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Mixed Control for Discrete-time Systems 
via Convex Optimization*t 

ISAAC KAMINER,* PRAMOD P. KHARGONEKAR~: and 
MARIO A. ROTEA§ 

A mixed ~ 2 / ~  problem for discrete-time systems is solved by converting it 
into a convex optimization problem over a finite-dimensional space. 
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Almtmet--A mixed ~-2/~® control problem for discrete-time 
systems is considered, where an upper bound on the ~g2 
norm of a closed loop transfer matrix is minimized subject to 
an ~® constraint on another closed loop transfer matrix. 
Both state-feedback and output-feedback cases are con- 
sidered. It is shown that these problems are equivalent to 
finite-dimensional convex programming problems. In the 
state-feedback case, nearly optimal controllers can be chosen 
to be static gains. In the output feedback case, nearly 
optimal controllers can be chosen to have a structure similar 
to that of the central single objective ~ controller. In 
particular, the state dimension of nearly optimal output- 
feedback controllers need not exceed the plant dimension. 

1. INTRODUCTION 

DESIGN OF CONTROL s y s t e m s  a l m o s t  i n v a r i a b l y  

involves tradeoffs among competing objectives. 
It is often the case that the controller is required 
to meet several different performance and 
robustness goals, and all of these cannot be met 
simultaneously. For example, it is intuitively 
clear that to obtain a greater robust stability 
margin, it is likely that the performance of the 
control system needs to be compromised. In 
classical single loop feedback design, these 
tradeoffs are performed in terms of the (open) 
loop transfer function. For instance, stability 
margins in terms of either the phase/gain 
margins or the distance of the Nyquist plot to the 
critical point are traded off against disturbance 
rejection at low frequencies. Clearly, it is 
important to develop analytical tools to help the 
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designer understand how the various competing 
objectives conflict with each other. From this 
point of view, one should postulate the 
controller synthesis problem as the problem of 
studying tradeoffs among competing objectives. 
For a more detailed discussion of multiobjective 
controller synthesis as well as additional 
references, see Boyd and Barratt (1990), Dorato 
(1991), Khargonekar and Rotea (1991b), and 
Rotea (1990). 

The subject of this paper is a certain 
constrained optimal controller synthesis 
problem--the so-called mixed gz/~® synthesis 
problem. Mixed g 2 / ~  problems can be 
motivated in many different ways. As a matter of 
fact, there are many different mixed g 2 / ~  
problems. These problems are one way of 
analytically formulating the issue of tradeoffs in 
control system synthesis. 

To give a brief description of the various 
mixed ~/f-2/~ problems, consider the feedback 
system shown in Fig. 1. Let Tz, w,, i = 0, 1, denote 
the closed loop transfer matrix from the 
exogenous input w~ to the controlled output z~. 
One mixed ~g2/~® problem is to find an 
internally stabilizing controller ca which mini- 
mizes IITzo~0112 subject to the constraint 
IITz, w, ll~<~'. This problem is equivalent to a 
problem of optimal nominal performance subject 
to a robust stability requirement. To be more 
specific, a controller that solves this mixed 
~2/~® problem will ensure that the closed loop 
system is robustly stable to all finite-gain stable 
(possibly nonlinear time-varying) perturbations 
A, interconnected to the system by wl = Azl, 
such that [[All®-<l/y. On the other hand, 
[[T~o~ll2 represents the steady-state variance of 
the output Zo when wl = 0 and Wo is white noise 
with unit intensity. Currently no analytic 
solution to this mixed ~ -2 /~  problem is 
available. Rotea and Khargonekar (1991a) have 
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obtained some sufficient conditions for the 
solvability of this mixed ; ~ 2 / ~  problem in the 
state-feedback case. While the results in Rotea 
and Khargonekar (1991a) have been obtained 
for continuous-time systems, many of them can 
be extended quite easily to discrete-time 
systems. 

A somewhat different mixed ~ / ~  problem 
formulation was introduced by Bernstein and 
Haddad (1989) to combine the LQG and ~ 
controller design theories. This problem is 
restricted to the case w 0 = wl =: w. Instead of 
minimizing IITzo,,Ih, they considered the mini- 
mization of an "upper bound" for IITzowlh, 
subject to the constraint IIT~,wll~ < ~,. Recently, 
many papers have appeared that address this 
mixed ~ , ~ / ~  controller design problem, see for 
example, Bambang et al. (1990), Doyle et al. 

(1989a), Khargonekar and Rotea (1991a, b), 
Mustafa and Bernstein (1991), Steinbuch and 
Bosgra (1991), Yeh et al. (1992), Zhou et al. 

(1990) and the references cited therein. 
The mixed ~ 2 / ~  problem considered in this 

paper not only provides a more tractable 
approach to the problem of minimizing nominal 
performance subject to a robust stability 
constraint, but it can also be interpreted as an 
optimal performance problem. Indeed, as shown 
by Zhou et al. (1990) in the continuous-time 
case, the "dual" of the auxiliary cost or upper 
bound of Bernstein and Haddad (1989) is closely 
related to a system gain from a combination of 
power and white noise exogenous inputs to the 
power of the regulated output. 

In this paper, we focus on the discrete-time 
version of the mixed ~ -2 /~  problem as 
formulated by Bernstein and Haddad (1989). 
While much work has been done on the 
continuous-time case, the discrete-time case has 
received much less attention. Indeed, at this 
time the discrete-time analog of the coupled 
Riccati equations obtained by Bernstein and 
Haddad (1989) for the continuous-time case are 
not available for output-feedback problems. 
Some results for discrete-time mixed ~ 2 / ~  
problems have been obtained by Bambang et al. 
(1990), Haddad et al. (1991), and Mustafa and 

Bernstein (1991). Mustafa and Bernstein (1991) 
have considered the static state-feedback prob- 
lem and derived sufficient conditions for 
optimality of a state-feedback gain. Bambang et 

al. (1990) and Haddad et al. (1991) have 
considered the static output-feedback problem. 
It seems that at this time no solution to the 
mixed ~ 2 / ~  problem is available in the general 
dynamic output-feedback case. This is the 
primary motivation for this paper. 

Our approach is as the recent paper by 
Khargonekar and Rotea (1991a) where a convex 
optimization approach to the continuous-time 
mixed ~/~/ '~ problem introduced in Bernstein 
and Haddad (1989) has been developed. A 
similar approach has been applied earlier by 
Bernussou et al. (1989) to a quadratic stability 
problem. The starting point is to take a 
"sub-optimal approach". More specifically, with 
J denoting the "mixed ~ / ~ "  performance 
measure (a precise definition of J is given in 
Section 2) let 

v(~d) := inf {J: cg internally 

stabilizing and II Tz,wl[o~ < Y}, 

denote the optimal mixed ~2/~oo performance 
measure. Then we consider the following 
problem: 

"Compute v(C'd) and given o~> v(~d), find an 
internally stabilizing controller qg such that 
II Tz, wll~ < ~', and the mixed ~.2/~(~ 
performance measure satisfies J < a~". 

