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We have previously published a GAUSS program for computing the Foulkes-Davis tracking index, y, 
from a one-sample longitudinal data set when no assumptions were made concerning the structure of the 
individual growth curves (Schneiderman et al., Am J Hum Biol, 4 (1992) 417-420). In this paper we con- 
sider the computation of the Foulkes-Davis index assuming that each individual growth curve may be 
adequately represented by a polynomial function in time and a GAUSS program performing these com- 
putations is made available. As with the two other tracking indices we have described, y and ,K (Schneider- 
man et al., Am J Hum Biol, 2 (1990) 475-490), this one can be used to evaluate regularity in patterns 
of growth or adaptation. An example is presented where statural growth in the same three groups con- 
sidered in the earlier papers are analyzed. The small disparities between these and the earlier results are 
discussed in view of the different assumptions of the models and the differences in how they operationalize 
the concept of tracking. 
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Introduction 

In a recent paper [I] we described a tracking index for longitudinal observations 
due to Foulkes and Davis [2] which did not assume any particular structure for the 
growth curves. Such an index has the obvious advantage of being widely applicable, 
but sharper results may be obtained when it is reasonable to assume that the growth 
curves have some specified functional form. The purpose of the present paper is to 
extend the Foulkes-Davis (FD) tracking index to the situation in which the growth 
curves may be assumed to be polynomials (tests of whether or not this assumption 
is tenable are included) and to provide a GAUSS program which will do the 
associated computations. An example illustrating the technique and the use of the 
program is given. The results are compared with those obtained using the ‘non- 
parametric’ form of the FD index and the index based on the kappa statistic [3]. 
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The Foulkes-Davis Tracking Index 

The FD tracking index is, simply, the probability, y, that two randomly selected 
growth curves will not intersect (cross) over the time frame of the study. Thus the 
index is predicated on the notion of pairs of individuals maintaining relative rank 
within the response distribution as it changes over time, i.e. the idea that if a given 
individual is ‘smaller’ (larger) than another given individual at the first time of 
measurement, he/she tends to remain smaller (larger) as time progresses. Since y is 
a probability, 0 I y I 1. No tracking is said to occur if y < l/2 and perfect tracking 
corresponds to y = 1. Intermediate values of y represent varying degrees of tracking; 
the higher the value of y, the more the population tends to track. No tracking cor- 
responds’ to y < l/2 for when the probability of two randomly chosen curves cross- 
ing is at least l/2, relative rank at any one point in time provides no information 
concerning relative rank at another. Perfect tracking is said to occur if y = 1 for then 
no two growth curves intersect, i.e. for every pair of individuals in the population, 
relative rank within the response distribution is maintained over time. Obviously, if 
all the growth curves in the population are parallel, r = 1. The converse, however, 
is not true since all that is required under the FD concept of tracking is that the 
curves do not intersect. There is no requirement that the curves ‘behave similarly’. 
However, if N is large, the growth curves would have to behave reasonably similarly 
in order not to intersect. 

Estimation of y 

Given a longitudinal data set 
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where xii denotes the value of the observation made on the ith individual (i = 1, 
2 * * 9 N)attime$(j=1,2,..., 7) and xi is the T x 1 vector of observations for 
the ith individual, y is estimated by comparing the growth curves for each of the 

N 

0 2 
= N(N - 1)/2 pairs of individuals in the sample and taking + to be the propor- 

tion of these which do not cross at any of the times of measurement. An explicit for- 
mula for this estimator is most conveniently given in terms of an indicator function: 
If*. Ik = 1 when the growth curves of individuals i and k do not cross and ‘I’& = 0 
when they do, then 

(2) 
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The restriction on the summation in Eqn. (2) i < k, is made so as not to count the 
comparison of individuals i and k twice. 

In Eqn. (l), the observed values for individuals i and k were simply compared at 
each of the time points and eik was assigned the value 1 if individual i was always 
(i.e. at every time point) at least as large (L ), or at most as small ( ZZ), as individual 
k. No functional form for the growth curve was assumed. In the following section 
we show how y is estimated when a polynomial is lit to each individual’s growth 
profile. 

