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Mass balance accuracy of two-phase immiscible flow models used for contaminant
hydrology applications is examined through comparisons of finite element and finite
difference solutions of the pressure-based and pressure-saturation formulations. The
influence of model formulation and initial conditions on mass balance performance
is explored. Model simulations demonstrate that accurate solutions for multiphase
flow problems can be obtained with either finite element or finite difference,
pressure-based or pressure-saturation formulations, if coefficients and initial
conditions are properly treated. In the pressure-based formulation, capacity
coefficients arise from the expansion of the saturation variables in terms of
capillary pressure. Mass balance accuracy depends upon the proper evaluation of
the capacity coefficients when the capillary pressure—saturation relation is
nonlinear. Capacity coefficient approximations for finite element pressure-based
models are developed which preserve elemental expansion of the saturation
derivative. These approximations are shown to produce good mass balance results
and accurate solutions, in contrast with traditional finite element approaches. When
the organic liquid is initially absent from a domain, simulations reveal that mass
balance accuracy is obtained only when the initial pressure distribution is established
from a zero capillary pressure condition. The influence of matrix mass lumping and
the minimum value of the capacity coefficient on model performance is also
investigated.
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Subscripts and superscripts

a subscript denoting the organic (o) or
water (w) liquids

i index to indicate nodal position

k iteration counter

L subscript denoting a mass lumped FE
variant

~~ overbrace notation denotes elemental
approximations

Abbreviations

des distributed chord slope formulation

FD finjte difference

FE finite element

FEcs finite element chord slope formulation

MBE incremental mass balance error

P-S pressure saturation formulation

rdcs row distributed chord slope formula-
tion

ses standard chord slope approximation

SS simultaneous solution scheme

INTRODUCTION

Widespread subsurface contamination by hazardous
organic non-aqueous phase liquids (NNAPLs) has
focused attention on the development of predictive
models for immiscible multiphase fluid flow. Although
several mathematical modeling strategies have been
employed, the most attractive approaches in terms of
accuracy and flexibility are multiphase flow models
based upon the solution of coupled mass balance
equations.?>?* The majority of immiscible flow simula-
tors in the contaminant hydrology literature
employ implicit time-stepping procedures in the
simultaneous solution 2SSS) of the phase mass balance
equations,2~49-121719,20.22L.8 nenending upon the
selection of the primary dependent variables in the SS
scheme, alternative formulations can be developed. Two
approaches examined in this work are the pressure-based
formulation and a mixed pressure-saturation (P-S)
formulation.

The pressure-based formulation uses fluid pressures as
the primary variables. These state variables are con-
tinuous, regardless of soil heterogeneity or liquid
saturation distributions. Two-dimensional pressure-
based models have been developed with finite difference
(FD)** and finite element (FE) solution proce-
dures."2:22%-2  Ajernatively, the P-S formulation
employs water saturation and water or organic pressure
as the primary variables. Air pressure remains static or is
not considered in models developed to date. The P-S
formulation has been implemented with FD methods in
two”!® and three dimensions.'®

A crucial step in the construction of the pressure-
based formulation is the expansion of the saturation
derivative in terms of pressure, incorporating saturation

variables into the so-called capacity coefficient. Material
balance accuracy is known to be sensitive to the
specification of this capacity coeflicient. FD models
employing the standard chord slope approximation of
the capacity coeflicient have been shown to conserve
mass for applications in petroleum engmeermg, soil
science,”” and contaminant hydrology.>* However,
several researchers have reported poor mass balance
accuracy in FE gressure-based models with ap?hcanons
in soil science’? and contaminant hydrology.'” Efforts
to remedy these errors have focused on the procedure
used to evaluate the capacity coefficient.”” Numerical
experiments have produced mixed success, however, and
a comprehensive explanation of the errors has not been
presented. In one instance the pressure-based formula-
tion was abandoned entirely in favor of an alternative
mass conservative formulation which did not employ
capacity coefficients.’

Proponents of the P-S formulation have reported
good mass balance accuracy for this method.”!® All P-S
models described to date consider a restricted case
involving two-phase flow of incompressible fluids in a
rigid soil matrix. Such a scenario does not require the
use of capacity coefficients, eliminating a source of mass
balance errors observed in pressure-based models. When
three phase flow or compressibility effects are consid-
ered, however, the P-S formulation will incorporate
capacity coefficients. Under such conditions, mass
balance problems observed with the pressure-based
models may also become important in the P-S
formulation.