The main results of this paper are contained in 
Sections 4 and 5. The full-information/state- 
feedback case is considered in Section 4, while 
the output-feedback case is considered in Section 
5. It is shown that if the plant state is available 
for feedback, one can come arbitrarily close to 
the optimal mixed ~2/~(~ performance measure 
using constant gain (i.e. nondynamic) state- 
feedback controllers. In other words, in the 
state-feedback case, static gain controllers offer 
the best possible performance. 

In the full-information feedback case (i.e. 
both the exogenous input and the system state 
are available for feedback) there is a significant 
departure from the continuous-time case. It 
turns out that in the discrete-time case, one 
cannot come arbitrarily close to the infimum by 
taking static state-feedback controllers. The best 
that one can do is to use static fuU-information 
controllers. As a consequence, this result is of 
little practical interest except that it is critically 
useful in dealing with the output-feedback case. 
This situation is similar to that in the single 
objective standard ~,~ control problem for 
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discrete-time systems as in Basar and Bernhard 
(1991), Iglesias and Glover (1991), Limebeer et 
a/. (1989), Liu et al. (1991) and Stoorvogel 
(1990). 

It is shown that in the state-feedback as well as 
the full-information case, the mixed ~ / ~  
optimal performance v(~) and a static gain 
controller that satisfies J < a: (for any a: > v ( ~ )  
can be obtained by solving a finite-dimensional 
convex programming problem over a bounded 
set of real matrices. 

In the output-feedback case, it is shown that 
the mixed ~ / ~  control problem can be 
reduced to a full-information feedback problem 
for an auxiliary plant, which is obtained from the 
given plant by solving an (~® filtering) algebraic 
Rieeati equation. Thus, the output-feedback 
problem can be reduced to a finite-dimensional 
convex programming problem over a set of real 
matrices. It is shown that the output-feedback 
controllers can always be chosen to have a 
structure similar to that of the standard ~® 
central controller. This implies that the order of 
(nearly) optimal output-feedback controllers 
need not exceed that of the generalized plant. 

While the approach taken here is somewhat 
similar to the approach of Boyd and Barratt 
(1990), in that they also reduce such controller 
synthesis problems to convex optimization 
problems, there are significant differences 
between our results and those of Boyd and 
Barratt (1990). In particular, we reduce the 
mixed ~-2/~® controller synthesis problem to a 
convex optimization problem over a bounded 
subset of q x n and n x n symmetric real 
matrices, where q and n are, respectively the 
control input and the state dimensions. We 
accomplish this reduction of the problem without 
finite-dimensional approximations of the set of 
stabilizing controllers or frequency discretiza- 
tions. Consequently, a solution to our convex 
programming problem is a global solution to the 
mixed ~ / ~ ®  synthesis problem. This is 
considered to be an important contribution of 
our work. By comparison, the results of Boyd 
and Barratt (1990) applied to the present 
problem would reduce it to a convex optimiza- 
tion problem over the infinite-dimensional space 
of stable transfer functions. 

Next, we briefly introduce notation used in 
this paper. The symbol O denotes the empty set. 
Given a real matrix A, IIAII denotes its 
maximum singular value, tr (A) denotes its trace, 
and A' its transpose. We will say that a square 
matrix A is asymptotically stable if all its 
eigenvalues are inside the open unit disk. For A 
and B real symmetric matrices, A > B  
(respectively A-> B) iff the difference A -  B is 

positive-definite (respectively, positive-semi- 
definite). Linear time-invariant systems de- 
scribed by state space equations and are denoted 
by the script symbols, whereas the corresponding 
transfer matrices denoted by italics. For 
example, c~ denotes a system with transfer 
function G. The Hardy spaces ~-2 and ~¢® consist 
of matrix valued functions that are square 
integrable and essentially bounded, respectively, 
on the unit circle with analytic extension outside 
of the unit circle. The norms on these spaces are 
defined in the usual way. 

2. THE MIXED ~ / ~ ®  PERFORMANCE MEASURE 

In this section, we will define the mixed 
~ z / ~  performance measure. This will then be 
used in setting up the controller synthesis 
problem in the next section. 

Let us begin by considering a finite- 
dimensional linear time-invariant discrete-time 
system 3" as shown in Fig. 2. 

Suppose that 3- is  internally stable with the 
discrete-time state-space model: 

f (ax)(k) := x(k  + 1) = Fx(k) + Gw(k) ,  

e r :=   o(k) = noX(k) + Jow(k), 
| 

I. zl(k) = H,x(k) + J1 w(k), 
(1) 

where the matrices F, G, Hi and Ji are real and 
of compatible dimensions, and F has all 
eigenvalues in the open unit disk. (In the sequel, 
we will not show the time variable k explicitly in 
system equations.) Let 

Tzw LTz, wJ 

denote the transfer matrix from w to z =  
zi]'. 

Let L¢ denote the controllability gramian of 
the pair (F, G), i.e. Lc is the unique solution of 
the Lyapunov equation 

FLcF' + GG'  = Lc. (2) 

Then, as is well known, 

II T o.Jl  = tr (HoLoH  + Jj ). 

Let y > 0 be given, and consider the transfer 
matrix Tz, w. In this paper, we will be interested 
in the ~,~ norm bound IITz, wll~<~,. The 
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FIG. 2. Diagram for the definition of the mixed ~z/~® 
performance measure. 
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following theorem summarizes some useful 
results on characterizing this norm bound. 

Theorem 2.1. Consider the internally stable 
linear time-invariant discrete-time system given 
by (1). Then the following statements are 
equivalent: 
(1) II Tz,wll~ < Y. 
(2) There exists a nonsingular matrix P such that 

i][,-,,.,, .,,,_,,. o <, .  ,:3:, 
(3) There exists a real symmetric Y > 0 such that 

[ F ] y [ F ,  H',]+ [ ~ ] [ G '  J~]< [0  Y ),021 ] . 

(4) 

Moreover, Y can be chosen to be the same as 
the one in item 4 below. 
(4) There exists a real symmetric Y > 0 such that 

M(Y) := 721 - J,J', - H, YH[ > O, and 

R(Y)  := FYF' - Y + (FYH'~ + GJ~)M-' 

x ( H ~ Y F ' + J ~ G ' ) + G G ' < O .  (5) 

Moreover, Y can be chosen to be the same as 
the one in item 3 above. 
(5) There exists a real symmetrical Y-> 0 such 
that 

M(Y) := y21 - JlJ; - 1-11YH; > 0, and 

R(Y)  := FYF' - r + (FYH~ + GJ;)M -~ 

x ( H I Y F '  + J , G ' ) + G G ' = O ,  (6) 

and F + (FYH; + GJ;)M-~H~ is asymptotically 
stable. (In fact, Y satisfying the above conditions 
is unique.) Moreover, if 12 denotes a solution to 
either (4) or (5), then Y-< I2. 