Polynomial Growth Curves 

FD assume that the growth curve for the ith individual is a polynomial in time 
(t) of the same degree (D) for each individual, viz., 

Xi(t) = 7i] + 7fzt + ’ ’ ’ + 7iprD 

or, in matrix notation, 

(3) 

xi(t) = t’Ti 

where t’ = [l, t, . . , , tq and ri is the P x 1 (P = D + 1) vector of regression coef- 
ficients for the ith individual. In our program, D is determined by a sequence of 
preliminary goodness-of-fit tests. We begin by testing D = 1 and increment D, when 
necessary, until an acceptable fit is found using the user-specified level of significance 
for the tests [4]. FD make no assumptions concerning the structure of the covariance 
matrix, C, of the xi (c.f. Ref. 4) and hence estimate the ri by 

Fi = (WS-‘w)-‘W’S_*xi (4) 

where S is the T x T sample covariance matrix of the xi and W the within- 
individual (time) design matrix 

The times of measurement ti, t2, . . . , tT need not be equally spaced, but are 
assumed to be the same for each individual. 

Given this structure the indicator function 4& is written 
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and q& = 0 otherwise. This accomplishes the same thing as the original qti, i.e. 
*i&= 1 only when the growth curves for the two individuals do not cross during the 
observation period. Notice, e.g., if the smallest of the differences between individual 
i values and individual k values growth curves is non-negative, then all such dif- 
ferences are non-negative, i.e. the polynomial growth curve for individual i value is 
always ‘above’ that of individual k value. 

Equation (6) is the FD method for computing the ejk. In practice the minimum 
and maximum values are obtained by evaluating t ‘(ti - $J at t = tl, t2, . . . , tT and 
the qa evaluated by comparing the smallest and largest of these values to zero. We 
do this slightly differently. We replace X by X* where X* contains the fitted values 
of the polynomials at times tt, t2, . . . , tT and use the algorithm developed previous- 
ly for our program which computes the non-parametric form of the FD index [l]. 
Rather than computing differences between growth curves and comparing these to 
zero, we compare the (fitted) growth curves directly. In this light it is clear that the 
FD polynomial tracking index is not really all that different from the non-parametric 
version. When polynomials are tit to the individual growth profiles we are, in 
essence, replacing the observations X by ‘smoothed’ values X*, the elements of X* 
being the values of the individual polynomials at tl, t2, . . . , IT. Smoothing may 
eliminate ‘minor’ crossings (intersections which reflect random fluctuations and not 
the overall trend of growth). 

In any event, having computed the qik for every pair of individuals (*ik = *ki) 
we again [l] estimate y by 

1 * 
+%=N C#i 

i=l 

where 

$i = -& 5 rl.ik 
k=l 

k#i 

The SE of + is estimated by 

S.E. (+) = Var (#i) N 

(8) 

and, for large samples, an approximate 95% confidence interval for y is 

q & 2 SE.(+) (10) 

Note that qi is a measure of how well the ith individual tracks: It is the proportion 
of times that the ith individual’s growth curve does not intersect the other N - 1 
growth curves. Below we describe our program, apply it to three data sets considered 
in earlier publications and compare the results. 
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The Program 

The program is called FDTRK2 and is invoked by issuing the command 
GAUSSRUN FDTRK2. A variety of options are made available to the user by 
means of an interactive screen menu. Several data sets can be evaluated with a single 
run. Data sets can be input using either ASCII format or GAUSS format. Data col- 
lected at unequal time points can be evaluated as readily as those collected at equally 
spaced intervals. The user also selects the level of significance (o level) to be used 
in the sequential goodness-of-fit tests for determining D, the degree of the 
polynomial used to fit the growth curves. 

In terms of the output, the program first prints the usual descriptive statistics and 
then the results of the step-up goodness-of-tit tests, i.e. F-statistics and the cor- 
responding p-values. The polynomial regression coefficients are also generated for 
each of the N individuals. Finally, the indicator matrix, the value of the FD index, 
the length of the half-interval and 95% confidence interval are given. The graphical 
output includes a plot of the individual growth profiles and a plot of the best-fit 
polynomials. If more than one data set is being analyzed, the results for each are pro- 
duced sequentially. Details concerning how to obtain a copy of the program, as well 
as hardware and software requirements are provided in the Appendix. 