The ability of a numerical model to conserve mass is a
necessary, but not sufficient, condition for solution
accuracy. A model which exhibits poor mass balance
behaviour has limited practicality because of uncer-
tainties in the model predictions. The need for accurate
mass conservation in generalized multiphase flow
models has motivated the research presented herein.
The objectives of this work are to identify potential
sources of mass balance errors in FE and FD muhiphase
flow models, to elucidate the causes of these errors, and
to propose and evaluate approaches which can remedy
such problems. For simplicity, model comparisons are
restricted to one-dimensional, two-phase flow scenarios.
Four aspects of a numerical model which may impact
mass balance accuracy are examined: the specification of
the initial pressure distribution, the evaluation method
for the capacity coefficient, the assignment of a
minimum capacity coefficient, and mass lumping
procedures.

NUMERICAL PROCEDURES

Governing equations

The conventional form of the fluid phase mass
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balance equations for a two phase organic-water system
is:

2 (0paSal = V- el VPa ~ 292). (1)

where a = w,0 repesent the fluid phases (w=water,
0=NAPL), tis time [T], o is the dimensionless porosity
S, is the dimensionless a-fluid saturation, p, is the a-
fluid density ‘M, /L’ P, is a-fluid ressure ‘M/LT ] Y,

is the a-fluid specific weight M/L T?j, z is the positive
downward vertical direction, and

kk,, 2)
Ka

is the a-fluid transmissibility, where k is the intrinsic
permeability tensor ‘L?, k,, is the dimensionless a-fluid
relative permeability, and p, is the a-fluid dynamic
viscosity [M/LT . Auxiliary relations include:

Ay =

1. Continuity of fluid saturations and pore volume,
S.~S,=1 (3)
2. Capillary pressure-saturation relationships, repre-

sented in this study by the functional form of van
Genuchten,”

R et 1 m

=715, - [l—(aPc)"] )
where

P,=P,-P, (%)

is the capillary pressure between the organic and
aqueous phases, S, is the irreducible water
saturation, S, is the effective water saturation,
and a, n, and m = 1 — 1/n are fitting parameters.
3. Relative permeability — saturation relationships,?

=($.)"1 - (- Smymp? (6)
ro = (1= §,)172[1 — §/™> ©)

Assumptions in this two-phase immiscible flow formula-
tion include negligible interphase mass transfer, no
internal source:sinks, and unique functional relations
for P.(S,) and k,(S..). ignoring hysteresis and organic
liquid entrapment.

Simultaneous solution formulations

The pressure-based SS scheme recasts the phase mass
balance eq (1) in terms of the selected primary
dependent variables, fluid pressures. Expanding the
accumulation derivatives in terms of capillary pressure,
eq (1) can be rearranged as:

[6P, 8P, aP,
%aCai g ~or | T PaSetaTgy ®
1 oq [OPo 0P
+ipasn 3 at a =V. [AG(VP —‘YaVZ)]

where 3, and 3, are the a-fluid and matrix compres-
sibilities, ¢° is the porosity at the reference pressure, and

aS,
ra (9
3P, 9

is the o-fluid capacity coefficient. The pressure-based
formulation easily accommodates the matrix and fluid
compressibility effects, although in typical contaminant
hydrology applications these are often considered minor
and are neglected.!%1%1%:2:# 11 this work compressi-
bility effects are neglected to facilitate comparisons with
a P-S model.

P-S formulations developed for contaminant hydrol-
ogy problems employ water saturation and -either
organic or water pressure as the primary dependent
variables. Models developed to date also neglect fluid
and matrix compressibilities in order to completely
eliminate the capacuy-type coefficients. Following the
approach of Faust,” the mass balance equations for a
rigid matrix and incompressible fluids can be rearranged
using eqns (3) and (5) to eliminate S, and P,

as,,

C,=

052 =V A(VP, — VP,) —7.Vz)] (10)
'oaai:= V- A(VP, — %, Vz) (11)

This P-S formulation is considered well-suited to
conditions where S, =0 because S, does not appear
explicitly in eqns (10) or (11)."”