Proof. The equivalence of items 1 and 5 can be 
found in Molinari (1975). The equivalence of 
items 1 and 4 follows from the equivalence of 
items 1 and 5 and a standard small perturbation 
argument. The equivalence of items 3 and 4 
follows from simple algebraic manipulations and 
the Schur complement formula. Setting Y := 
(p ,p) - i  yields 2 ~ 3 ,  and setting P = y - m  gives 
3 ~ 2 .  Finally, in item 5, the inequality Y-< I7" 
follows from Ran and Vreugdenhil (1988). • 

Now suppose IIT=,~II~ < ~. Let Y denote the 
unique real symmetric matrix that satisfies 
condition 5 in Theorem 2.1. Then, from the 
definition of the controllability gramian L~ and 
Theorem 2.1, it follows that 

0-- < L~ -< Y. (7) 

Note that this is the best possible upper bound 

for the controllability gramian that may be 
defined in terms of the solutions to the various 
quadratic matrix inequalities in Theorem 2.1. 

Thus, 
2 I t ~ t II T~.,Ih = tr (HoLcHo + JoJo) - tr (H0 YHo + JoJ~). 

The above inequality motivates the following 
definition of the mixed ~-,2/~ performance 
measure (or cost) J(Tzw) for the linear 
time-invariant system 3-: 

J(T~w) := tr (HoYH~ + JoJ~). (8) 

The performance measure defined in (8) is the 
same as the one considered by Mustafa and 
Bernstein (1991), Bambang et al. (1990), and 
Haddad et al. (1991). (More precisely, this 
performance measure is one of the costs 
considered in Mustafa and Bernstein (1991).) 

It is easily seen that J(Tzw) is only a function 
of the transfer matrix T~, and does not depend 
on the choice of realization, as long as such 
a realization is internally stable. This justifies 
our notation. Also 11 T~,wl[2 <-- ~ ,  and 
lim V~-(T~)---11Tz~,w[[2. The mixed ~ / ~ .  
y----) ~ 

performance measure J (T~)  is also a function of 
the parameter y. In the sequel y will remain 
fixed. Therefore, without loss of generality, we 
set 

y = l ,  

for the remainder of this paper. Any other 
constraint level can be accommodated by simple 
scaling. 

The following result provides an alternative 
characterization for the mixed ~-z/ 
performance measure J(Tz~) that will be useful 
for establishing some of the results in this paper. 
The proof of this result is very similar to the 
proof of Lemma 1.1 in Khargonekar and Rotea 
(1991a). For the sake of brevity, details are 
omitted. 

Lemma 2.2. Consider the stable system 3- 
defined in (1) and let T~w denote the transfer 
matrix from w to z. Suppose that IITz~wll®< 1. 
Let M(.), R(.) be given by (5), with y = 1. Then 

J( Tzw) = inf {tr (HoYH~ + JoJ~) : Y = Y' > 0 

such that M(Y)  > 0 and R(Y)  < 0}. 

3. THE MIXED ~/~® CONTROL PROBLEM 
In this section, we formulate the controller 

synthesis problem to be solved in this paper. 
Consider the finite-dimensional linear time- 
invariant discrete-time feedback system depicted 
in Fig. 3, where ~3 is the generalized plant, 
including weighting functions, and ~ is the 
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FIG. 3. The synthesis framework. 

controller to be designed. The signal w denotes 
an exogenous input, while Zo and z 1 denote 
controlled (i.e. regulated) signals. The signals u 
and y denote the control input and the measured 
output, respectively. The transfer matrices of the 
plant and the controller are denoted by G and 
C, respectively. Let 

denote the closed loop transfer matrix, where 
T ~  and Tzl~ are the closed loop transfer 
matrices from w to Zo and w to z~, respectively. 

Definition 3.1. Let ca and ca be the given plant 
and controller. The controller ca is called 
admissible (for the plant cO) if ca internally 
stabilizes the plant ca. The set of all admissible 
controllers for the plant ca is denoted by M(ca). 
Furthermore, we define 

M®(ca):={cae.~(c.g):[[rz, wl[®<l}. (9) 

In the above notation, "M" stands for 
"admissible". As is well known, ~(ca)# :O if 
and only if qd is stabilizable from u and 
detectable from y. Also, the subscript "o0" in 
~d®(ca) stands for the infinity norm constraint on 
TZIW" 

Consider the feedback system shown in Fig. 3. 
Given a plant ca and an internally stabilizing 
controller c~, the mixed ~ 2 / ~  cost J(T~w) of the 
closed loop system is a function of the transfer 
matrix Tz~ only. We will denote this transfer 
matrix by T~(G, C) and define 

J(G, C):= J (T~(G,  C)), 

to emphasize on which plant and controller these 
closed loop quantities depend. 

Following Khargonekar and Rotea (1991a), 
the sub-optimal mixed ~2/~= controller synthe- 
sis problem considered in this paper is defined as 
follows. 

The mixed ~ 2 / ~  control problem. "Calculate 
the optimal mixed ~--2/~ performance measure 

v(ca) := inf {J(G, C): ca ~ a~(~a)}, (10) 

and, given any tr>v(ca),  find a controller 
ca ~ ~ ( c a )  such that J(G, C) < od'. 

In some cases involving state-feedback, it is 
natural to also consider memoryless, i.e. static 
controllers. In such a case, the mixed ~ z / ~  
synthesis problem is defined in the following 
way. 

Definition 3.2. The set of static admissible 
controllers satisfying the ~ constraint is 
denoted by 

(11) 
where q = dim (u) and p = dim (y). 

The optimal performance over all admissible 
memoryless controllers is 

Vm(ca) := inf {J(G, C): ca ~ M® m(q3)}. (12) 

In (11) and (12), the subscript "m"  stands for 
memoryless controllers. 

The main results of this paper show that the 
computation of the optimal mixed ~ 2 / ~  
performance (10), and the construction of a 
sub-optimal compensator, can be reduced to the 
convex optimization problem over a bounded 
convex subset of a space of real matrices. 

4. STATE AND FULL-INFORMATION FEEDBACK 
PROBLEMS 

In this section, we give a solution to the 
controller synthesis problem formulated pre- 
viously, for the state/full-information feedback 
case. Here full-information feedback means that 
both the state and the exogenous inputs are 
available to the controller. Even though, such a 
feedback scheme is not realistic from a practical 
point of view, the full-information results are 
instrumental for addressing the more general 
case of output-feedback. 

We will first ask the question whether the 
infimum of the mixed ~-~2/~ performance 
measure over all dynamic full-information 
feedback controllers equals the infimum over all 
static state-feedback controllers. In the 
continuous-time case, the answer to this question 
is in the affirmative (Khargonekar and Rotea, 
1991a). However, in the discrete-time, the 
answer, in general, turns out to be in the 
negative. In fact, we will show that the infimum 
of the mixed ~ 2 / ~  performance measure over 
all dynamic full-information feedback controllers 
equals the infimum over all static full- 
information feedback controllers. Thus, the 
analogy with the continuous-time case breaks 
down in this sense. As mentioned in the 
Introduction, a similar situation also occurs in 
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the single objective standard g~ control problem 
in the discrete-time case. 

