series of silicon (114) 
bright-field CBED discs calculated at 122 kV, the 
thicknesses used for the sequence are the same as 
those in fig. 1. Again the effects we describe are 
most obvious if the thickness series is "played" as 
a "movie". However, careful examination reveals 
that the strong HOLZ lines in the centre of the 
(114) bright-field disc do not move appreciably 
with changing thickness. The centre of the pat- 
tern has a much weaker zero-layer fringe struc- 
ture than either the outer edge of the disc or the 
(111) bright-field disc. Examination of the lines 
that intersect with the stronger, well defined 
zero-layer fringes reveals that they oscillate in 
position with changing thickness in the same 
manner those observed at the (111) axis. This 
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thickness variation occurs towards the edge of the 
bright-field disc, where the excitations of branches 
1 and 2 are becoming more equal. Caution must 
be exercised when choosing a zone axis to per- 
form lattice parameter  or strain measurements 
with CBED. An axis that exhibits clearly defined 
H O L Z  lines with little or no zero-layer fringe 
contrast is to be preferred. 

6. Conclusions 

In summary, H O L Z  deficiency lines in bright- 
field CBED discs of zone axes that exhibit strong 
zero-layer diffraction effects, e.g. strong fringe 
contrast, appear to move as the sample thickness 
is changed. The apparent movement is at- 
tributable to the interference of two strongly ex- 
cited branches of the zero-layer dispersion sur- 
face with the H O L Z  dispersion surface at the axis 
in question. The expression for the intensity of 
the H O L Z  line contains an anti-synunetric term 
that is thickness dependent.  The anti-symmetric 
term causes the H O L Z  line to appear as a cou- 
plet of bright and dark lines and as the sample 
thickness changes the relative excitation of the 
bright and dark segments changes, resulting in 
the apparent  movement of the line. As a general 
rule, if there is strong zero-layer fringe contrast 
in the bright-field disc of the zone axis pattern, 
then the H O L Z  detail would be expected to vary 
in position as a function of thickness. Clearly, 

such axes should be avoided when trying to ex- 
tract lattice constants or strain from the H O L Z  
line positions. 
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