Numerical models

The pressure-based formulation, eq {8), was solved with
FD and FE algorithms. FD solutions were obtained
with the model of Abriola,>* modified for two-phase
immiscible flow. Considering only the vertical direction,
the FD analogs employed in this model are:

1

9Co AP, =——= A\ _;Pa,_.
0Co AL Az
- (Al'—é —t’P ’\I—QP
1
oy M) (12)

where A, is the backward difference operator in time
and Az is the uniform spacing of block i in the
discretized space domain. The interblock transmissibil-
ity terms are evaluated as arithmetic means to ensure
correspondence with FE solutions.

Pressure-based FE solutions were obtained with the
model of Reeves & Abriola.”>®® This model uses
standard piecewise linear interpolating functions to
approximate elemental pressure, mobility and capacity
variables,

2
Polz) = Y Pa()N(2) (13)

i=1
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2

e @) =Y A (ON(2) (14)
i=1
2

Tz =Y Ca)N(2) (15)

where N; are the linear basis functions. Applying the
Galerkin finite element method in local coordinates
yields the elemental equations:

cfig)-mlz) o o

where subscripts 1 and 2 refer to the left and right nodes
of the linear elements, respectively, L, is the length of
the element, and the elemental matrices are:

. oL [3Cu+Cn Cu—-Cxp

¢= (4 17
[A- 12 _Cal +C02 Cal_3ca2] ( )
ge— ) [ —a1 — An2 '\al*t\az:l (8)
LTI R E P WREED WS W
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Because all models evaluate interblock transmissibility
coefficients as arithmetic means, the spatial descretiza-
tion terms in the FD and FE pressure-based models can
be shown to be identical. Differences in the solutions of
these two models are thus attributable to the temporal
discretization terms.’

A variant in construction of the mass matrix, {4]°, is 2
diagonalization procedure known as mass ‘lumping’'®
yielding,

- el OL' 2C,,1-|-C¢,1 0

-A] - 6 [ 0 Cal - 2Ca2] (20)
Mass lumping procedures generally improve numerical
stability and minimize oscillatory behavior. Although
lumped formulations have been considered superior to
the consistent form in applications of unsaturated
flow,”? they have not been broadly applied in multi-
phase flow models.

A third model was developed which implements the
P-S formulation. This model solves the mass balance
eqns (10) and (11) using a point-distributed FD scheme.
The formulation is identical to that of Faust,’ except
interblock transmissibility coefficients are evaluated with
arithmetic means to ensure compatibility with the
pressure-based models.

All numerical models require an iterative solution
algorithm due to nonlinearity of the transmissibility and
capacity relations. The Newton-Raphson iteration
scheme is employed in both FD models, and a Picard
interation approach is used in the FE code. A maximum

difference convergence criterion is used in all models:

T <e (21)

where k is the iteration counter and ¢ = 1(—4), unless
indicated otherwise.

Capacity coefficients

The method used to evaluate C, directly affects mass
balance accuracy of the numerical model. Soil scientists
and petroleum engineers have recognized that to achieve
mass conservation in FD simulators, expansion of the
saturation time derivative must be exact, i.e.
85, _ 05,08
ot ~ OP. Ot
The FD analog of eqn (22) leads to the standard chord
slope (scs) approximation at node i.
s = Alsai = Sa__'_: - Sﬂu
@, AP P,.. o —I:..__

(22)

(23)

Finite difference schemes employmg C* produce good
mass balance accuracy.” "~ In contrast, traditional FE
schemes usrrzrg C** demonstrate poor mass balance
behavior.

Attempts to improve mass balance accuracy in FE
models has motivated various modifications in the
evaluatron of the capacity coefficient. Kaluarachchi &
Parker'’ compared a number of procedures based on
analytical derivatives of the capillary pressure function,
eqn (4). Several of these approximations derive from a
weighted average of the analytical derivatives evaluated
at the current and previous time levels,

Ca =wCo (B )+ 1-wCl(B) (24)

where weights w=0-0,0-5, and 1-0 were tested.
Kaluarachchi & Parker'” also examined a mean
pressure analytic scheme credited to Osborne &
Sykes.?* This approach evaluates the analytical deriva-
tive as a function of the time averaged P,

Ca =GR, ;) (25)

where £, . =1(R,_ +PR,).