On the other hand, if only the state of the 
system is available for feedback, then we will 
show that the infimum of the mixed ~.~/~® 
performance measure over all dynamic state- 
feedback controllers equals the infimum over all 
static state-feedback controllers. 

Finally, we will show that the static state/full- 
information controller synthesis problems may 
be effectively solved by means of finite- 
dimensional convex optimization. 

Let us begin by considering the mixed ~ / ~ ®  
synthesis problem defined in Section 3 for the 
following plants (see also Fig. 3): 
(1) State-feedback plant: the plant ~ is given by 
the state-space model 

f ox = Ax  + B~w + B2u 

~ Zo = Cox + Do~ w + Oo2u 

c~,/:= / z~ = C~x + D,~w + D,2u 
(13) 

kY =x. 

(2) Full-information plant: the plant ~ is given 
by the state-space model 

f ox = Ax + BIW + B2u 

:= ~ z°= c°x + D°~w + D°zu (14) 
|Zl=Clx+DHw+D 2u 
Ly  = [x' w']'. 

In the sequel, we let G~f and G, denote the 
transfer matrices of (13) and (14), respectively. 
The subscripts "s f"  and "fi" denote "state- 
feedback" and "full-information" structure, 
respectively. The only difference between the 
state-feedback and full-information plants is in 
the measurement equation. Note also that no 
assumptions on problem data, i.e. the matrices 
introduced in (13)-(14), are imposed. 

4,1. Reduction to memoryless feedback 

Theorem 4.1. Consider the full-information 
plant ~a defined in (14). Then 

o Ja= 

where ~t®(%) and ~=,,,('~a) are as in (9) and 
(11), respectively. In this case, 

v(%) = 

where v ( ~ )  and v,,,(~) denote the mixed 
~ a ] ~ ,  optimal costs in (10) and (12), respec- 
tively. Furthermore, given any tr > v( '~),  there 
exists a static fuU-information controller YfE 
~t®,,,,(~) such that J(G~i, K) < o~. 

Proof. We only need to show that if ~t=(q3~)4= 

O, then ~t®,,(qJ#)4:O and vm(~)<-v(qJ,~). Let 
e > 0 be given. From (10) it follows that there 
exists cg e ~t/=(q3,~) such that 

J(Ga, C) -< v(q3/i) + e/2. (15) 

Let ~¢ be given by 

[ t r~= Ac~+ Berg+ Bc2w 
(1 6) L u  = Cc~ + Dclx + Dc2w. 

The closed loop system corresponding to the 
interconnection of q3~ and qg is given by: 

orl = Frl + Gw 

Zo = Horl + JoW 

zl = Hlrl + Jlw, 
where 

F :=  [A + B2Del B2Ccl, 
Bcl A~ J 

G : =  [B1 + B2Dc21, 
Bc2 _1 

/4o := [Co + Do2D¢I Do2C¢], 

]o: = Do, + Do2Dc2, 

HI:= [Cl + D12Dc1 D,2Co], 
Jl := Dll + D12D~2. 

Since qg E ~®(~3p), it follows that F is stable and 
IITz, w(G~,C)II®<I. Using Theorem 2.1 and 
Lemma 2.2 we may now conclude that 
3Y = Y' > 0 such that: 

(1) M : = I - J 1 J ~ - H 1 Y H ~ > O  

(2) R(Y) := FYF' - Y + (FYH; + G J;) 

x M- I (HIYF  ' + J I G ' )  + GG'  <0,  

(3) tr (HoYH~ + JoJ~) <-J(G,~, C) + el2. 

(17) 

Now combining (15), and item 3 in (17), we get 

tr (HoYH~ + JoJ~) <- v(G,~) + ~. (18) 

Using the matrix Y introduced in (17), we will 
construct a memoryless controller Y{ for ~ .  Let 
n = dim (x) and nc = dim (~) and partition Y and 
R(Y)  according to the plant and controller 
dimensions, i.e. 

[Y' }'21, 
Y= Y~ Y3J LR2 R3J 

where dim (II1) = n x n, dim (112) = n x n~, 
dim (Y3) = n~ x no, and similarly for R(Y) .  Note 
that II1 > 0  and R~ <0.  Define the memoryless 
full-information controller ~ by 

U = g l x  + Kzw, 
where 

Kx: = D~I + C~Y~Y? 1, K2 := D~2. (19) 
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The closed loop system resulting from the 
interconnection of ~ and ~ is given by 

( ox= F,~x + Gmw 

Zo = Homx + Jomw 
Z 1 = n l m x  + Jim w,  

where Fm := A + B2K1, Gm := B~ + B2K2, 
Horn := Co + Do2K1, Join := Dox + Do2K2, Him := 
C~ + D12K1, Jim := DI~ + DI2K2, and the gains 
Kt and K2 are given by (19). 

Define Q : = Y 3 - Y ~ Y i l Y 2  . Since, Y > 0  it 
follows that Q > 0 by taking Schur complement. 
Simple algebraic manipulations show that the 
"1-1 block" of R(Y) satisfies 

R, = FraY, F"  - }'1 + OmG'm + BzC~QC'cB~ 

+ (FmY~n~m + Grj~m + B2CcQC'D~2)M -~ 

x (H~mYIF" +J~mB~m + D~2CcQC'B~) <0,  

(20) 
where 

M = I - JlmJ~m - -  HlmYiHim 

-DI2C~QC~D~2>O. (21) 

Since Y1 > 0, (20), (21) and the implication 4 ::> 3 
of Theorem 2.1 imply that I:1 satisfies 

It follows that 

..[_ [jGllmm][G~ J,lm]< [Y1 ~1, (22) 
since Q > 0. 

Now using (22) and Y1 > 0, a simple Lyapunov 
argument shows that Fm is a stable matrix. 
Further, from implication 3 => 1 in Theorem 2.1, 
it follows that IITz,~(G~,K)II®<I. Conse- 
quently, the memoryless controller defined in 
(19) satisfies X ~ ~t,.m(qd:). 

It is easy to verify that 

HomY~nom + JomJo,n 

= HoYH~ + JoJ~ - Do2C~QC'~D~z. 

Since Q > O, we may now conclude that 

tr (//on, Y~Ho,~ + JomJo,,) <-tr (HoYHo + JoJo), 

which, together with (22), implies 

tr (Ho,,,Y~Hhm + Jo,,,J~,,,) <- v(~d:) + e- 

Using the  last inequality, 1:1 > O, the implication 
3==>4 in Theorem 2.1, Lemma 2.2, and (18) we 

obtain 

v. (i#:) -< J(G~, K) 

-- tr (H0,,, Y1H~m + JomJ~,,) < v(~:)  + 6. 

Since 6 is arbitrary, we conclude that 

--< 

The last part of the theorem now follows from 
definitions. • 

Theorem 4.1 applies in the case where both 
the state and the exogenous inputs are available 
for feedback. This is rarely, if every, true in 
practice. The principal motivation for this result 
comes from the output-feedback case. As will be 
seen in the next section, Theorem 4.1 is a key 
result in the derivation of the output feedback 
solution. 