Examples 

We consider statural growth in three samples of children living in Guatemala 
which were studied in depth in Bogin et al. [5]. The children comprising these 
samples differ in socioeconomic status (SES) and ethnicity: One is of low SES 
Mayan Indian children (G,); the second is of low SES Ladino children (G2); the 
third is of high SES Ladino children (Gs). Bogin et al. [5] showed, among other 
things, that SES-related deficits in growth are cumulative during childhood and early 
adolescence; and that childhood growth deficits of low SES children are likely to 
carry over into adulthood. The prominence given these results reflects the impor- 
tance that the concept of tracking commands in describing the growth patterns of 
several populations. These investigators did not, however, formally quantify and/or 
compare the tracking behavior within and between these populations. In an earlier 
paper [6] we did this for body height in the three groups of 20 subjects each using 
the kappa statistic, testing the hypothesis that 

Ho : K1 = K2 = K3 

We found that 

Ki = 0.74668, S.E. = 0.04116 (P, = 0.83333) 
K2 = 0.70370, S.E. = 0.04092 (P, = 0.80333) 
K3 = 0.72796, S.E. = 0.04098 (P, = 0.82000) 

The values P,, are the uncorrected (for chance) tracking indices in the three groups 
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TABLE I 

THE VALUES OF I, FD I AND FD II AND THE HALF-WIDTHS OF THE CORRESPONDING 
CONFIDENCE INTERVALS FOR THE THREE SAMPLES 

Gt, low SES Mayan children; Gz, low SES Ladino children; GS, high SES Ladino children. 

K FDI FD II 

GI 0.74668 f 0.08232 0.85789 zt 0.034237 0.96842 zt 0.014081 
GZ 0.70370 f 0.08184 0.73158 f 0.051171 0.95789 zt 0.021053 
G3 0.72796 f 0.08196 0.81053 f 0.035327 0.92632 zt 0.020774 

[1,6]. These are shown to allow us to compare the uncorrected tracking values with 
indices which do not incorporate a chance-correction, viz., the FD tracking indices. 

Table I contains the estimated values of K, the non-parametric FD index (FD I) 
and the FD index appropriate for polynomial growth curves (FD II) for the three 
samples along with (k) the half-width of the corresponding confidence interval. The 
significance level for the goodness-of-fit tests was set at 0.05. It is seen that the three 
groups all track quite well, no matter which of the indices is considered. 

There are, however, some interesting patterns in the results. The most obvious of 
these is that as one proceeds from left-to-right in the table, i.e. from K to FD I to 
FD II, the values of the indices increase and the widths of the half-intervals decrease: 
We appear to be getting more tracking and to be surer of it. 

DlSCUSdOll 

When comparing K with FD I, both of which are unstructured andaonparametric 
in the sense that neither makes any assumptions concerning the structure of the 
growth curves nor the distribution of the measurement being considered, it is impor- 
tant to realize that K is chance corrected, i.e. K represents the amount of tKtCking 

possible beyond chance which was realized in the data. The uncorrected tracking in- 
dices, PO, cited earlier, are much more in line with the values of FD I. The fact that 
the half-widths of the confidence intervals for FD I are roughly l/2 those for K may 

TABLE II 

EFFECTS OF CHANGING K IN G, 

K=2 K=3 K=4 K=5 

PO 0.89667 0.82000 0.86333 0.61333 
x 0.79328 0.72796 0.81774 0.51625 
S.E.(K) 0.05774 0.04098 0.03334 0.02891 
Half-interval 0.11547 0.08196 0.06668 0.05781 
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just be a product of the particular data sets under consideration, but it should also 
be realized that K is a relatively complicated ratio of probabilities while FD I 
represents an average of simple proportions. Note also that the value of K depends 
on the number, K, of tracks specified for the analysis. Those shown in Table I are 
for K = 3. An indication of what happens for other values of K is given in Table II 
where the results for K = 2, K = 3, K = 4 and K = 5 for G3 (the high SES Ladinos) 
are contrasted. 

It is seen that the choice of K may substantially effect the value of K and the 
precision with which it is estimated. We might also note that it is possible - perhaps 
contrary to expectation - for K to increase with increasing K (K = 2 vs. K = 4). 