None of the above analytical schemes was found to be
completely adequate in terms of mass balance accuracy
and these were subsequently abandoned in favor of a
modified chord slope approximation.!” This approach is
based on an alternative definition of the capacity term,
Cpq = 0S,/0F,, and is similar to the scs method except
individual pressure terms are averaged over time. The
modified chord slope approximation afforded some
improvement in mass balance accuracy, however errors
exceeding 5% were reported.

Analogous to the derivation of the standard chord
slope approximation used in FD solutions, the capacity
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coefficient in FE solutions can be obtained in a manner
which ensures that the expansion of 85/t is exact.

Based on this principle, Milly”? developed expresswns
for the capacity terms in an unsaturated flow model, in
conjunction with mass lumping procedures. Following a
similar approach, new mass-conservative time-stepping
procedures are developed for FE pressure-based models.
These procedures are applicable for the development of
consistent or lumped mass matrices.

In a traditional FE implementation of the pressure-
based formulation, eqns (13) and (15) are employed to
separately interpolate P and C, over each element.
Within this traditional framework, the eclemental
approximation of the saturation derivative in eqn (22)
can be equated with the expanded form,

2
_ (f: C.] ) ( a;f- zv) ~To a_: 26)

and application of the linear Galerkin finite element
method yields

e i e S v S

Expansion of 85/t can be preserved by developing
clement-dependent capacity coeflicients such that the
equality in eqn (27) is satisfied. Two procedures were
tested. The first method solves the two by two system
directly for the unknown element-dependent capacity
coefficients producing:

C,k,_As,,l(A B, +5A,B,) ~A,S,, (AR,
(AR.)* +4A,P AP, +(A1=)2
(28)

—AR)

i = AS, (AR —AP,)+A,S, (5AF, ~AP,)
(AR, +4AB, —(AP,)

(29)

These expressions are referred to herein as distributed
chord slope (dcs) approximations because nodal
capacity coefficients depend on capillary pressures at
both nodes in the element. These approximations were
successfully used in a two-phase model developed by
Gamlie]. !>

The second approach treats each equation in (27)
separately, developing C, approximations that depend
on the row of the local matrix. For row 1,

s ___ADSo, ke 240,

an “3AP +AP, = AP +~AP, (30)

and row 2,
Crter = 288, raes _ WASa (g
= “ AP +AB, °2 AP +3AP,

where the numbered subscripts are the row and node of
the local matrix, respectively. These expressions were
developed in the work of Reeves?®? and are termed row
distributed chord slope (rdcs) approximations. Both
C2* and C* yield identities when substituted into eqn
(27), ensuring that expansion of 3S/dt is exact over the
clement.

The dcs and rdes approximations can also be
developed in conjunction with mass lumping proce-
dures. Expansion of the saturation derivative is
preserved in this case by equating the clemental
approximations:

oL, [1 0] {A.S...} e {A:I’c.}

- “y =[A4" : 32

2 [0 1] |AS,, l4; AR, (32)

which yields the dcs approximations:

2A. 8, AS,

*.I"_ al — 1 @x

Cay AP E. AR, (33)
247,

Clon = 2% _ 2oSa (34)

% TAPR AP

and the rdcs approximations:

3A,S,
rdcs; — e rdcsy =
Co*=3ap Conr=0
3AS,
Cren = 0 Colen = 3. };:: (35)

A third approach which preserves expansion of 85/9t
employs a non-traditional FE procedure. Rather than
separately interpolating C, and E, an elemental
approximation of eqn (22) is defined by collectively
interpolating the expanded saturation derivative,

——
BS, _ 05, ~ o
& S N ZC" =Cag  (36)

Applying the Galerkin finite element method to these
non-traditional approximations generates eqn (16) with
the mass matrix:

c
C, —=*
=8| ™ 2 (37
3 | ¢
2 )

Apgain equating these approximations with the satura-
tion derivatives in eqn (27) and solving for the capacity
coeflicients yields the scs approximation in eqn (23). The
capacity coefficient approximations in this case are
continuous at the elemental boundaries. This formula-
tion is referred to as the FEcs approximation.
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Fig. 1. Drainage E(S,.) functions.
The mass lumped variant of the FEcs scheme is

oL, [C. 07
2 lo Co, |

which is equivalent to the L2 lumping scheme of Milly.2
Conceptually, however, this formuation is distinguished
as a standard lumping procedure agphed to the

elemental approximation 8S,/8t = C,8E./8r Also note
that assemblage of this approximation is equivalent to
the fully implicit FD approximation. Consequently,
evaluation of the capacity coefficients again yields the
Scs approximation in eqn (23) which is known to
produce good mass balance accuracy in FD simulators.