However, in applications one often comes 
across problems where the state vector is 
available for feedback. From this point of view 
the following results on the state-feedback case 
is much more useful. 

Theorem 4.2. Consider the state-feedback plant 
~: defined in (13). Then 

=/= 0 ,  

where ~(~ds:) and ~t~.,,(~d,i) are as in (9) and 
(11), respectively. In this case 

= 

where v(~s:) and v,,(<#,/) denote the mixed 
~2/~® optimal costs defined in (10) and (12), 
respectively. Furthermore, given any cr > v(qd,;), 
there exists ~: e M~m(C~,f), such that J(G~f, K) < 
de. 

A proof of this result can be constructed from 
the proof of Theorem 4.1 by setting Bc2 and De2 
equal to zero in the definition of the controller c~ 
given in (16). Details are omitted for the sake of 
brevity. 

4.2. A convex optimization approach to static 
feedback problem 

In this subsection we will show that the mixed 
~ z / ~  problem with state/full-information feed- 
back can be reduced to a convex optimization 
problem over a convex bounded set of real 
matrices. That is, given a~>vm(~d~), real 
matrices K~ and K2 such that J(G:, [K1 K2]).< ct, 
can be found by solving a finite-dimensional 
convex programming problem. We will consider 
the full-information case. The state-feedback case 
follows by taking K2 = 0 in the analysis below. 

With reference to the full,information plant 
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defined in (14), let n = dim (x), q --- dim (u), 
p =dim(w).  Let X denote the set of all real 
n × n symmetric matrices, and define 

~'2 :----" {(W, Y, g2) 6 R qxn X ~ X Rqxp: Y > 0 ) .  

(23) 

Note that ~ is a strictly convex open subset of 
R q×" X X x R qxp. Given (W, Y, g2) • ~ define 

f(w, Y, 
:= tr ((COY + Do2W)Y-~(CoY + Oo2W)' 

+ (Dol + Do2K2)(Do~ + Oo2K2)'). (24) 

Given any (W, Y, K2) • ff], define 

L(W, Y, K2) 

[ A Y  + BEW l rd AY + B2W ] '  
:=LC~Y + D~WJ [C~Y + D~2WJ 

r ,.. -i r ". -i'_ + 
LDI1 + D12K2JLDll + D12K2J 7] 

(25) 

Now consider the set of real matrices: 

• (@#) := {(W, Y, K~) e ~:L(W, Y, K2) < 0}, 

(26) 

and the constrained optimization problem 

~P(@]i) := inf {f(W, Y, K2): (W, Y,/(2) • ~(@#)). 

(27) 

Note that ~p(@#) -> 0 since f -> 0 on g2, as can be 
seen from (24). We now state the main result of 
this subsection. 

Theorem 4.3. Consider the system ~# defined in 
(14) with transfer matrix Gji. Let M®,,,((a#) be 
the set of static controllers defined in (11). Then, 

where ¢(@#) is given by (26). In this case 

= 

where v,,,(@~) and ap(@#) are as in (12) and (27), 
respectively. Furthermore, given any a~ > 
v,,(~/i), there exists a triple (W, Y, K2) • di~(~li) 
such that the static full-information controller 

K : =  [WY-* K2], 

satisfies 

• M.,,(~da) and J(Ga, K) < o~. 

This result is a direct and straightforward 
generalization of Theorem 4.2 of Khargonekar 
and Rotea (1991a). Proof is omitted. 

In the remainder of this section we will show 
that the optimization problem defined in (27) is 
convex. 

Lemma 4.4. Let Q denote the set defined in 
(23). The mapping f :  Q---~ R ÷ defined in (24) is a 
real-analytic convex function on Q. 

Proof. Using (24)f  may be rewritten as 

f(W, Y, K2) = tr (CoYC~) + 2tr (C~Do2W) 

+ tr (Do2WY-IW'D~2) 

+ tr (Do, + Do2K2)(D~, + K~D~2). 

In Khargonekar and Rotea (1991a) it was shown 
that the first three terms in this expression are 
convex in ~. Clearly, the term tr(Do~+ 
DozK2)(D~+K~D~2) is convex in K2. The 
convexity of f ( . )  now follows. The fact that f ( . )  
is real analytic follows from its definition. • 

Lemma 4,5. Let L: Q---*Y. denote the matrix- 
valued mapping defined in (25). Then L is a 
convex mapping. Consequently, the constraint 
set ~(~d#) defined in (26) is convex. 

Proof. Let (W, Y, K2) • Q. Using (25), it is easy 
to see that L(W, Y, K2) can be rewritten as 

A B21r Y1 l , 
L(W, Y, K2)= C1 DI2][W] Y-  tY W'I 

X B~ O'12J D11 D12 

21[B~ D~2J 

=fwY-q "P' + GRR'O' 

where 

[B, m' c; 1 
/7:= B~ D~2J' Du D12.1 

w']' ,  g : = [ l  

By Proposition E.7.f in Marshall and Olkin 
(1979) the mappings (ff,,y)_.,/Cff, y - l f f - ,p , ,  
and/~--* GKR'G', are convex on their domains 
(here Y =  Y' >0).  Since the maps (W, Y)--* 
[Y' W']' and K2--" [I K~]' are alfine linear, the 
convexity of L follows. Finally, the convexity of 
~(~t#) follows from the convexity of L. • 

Lemma 4.6. Consider the set ~ ( ~ )  defined in 
(26). Assume that /)12 has full column rank. 
Suppose that for all z inside the open unit disc, 
the system matrix 

ZI -- a B2 1, 
- C  1 O12_1 
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has full column rank. Then the set tb(~d~) is 
bounded. 

Proof. We need to show that there exist positive 
constants ml, m2, m3 < ~ such that 

(W, Y, K2)e ¢ ( @ a ) ~  ][WI[ ~ m l ,  

IIYIl-<m2, IIKzll -< ms. 

Let (W, Y, KE)eO(~g). From definitions of 
• ( ~ )  and L(W, Y, K2), it follows that 
D12K2K~D~2 < I, which implies that I[D12K2][ < 
1. Since DiE is full column rank there exists a 
constant ms < oo, such that 

IIKz[I ~ ms < ~. 