The comparison of FD I and FD II shows that considerably more tracking is 
in evidence when FD II is used. One possible reason for this has already been men- 
tioned: Smoothing by fitting polynomials may avoid ‘minor crossings’ which reflect 
random fluctuations more than overall growth patterns. Indeed, suppose that two 
individuals had the same growth curve and departures from that curve were random 
in nature. FD I would pick up the random crossings thus induced, but FD II would, 
on the average at least, fit the same polynomials to these individuals and the obvious 
tracking between them would be preserved. On the other hand, the use of FD II 
depends on the assumption that polynomials of some degree will be adequate to fit 
the individual growth curves. While we do provide a test for this, it must be realized 
that the value of FD II depends on the degree of the polynomial actually tit. In Table 
I, we used the program-determined D for each of the groups, viz., D = 1 for Gi and 
Gz and D = 2 for Gj. Had we forced D = 1 in G3 (by appropriately choosing the 
user-specified level of significance for the goodness-of-tit tests in the program), the 
value of FD II would have been 0.97368, an even higher value than for D = 2, despite 
the fact that D = 1 was found to not adequately fit the growth profiles in that group. 
Conversely, fitting a higher-than-necessary degree polynomial will also effect the 
value of FD II; and this value can be smaller than that based on the lower degree. 
For example, using D = 2 in G2 results in a FD II value of 0.93158. 

It is obviously difficult (and dangerous) to try to compare the three tracking in- 
dices considered in this paper on the basis of their performances on three data sets. 
While all three indices clearly indicate the existence of tracking behavior within the 
three groups of Guatemalan schoolchildren, there are subtle differences between 
these indices and we are not in a position to recommend the use of one over any 
other. Indeed, we believe that their performance on a wide variety of data sets needs 
to be studied before any recommendations can be made and it is in this spirit that 
programs facilitating such comparisons are made available. 

The following summary statements may be useful to those interested in making 
such comparisons. FD I and the K index are unstructured and non-parametric in that 
neither makes any assumptions about the form of the growth curves nor about the 
distribution of the measurement under consideration. FD I is based on the the 
notion of the crossing of growth profiles; kappa is based on the numbers of times 
individuals are in tracks defined in terms of quantiles. A given pair of individuals 
may cross a large number of times even if they are always in the same track; or they 
may have no crosses even though they both exhibit a number of track transitions. 
Individuals who maintain relative rank and/or tend to stay in a single track may have 
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widely differing growth profiles: Neither ensures parallel growth profiles. K depends 
on the choice of K, but has the advantage of being chance-corrected. This correction, 
however, somewhat complicates the expression of the K statistic and may result in 
wider confidence intervals than those based on the simpler FD I statistic. 

FD II is structured: It is assumed that polynomials may be fit to the individual 
growth curves. When this assumption is tenable, FD II may be preferable to FD I 
in that polynomial smoothing may eliminate ‘minor crossings’ thereby more 
accurately reflecting the overall course of growth. FD II, however, depends on the 
degree of the polynomial fit to the individual growth curves and the tests employed 
to find the minimal D adequate to fit the data are parametric - they assume that 
the vector of observations for each individual has a multivariate normal distribution. 
Given D, the rest of the computations required to produce FD II do not depend on 
normality, but since this assumption is necessary to determine D and the value of 
FD II depends on D, the FD II procedure has an important parametric component. 

We note that a FORTRAN program performing the FD analysis is available [7]; 
however, it is limited to at most third degree polynomials. Additionally, the graphics 
for this program are accomplished outside of the main program using SYGRAPH 
[8]. In contrast, our program does not restrict the degree of the polynomial, is menu 
driven rather than command driven (and therefore very easy to use), directly pro- 
duces graphics and does not require that the user have additional compilers/inter- 
preters at his or her disposal. For a description of a related approach and further 
examples, see Ref. 9. 
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Appendix. Computer Implementation 

This program can be obtained on a 5.25 ” or 3.5” diskette by sending $10 to defray 
the cost of handling and licensing fees. Please specify the size and capacity of disket- 
tes when making requests. The progam will run on a IBM-PC/XT or AT compatible 
computer. The computer must be equipped with a numerical coprocessor from the 
8087 family and 640 K of memory. The computer must be configured so that at least 
430 K of memory is available, ie., not tied up with memory resident programs such 
as Windows. EGA or VGA graphics capability is required to display the color 
graphics. No additional software is required (other than what one would normally 
use to enter a data set); run-time modules are supplied with the program so that no 
compiler or interpreter is necessary. The program, written in GAUSS, version 2.0, 
revision 20, requires no additional installation or modification and is run with a 
single command. When requesting the program, address inquiries to EDS and make 
checks payable to Baylor College of Dentistry. 
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