All modified chord slope approximations are easily
implemented by substitution into the local matrix. One
difficulty arises with chord slope approximations when
the time rate of change in P. is small, such that the
denominator approaches zero. In this work, when
implementing any of the chord slope approximations,
the absolute value of the denominator was inspected and
required to be greater than 1{—10), otherwise C, was
evaluated with an analytical derivative of P(S,).

'AI -IeL =

(38)
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Additionally, C, was assigned a minimum absolute
value of 1(—6) whenever calculated values fell below this
level. The consequence of using a2 nonzero minimum C,
is examined in a later section.

NUMERICAL EXPERIMENTS AND ANALYSIS
Simulation conditions

The following numerical simulations involve one-
dimensional vertical two-phase flow in a homogeneous
porous medium. All solutions were obtained on a
uniform mesh with variable time increments. The time
step sizes were adjusted dynamically based on the
number of iterations required for convergence but were
restricted to a specified maximum size,

The influence of soil and fluid properties on numerical
mass balance behavior was examined with comparisons
from two media:contaminant systems. Transport of
trichloroethane in Borden sand was simulated with data
from Demond & Roberts.® The second system employs
data from Kueper et al.'® and Hest-Madsen,'® simulat-
ing the migration of tetrachloroethylene in Ottawa sand.
The Ottawa sand is a uniform, permeable soil that is
readily drained over small displacement pressures.
Conversely, the well-sorted Borden sand is less perme-
able and has a wider pore distribution, resulting in
larger displacement pressures. All soil and fluid proper-
ties are listed in Table 1 and E.(S;) relations for both
systems are shown in Fig. 1.

Mass balance calculation

Mass balance checks were used to assess each
simulator’s ability to solve the governing flow equa-
tions, providing a necessary but not sufficient measure
of solution accuracy. An incremental mass balance

Table 1. Soll and fluid parameters used in simulations

Parameter System 1 System 2
Soil type Borden sand #25 Ottawa sand
Porosity 0-33 0-39
Intrinsic permeability (cm’; 8-36 x 1073 205 x 1078
Matrix compressibility (cm” dyne) 0-0 00
Residual water saturation 0-204 0-0617
van Genuchten fitting parameters
a (cm? dyne) 52x 1073 1-87 x 1074
n 5-62 619
Organic contaminant 1,1,2-trichloroethane tetrachloroethylene
molecular weight (g mol) 1334 143-8
Density (g.cm”) 1-44 1-61
Viscosity (poise) 0-0119 0-009
Compressibility (cm?:dyne) 0-0 00
Water
Density (g-cm®) 10 10
Viscosity (poise) 0-01 0-01
Compressibility (cm?:dyne) 00 00
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coefficient was calculated at each time step using

M:,_A' _ M:,

MBE, =—* 75

(39)
where M., is the a-fluid mass storage at time z and F~' is
the net a-fluid mass entering the computation domain
during the time step Az. An MBE, value of unity
indicates mass is perfectly conserved during the time
increment Atr.

Boundary fluxes in the FD models were evaluated
with Darcy’s Law at the interblock location between the
boundary nodes (B;) and the first interior node (i + 1),

ol fgte]

where interblock transmissibilities are evaluated as
arithmetic means. Boundary fluxes in the FE model
were calculated by back-substituting predicted pressures
into the FE equations and solving for the boundary
integral term.'¢

A cumulative mass balance error was also calculated
using

M, — My
ZAtFaA'-

where M2, is the initial o-fluid mass storage at time zero.