Now define the matrices 

-B2XD'12 ] 
T:=[Io I-D12XD~2J'  

C1 := (I - DI2XD~2)C1, 

,4 := A - B2XD~2C1, 

where X : = ' -1 (D12D12) . Premultiply L by T and 
postmultiply it by T'. After simple algebraic 
manipulations we obtain 

- 0 
[A1]y[,4'  C '1 ] - [  Y I_Dt2XD[2]<--O. (28) 

To prove the boundedness of Y, we are going 
to use Theorem 2.1 of Section 2 and Theorem 
3.1 in Ran and Vreugdenhil (1988). To be able 
to use these theorems, we first need to show that 

" - - t  

-C 1YC I> O .  It follows from (28) that 
C.1YI~+ D12XD[2-I<-O, and so I -  (~IYC'I- > 
0. Now suppose there exists a vector y ¢ 0 • R p 
such that 

( I  - ( . ' 1 Y ( Y [ ) Y  = 0. (29)  

Multiplying the inequality C~ YC~ + D12XD'12 - 
I---< 0 by y on the right and y'  on the left, we get 
y'DI2XD[2y = 0. Since X is invertible, it follows 
that 

D12Y = 0 and - '  ' C l y  = C ~ y .  (30)  

Also by taking the (2, 2) sub-block of the 
inequality L < 0, we get 

1 -  (CIY + D12W)Y-l (CIY + D 1 2 W )  ' 

- D12K2K~D[2>O. (31) 

Premultiplying (31) by y '  and postmultiplying it 
by y yields 

y ' ( i -  C1YC;)y >0. 
t " t  Since Cly = Cly, it now follows that 

0 = y ' ( l  - C1YC'Oy = y'(1 - C1YC~)y > O. 

This contradicts (29), and therefore 

. 2 : = I  - -' - C1YC1 > 0. (32)  

Using (32) and taking Schur complement of 
the (2, 2) block in (28), it follows that 

/ ~ : = A Y A ' -  Y-f lYC~f(-1C1YTt '<_O. (33) 

Now the rank assumption on the system matrix 
ensures that the pair (C1, A) has no unobserv- 
able modes inside the unit disc. Using a simple 
extension of Theorem 3.1 in Ran and Vreugden- 
hil (1988) and the observability of the stable 
modes of (C1, ,4), it follows that there exists a 
real symmetric matrix Y_ (depending only on .zi, 
B and t~l) such that - Y -> Y_, or Y -< - Y_. Let 
ml = [[Y-I[, then since Y > 0 ,  [[Y[[-<ml<~. 

Finally, from equation (31) it follows that 

(C1Y + Dt2W)Y-l (C1V + D12W)' < I  

[J(CIY + D12W)y-V211 < 1 

Y- l t z (CtY  + D,2W)(C1Y 

+ D12W)'y-1/2<I 

IICIY + D12WI[ < lIVId. 

Since [[Yl[-<ml and D12 has full column rank, 
we conclude that there exists m 2 < ¢0 such that 

I I W l l ~ m 2 < o o .  • 

5. OUTPUT-FEEDBACK CASE 

In this section we will solve the synthesis 
problem defined in Section 3 for the output- 
feedback case. We will show that the problem 
can be reduced to solving one algebraic Riccati 
equation, and a convex optimization problem 
similar to the one in Section 4. In the following 
subsection we introduce a technical result that 
will be needed in order to prove the main 
theorem of this section. 

5.1. Preliminaries 
The next result is an extension of Redheffer's 

lemma (see, for example, Iglesias and Glover 
(1991) and Stoorvogel (1990)) to the mixed 
St-2/$t~ performance measure for discrete-time 
systems. 

Consider the feedback interconnection of Fig. 

W 

I I. 

~ )  * Zl  

FIG. 4. System interconnection in Lemma 5.1. 
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4, where 

a~ = Arl + B~w + B2v ~ 

?.o = Corl 

:=' Zo = Z.o + Vo (34) 

z~ = C~r ! + DHw + D~2v~ 

r = Czr I + DzlW + D~2v~, 
and 

f ox = A x  + Br 

~0:= ~ v0 = Cox + D,,r (35) 
kv~ = ¢2~x +/5~r. 

The matrices in the state-space equations (34) 
and (35) are real and of compatible dimensions. 
Let P and Q denote the corresponding transfer 
matrices, and partition them as 

P=~, {LP, I '  Q =~, Q, " 

Lemma 5.1. Consider the feedback system 
shown in Fig. 4, where ~ and ~0 are given by (34) 
and (35), respectively. Let Tz,, denote the closed 
loop transfer matrix from w to z =(zo, Zl). 
Suppose that ~ is internally stable, and let L¢ 
denote the controllability gramian of the pair 
(A, [B~ B2]), i.e. 

A L c A '  + B~B; + B2B~ = Lc. (37) 

Suppose also that D~2 is square and nonsingular, 
that A - B2D-;~C~ is a stable matrix, and 

[D1211 D12]'+AL¢[C'~ C;]=0 ,  (38) 
[B1 B2] D22J 

o,,  '21[D" o,q' 

[C1]L~[C'~ C ; ] = L  (39) + 
k I...2J 

Then the following statements are equivalent: 
(i) The feedback system in Fig. 4 is 

well-posed, internally stable, and II T~,.II~ < 1. 
(ii) ~ is internally stable and ]]Q~II~ < 1. 

If the above conditions hold, the mixed ~,,a/~°~ 
costs J(T,w) (with respect to z0) and J (Q)  (with 
respect to v0), are defined and they satisfy 

J(T~w) = tr (CoL~C~) 

+ 2tr (DoC2L¢Co) + J(~).  (40) 

A continuous-time version of the above result 
is in Khargonekar and Rotea (1991a). The 
discrete-time case differs from the continuous- 
time case in one important aspect. In the 
continuous-time case the mixed ~,~/N~ cost 
J ( T ~ )  of the feedback interconnection of ~ and 
,Q, is the sum of the mixed ~/Yt~ cost of ,Q and 

the ~2 norm of the "1-1" block of the inner 
plant ~. This decomposition fails in the 
discrete-time case; there is an additional cross 
term (which depends on ~0) in (40). 

Proof. The proof of the equivalence of the 
statements (i) and (ii) can be found in Doyle et 
al. (1989b); Iglesias and Glover (1991) and 
Stoorvogel (1990). 

Suppose now that either one of these 
statements is true. For simplicity, the rest of the 
proof will be done under the assumption that P22 
is strictly proper, i.e. /922 = 0. Let ~p = [x' rl']' 
denote the state of the composite system. It is 
easy to check that the system resulting from the 
interconnection of ~ and Q is given by 

f aro = FV d + Gw 

'izo = Hoop + Jow (41) 
l zl = HI W + Jl w, 

where 

,4 1 
F : =  B2dl A + B2D1c2J' 

[ /~D21 ] ,  
G :=  

[Bi + B2E)1D21J 

tto:= [do, c,, + DoC2l, 
/-/1 := [D,2C, C, + D,2D, C2], 

J0 :=/)oD21, Jl:=DlI+D121~lD21. 

Note that because of internal stability, all 
eigenvalues of F are inside the open unit disc. 
Moreover,  IITz,~ll~ < 1. 

In order to establish formula (40), we need to 
determine the stabilizing solution of the ARE 
corresponding to the condition II Tz,~ll~ < 1. That 
is, the real symmetric matrix Y such that 

M ( Y )  := I - JlJ; - HI YH; > O, 

R(Y) := FYF' - Y + (FYH'I + GJ~)M -~ 

x (H~YF' +J~G')  + G G '  =0,  (42) 

and F + (FYH't + GJ~)M-IH~ is asymptotically 
stable. Since fi, is asymptotically stable IIQIII~ < 
1, there exists a real symmetric matrix 1 ~ such 
that 

M(f ' )  := I - b ,  f i ;  - ¢~, f'~'l > o, 

~ ( ? )  := A ? A '  - ? + ( A ? ~ ;  + B b ; ) M - '  

x (C, l)fi,' + / ) , /3 ' )  + B/~' = 0, (43) 

and fil + (A Ih2'1 +/~/5;)/17/-h2~ stable. 
Let Lc be given by (37) and set 

Y : = [ ~  L0]. (44) 

After some algebra and using equations (43) and 
(37)-(39), we obtain M ( Y ) = D ~ 2 M ( f ' ) D ' I 2 > O  
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and R(Y) = 0. Moreover, 

F + (FYH~ + GJ~)M-RH1 

0 A - BzD'(~C1 

where the "* block" is not relevant. Since 
,4 + (,,iI>~[ +/~b~)~/-~(~ and A - B2D~C~ are 
both asymptotically stable, we conclude that the 
real symmetric matrix Y defined in (44) is the 
unique stabilizing solution of the ARE (42). 

Next we compute the mixed ~z/~'® cost 
J(T~,,). From equations (39), (41) and (44), it 
follows that 

J(T~) = tr (HoYH~ + JoJ~) = tr (CoL~C~) 

+ tr (t~012t~ + bobS) 
^ t t ^ l  + tr (DoCzL¢Co + CoL~CzDo) 

= tr (CoL~C~) + J(Q) 

+ 2tr (I~)oC2LeC~). • (45) 

5.2. Main result 
We now consider the output-feedback mixed 

~ -z /~  controller synthesis problem. Suppose 
the plant ~3 in Fig. 3 is given by the state-space 
model: 

f a x  = Ax + BlW + B2u 

J Zo = Cox + Dou ~:= (46) 
l zl = Clx + Dlu 
I 

I,y = C2x + Dzw, 

where all the matrices in (46) are constant real 
matrices of compatible dimensions. We will also 
make the following assumptions: 

(A1) The triple (C2, A, B2) is stabilizable and 
detectable. 

(A2) For each complex number z, such that 
[zl = 1, the matrix 

z l - A  - B , ] ,  

C2 D2 J 

has full row rank. 
Note that we have also assumed that there are 

no feedthrough terms from w to zi, or u to y. 
Even though it is possible to include these terms, 
we have chosen not to do so, to keep the 
presentation as simple as possible. The results 
given below may be combined with those in 
Stoorvogel (1990) to obtain formulae for the 
most general case. 

Suppose there exists admissible controller ~g 
such that the closed loop system is internally 
stable and IIT~,wll~< 1, i.e. qge~¢®(~. Then it 
follows (Stoorvogel, 1990) that there exists a 
(unique) real symmetric matrix Q - 0 such that 

V := C2QC~ + D2D~ > 0, (47) 

R : = I -  C, QC; + C, QC~V-1C2QC[ >0,  (48) 

and Q satisfies the following discrete-time 
algebraic Riccati equation: 

AQA' - Q + B~B[ - [AQC~ + B1D~ AQC'~ l 

G -1 C2QA' + D2B[ 
x ( Q ) [  C1QA' ] = 0 ,  (49) 

where 

C21 C' 

Moreover, the matrix 

A - [ A Q C ~  + B,D~ AQC~]G(Q)-'[C:], (50) 

is asymptotically stable. 
Given a real symmetric matrix Q, define the 

auxiliary full-information system: 

axg = (A + ZR-1COxg 

+ (AQC~ + BID~ 
+ ZR-  1 C1QC~) V-  1/2r 

+ (B2 + ZR-ID1)u 

=:Asxg + Blgr + B2gu, 

Oo = Coxg + CoQC~V-XCer + Dou 
~.n(Q) :='  

= : Coexg + Dolgr + DozgU 

vt = R-l/ZClxs 

+ R-1/zCIQC~V-1/Zr 

+ R-laDlU 

=: CleX~ + Dngr + D12~u 
y= [x'g w']', (51) 

where Z := AQC~ - (AQC~ + BtD~)V-IC2QC'~, 
and A, Ci, Di, B2 are given in (46). Let Gp(Q) 
denote the transfer matrix from (w, u) to 
(00, vl, v) in (51). The next result gives the 
solution to the mixed Y~2/~ problem for the 
case of output feedback. 

Theorem 5.2. Consider the plant ~3 defined in 
(46). Suppose that Assumptions A1-A2 hold. 
Let ,ff~(~ be as defined in (9), and suppose that 
~t~.(~:~O. Then there exists a unique (real 
symmetric) matrix Q > 0  that satisfies the 
conditions (47)-(50). Let ~3,~(Q) denote the 
auxiliary system defined in (51). Then the 
following statements hold: 
(1) The set of admissible controllers M~(~3~(Q)) 
is nonempty, and the optimal mixed Y(2/~® 
performance measure is given by 

v ( ~  = tr (CoaCh) 

- tr (CoQC~V-1C2QC~) + v(fg~(Q)), (52) 

AUTO 29:1-F 
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where v(~d,(Q)) is the optimal mixed ~2/Stoo 
performance for the auxiliary full-information 
plant ~d~(Q). 
(2) Given any tr > v(~d), there exists a static full 
information controller 

:= KlXg + K2w, (53) 

such that ~ • M=.~(~g~(Q)) and 

J(Ga(Q), K) < tr - tr (CoQC~) 

+ t r  (CoQCEV CEQCo). 

(3) For any full-information controller ~ =  
[~1~2] • Mo~.,,(~da(Q)), the dynamic output- 
feedback controller 

{ a~ = F~ + Gy 
q~ := [ u = H~ + Jy, (54) 

where 

F := A + ZR-1C1 + (B2 dr ZR-1DO 

× (K1 - K2v-lac2)  - (AQC~ + B1D~ 

+ ZR-ICtQC~)V-I/2C2, 

G := (B2 + ZR-1DOK2V -1/2 + (AQC~ 

+ B, O~ + ZR-1C, QC~)V-', 

H := K1 - K2v-VEC2, 

J : =  K2 V-I/2, (55) 

satisfies 

• z¢=(~) and J(G, C) = tr (CoaCh) 

- tr (CoQC~V-IC2QC~) + J(G,(Q), K). 

To solve the output-feedback mixed ~e~z/St= 
control problem using Theorem 5.2 the following 
steps should be followed. 
(1) Check if M=(q3) is not empty. This can be 
done by applying the standard ~= theory for 
discrete-time systems and solving two discrete- 
time ~= Riccati equations as in Basar and 
Bernhard (1991), Iglesias and Glover (1991), 
Limebeer et al. (1989), Liu et al. (1991), and 
Stoorvogel (1990). If M=(~3) is not empty, let Q 
denote the unique solution to (47)-(50). 
(2) Construct the auxiliary fuU-information plant 
q3~(Q) defined in (51). Let e > 0  be given. 
Solve the convex program (27), correspond- 
ing to c~,(Q), to compute a full-information 
gain K = [K1 K2] • M~,~(~3~(Q)) such that 
J(Ga(Q), K) <- v(Ca,(Q)) + e. With this full- 
information gain, construct the output-feedback 
controller ~ in (54). Then ~ belongs to M~o(~), 
and satisfies J(G, C) <- v(q3) + E. 