% cumulative error(f) = 100-1-0 — (41)

Model verification

Each of the three numerical models was verified against
analytical solutions developed by McWhorter &
Sunada.?! These integral solutions describe the
unsteady horizontal flow of two incompressible viscous
fluids taking full account of capillary drive. Compar-
isons were made for one-dimensional unidirectional
displacement of water by trichloroethane in soil system
1. The closed form solutions require a decaying organic
influx given by:

4,{0.1) = A1 (42)

where g, is the organic injection rate, and A is a constant
associated with the steady boundary saturation
S, =35.(0,¢). For all model comparisons S, was
prescribed as 0-5 and the associated value of 4 was
0-017187.

Figure 2 compares the analytical and numerical
solutions demonstrating close agreement for all three
models. Small cumulative mass balance errors and
deviations from the analytical solutions were observed
in the pressure-based solutions. Thes errors can be
attributed to the minimum C, designation and are
discussed in a later section. The above comparisons
verify the ability of each of the three numerical codes to
correctly solve the governing two-phase horizontal flow
equations.
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Fig. 2. Comparisons of analytical and numerical solutions for
the 1D unidirectional water displacement problem at time 100,
500 and 1500s.

Influence of the initial conditions

Implementation of the pressure-based formulation
requires the specification of initial fluid pressures.
When one of the fluids is absent from the domain,
specification of the nonexistent fluid pressure is non-
unique. For example, in contaminant hydrology
problems a common initial condition is an uncontami-
nated aquifer devoid of NAPLs (i.e. S, = 0). In the case
of two-phase flow any value of B. < 0 is consistent with
S, = 1. Consequently, there exists an ambiguity as to
the correct specification of the initial nonexistent NAPL
pressure distribution. Several approaches have been
cited, while other researchers have neglected to fully
disclose initial conditions. This issue has not been fully
resolved within the literature.

One approach to the specification of P, follows the
classical method used in unsaturated flow modeling.
Here the gas phase pressure is assumed to remain
uniform at atmospheric conditions such that P = —P,.
By analogy, the absence of the organic liquid in the
multiphase flow problem can be similarly characterized
by setting P, =0, again implying P. = —P,. Numeri-
cally, the negative capillary pressure is handled easily by
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Table 2. Initial and boundary conditions used in simnlations

Parameter Improper initial Organic Restricted Organic
conditions infiltration S, range drainage

Column length (cm) 90 30 30 30
Initial conditions -

P, Hydrostatic Hydrostatic % = % B—-P

B 0-0 P. P.—P Hydrostatic

P -P, 0-0 P(S. =09) 16cm H,0

S. 1-0 1-0 09 S.(B)
Boundary conditions (top)

P, 0-0 0-0 0-0 %, -150cm

P v,-150cm ~,-150cm ~,-150cm P,

S. S.(R) S.(R) S.{R) 10
Boundary conditions (bottom) Ao — Ao

P, (dyne cm®) . -90-0cm %+ 30-0cm '\: —— +30cm B-P

B, (dyne.cm?) 00 P. P.—P 00

S. 10 10 0-9 S.(P)
setting S, = S,__. A uniform negative capillary pres- state flow equations:?*
sure condition on the nonexistent organic fluid was .

. . . V- A)VB, + p, A, VP

emgloyed in 2D simulations reported by Kuppusamy et {podo + £ ) Pe ’
al —(PsAoo ~ Pudvy,)VzZ =0 (43)

An alternative approach imposes the capillary
pressure constraint in eqn (5); i.e. P(S,=1)=0.
Physically, the capillary pressure at S, =1 must be
zero since no interfacial curvature exists in the presence
of only one fluid. This constraint, however, leads to a
nonzero initial organic pressure distribution in the
absence of the organic liquid. The P. = 0 approach has
been used in both pressure-based and P-S formula-
tions.%%

The influence of the initial organic pressure condition
on mass balance accuracy was examined for a simula-
tion of NAPL infiltration with the FD pressure-based
code. A column was initially satuated with water in
hydrostatic equilibrium and initial NAPL pressures
were specified using either £, =0 or P. = 0. Boundary
and initial conditions are given in Table 2.

The progression of cumulative mass balance errors
with time and the position of the saturation fronts is
plotted in Fig. 3. When the initial NAPL pressure
distribution is established from P. =0, the cumulative
mass balance error is small and diminishes over the
course of the simulation. Small errors suggest the
predicted saturation front is correctly positioned. In
contrast, large mass balance errors are observed when a
uniform initial pressure distribution is chosen. The
cumulative errors grow over the course of the simulation
as the NAPL advances deeper into the column and
P = —P, = ~, Ah deviates further from the condition
F, = 0. Propagation of the saturation front is signifi-
cantly impeded in this case. Thus it can be concluded
that the correct initial pressure specification for an
absent organic phase is P, = B,.