Proof. It follows from Stoorvogel (1990), that 
the plant ~3 given by (46) can be represented as 
the feedback interconnection shown in Fig. 5, 
where Q >-0 satisfies equations (47)-(50), and 

W 

7)(Q) 

4 

ff, O .~ Zo 

~_ Z1 vo 
FIG. 5. Equivalent representation of the transfer matrix G. 

the plants ~(Q)  

~(Q)  := 

and 

¢'¢~Xp = 

and St(Q) are defined by 

(A - (AQC~ + BID~)V-IC2)xp 

+ (B1 - (AQC~ + B1D~)V-1D2)w 

- ZR-1/2o I = : Apxp 

+ BIpW + B2pU1 

~o = Coxp = : Copxp 

Zl = (C, - CIQC~V-1C2)xp 

-- CIQC~V-1D2 w + R1/21)I 

"~: ClpX p dr Dlpw + DEpVl 

r-~ V-1/EC2xp dr V -1 /202  w 

----: C2px p dr D21pW, (56) 

O'Xg = Agxg + Blgr + B2gu 

St(Q) := v0 = Coxxx + DozgU (57) 
Ol = Clgxg + Dngr + D12gU 
y = C2xg + V1/2r, 

where the matrices in (57) are those introduced 
in the definition of ~ ( Q )  given by (51). In 
(Stoorvogel, 1990), it has also been shown that 
qg e M(~g) if and only if qg internally stabilizes the 
interconnection of ~(Q)  and St(Q). Routine 
algebra also shows that Q is the controllability 
gramian of the pair (Ap, [Blp B2p]), and that 
3~(Q) satisfies the hypotheses of Lemma 5.1. 

First, we show that 

v( q3~(Q ) ) <- v( ~3) - tr ( CoQC~) 

+ tr (CoQC~V-~C2QCo), (58) 

and that part 2 of the theorem holds. Suppose 
tr > v ( ~ .  From the definition of v(~g) it follows 
that there exists a controller qg • Moo(~d) such that 
J(G, C ) <  a~. Apply the controller cg to the 
interconnection of Fig. 5. Now using Lemma 
5.1, since ~ • M~(~3) we get that qg • M®(~(Q)). 
Moreover, 

J(G, C) = J(H(Q), C) + tr (CoQC~) 

+2tr  (DoD¢C2QC~), (59) 

where De = C(~) denotes the direct feedthrough 
term of the controller qg. 
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Define the full-information controller 

c *  = c[c  

and apply the controller cg, to the full- 
information plant q3~(Q) defined in (51). Clearly, 
cg. e sC®(qd#(Q)). Further, an easy calculation 
shows that 

J(G:(Q), C*)= J(H(Q ), C)+ 2tr (DoDcC2OC~) 

+ tr (CoQC~V-~C2QC~). (60) 

From (59)-(60), we obtain 

J(G:(Q), C*)=J(G,  C ) -  tr (CoaCh) 

+ tr (CoQC~V-~C2QCo). 

Now we can apply Theorem 4.1 to the 
full-information plant (g: to conclude that there 
exists a static controller ~ e  ~t®.m(~:(Q) ) such 
that 

v(G/i(Q)) <-J(G:(Q), K) <-J(G:(Q), C*) 

< a~ - tr (CoQC~) + tr  (CoQC~V-1C2QCo). 

This shows that part 2 of the theorem holds. 
Moreover, taking limit as a--,v(~3), we may 
also conclude that (58) holds. 

We now show that part 3 of the theorem 
holds, and that 

v(G//(a)) -> v(G) - tr (CoQC~) 

+ tr (CoQC~V-~C2QCo). (61) 

Here the key is to synthesize the given 
full-information control law u = Klxg -k g2r 
using a dynamic feedback controller which uses 
only the output y for the system ~(Q).  In this 
construction, we essentially invert the transfer 
function from r to y in ~(Q).  

Define the dynamic controller 

:= [ox~ = Agx¢ + B2gu + BlgV-VZ(y - C2xc) 
[ u = KlX¢ + K2V-X/2(y - C2x~), 

(62) 

where Kj and Kz are such that Y/':= 
[~t" 1 ~e2] E M®(q3~(Q)), and Ag, Bg and V are 
defined in (51) and (47), respectively. Note that 
the controller (62) is an "observer based 
controller" for the auxiliary plant ~(Q).  Using 
this fact, and the stabilizing property of Q, it is 
easy to see that ~ e ~t(~(Q)),  and 

To,,.(H(Q), ~ ) =  T,,,,(G#(Q), g).  

Thus, ¢ 6 M®(~(Q)). 
Applying the controller ~ to the interconnec- 

tion of Fig. 5, it follows from Lemma 5.1 that 
6 ~1®(q3). Furthermore, calculations as in first 

part of the proof imply that 

v( q¢) <- J ( G, (~) = tr ( CoQC~) 

- tr (CoQC~V-~C2QC~) + J(G,(Q), K). 

This shows that part 3 holds. Moreover, by 
taking infimum over all full-information control- 
lers Y(e ~¢®(~,(Q)), we may also conclude that 
(61) is satisfied. Now equations (58) and (61) 
together prove part 1 of the theorem. • 

6. CONCLUSIONS 
In this paper we have considered a (sub- 

optimal) mixed ~,~/~,~ control problem for 
discrete-time systems. This synthesis problem is 
well motivated since it represents a problem of 
(LQG) disturbance attenuation, as measured by 
the mixed ~2/~oo performance measure, subject 
to a robust stability constraint. 

We have shown that when the state of the 
plant, or the state and the exogenous input, is 
available for feedback, memoryless feedback 
gains offer the best possible performance. The 
optimal mixed ~-2 /~  performance, with state or 
full information feedback, was shown to be given 
by the value of a finite-dimensional convex 
program. This means that there are efficient 
numerical methods to compute the optimal 
performance, and a nearly optimal feedback 
gain. The reader may find an excellent 
description of some of these algorithms in Boyd 
and Barratt (1990). An ellipsoid algorithm has 
been developed in Rotea (1991) for a problem 
similar to the one considered in this paper. 

In the case of output-feedback, it is shown 
that mixed ~2/~® controllers can be chosen to 
be a combination of an ~ filter, and a 
full-information gain for the mixed ~-2/~/'~ 
synthesis problem of a suitably constructed 
auxiliary plant. Thus, the output-feedback 
problem is no more difficult than the full- 
information problem. This appears to be the first 
complete solution to the mixed ~2/~g~ problem 
with dynamic output-feedback for discrete-time 
system. 

Finally, the results in this paper may be 
combined with those of Rotea and Khargonekar 
(1991b) to solve mixed ~-~/~oo problems that 
involve time domain e~ constraints. 
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