When both fluids are initially present, the initial
pressure field can be established from any initial
saturation distribution by solving the sum of the steady

Influence of the capacity coeficient

The influence of C, on mass balance accuracy was
examined in simulations of NAPL infiltration using the
boundary and initial conditions in Table 2. The resulting
cumulative mass balance errors are plotted in Fig. 4 as a

12

ot

cumulative error (%)

g 0.
=
5 06 | System2 -
00 5)
; 0.4 T\ -
ystem -
Z 0.2 (12000)
0 L 1 1 IlI
0 0.2 04 0.6 0.8 1
x/L

Fig. 3. Effect of initial NAPL pressure specification on

cumulative mass baolance error and position of the saturation

front. Az = 60/L and Atp,,, = 20-0 and 0-5's for systems 1 and
2, respectively.
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function of Ar and Az. Both FD schemes and those FE
schemes which preserve expansion of the saturation
derivative demonstrate good mass balance accuracy,
with errors on the order of 5% or less. The mass balance
error does not appear to be adversely sensitive to Az or
Az over the range examined. In contrast, FE schemes
using the ses or analytical approximations produce mass
balance errors on the order of 20% and exhibit greater
sensitivity to Ar and Az. The mass balance errors in
these schemes can be attributed primarily to the

Finite difference

—

FE - truditional chord slope

temporal discretization terms because spatial discretiza-
tion is identical for all models and mass balance
accuracy in the conservative schemes is relatively
insensitive to Az.

Figure 5 compares the predicted saturation distribu-
tions of representative schemes with the P-S solutions.
Recall that the P-S model does not require evaluation of
a capacity coefficient in this two-phase case and hence
exhibited excellent mass balance accuracy. Predictions
from pressure-based formulations agree closely with the
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Fig. 5. Predicted NAPL saturation distribution with selected capacity coeffictent approximation forms. Time = 900 and 30s in
systems 1 and 2.
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Table 3. Camulative mass balance errors in sumulations of
NAPL infiltration over the generally linear region of
B(S, < 0-0)

Algorithm Cumulative error (%)

System 1 System 2

FD, pressure based 01 86x 107

FD, P-S formulation 50x10%  31x107°

FE, analytical {w = 1-0} 0-09 0-86

FE, time average B(w = 0-5) 0-16 1-47

FE, previous time P{w = 0-0) 0-33 2:09

Fe, mean P 015 1-46

Fe, scs 0-08 126

Fe, des 0-26 0-96

Fe. rdcs 016 0-77

Fe, fecs 0-32 0-01

Time = 900 and 30s for systems 1 and 2, respectively.

P-S solutions for the FD model and for those FE
schemes which preserve elemental expansion of the
saturation derivative, i.e. precisely those schemes which
yield good mass balance accuracy. The non-conservative
ses and analytical FE schemes under-predict the position
of the saturation fronts in comparison with the mass
conservative schemes.

Errors observed in the presure-based FE solutions can
be explained by failure to preserve expansion of the
discretized saturation derivative. This error can be
quantified with an elemental residual, /en\, between
the saturation derivative and the expanded form in eqn

@27,
A_OLt 1 %]{Alsn_}_: :e{Al}:‘;} (
=3 [5 1\as.f "4 ae,s

The element-dependent CZ°, €%, and CFE* approx-
imations were developed on the basis of gpsilon, = 0,
and, hence, demonstrate good mass balance accuracy in
Figs 4 and 5. The scs and analytical approximations do
not necessarily satisfy e}_p&nsion of the saturation
derivative, in which case "¢, ' is nonzero. These latter
approximations are continuous at the elemental bound-
aries such that ’:n\ may be assembled and examined on
a nodal basis:

oL,,
€2 = 6¢!'\AIS&.—| —4A,5, — A'Sa"')
L, .
~2C, .~ Ca)AR —(Cs +6C,~C, )
x AR, —{C, —Co_JAR._] )

Making the substitution AP =A,S,/C,, eqn (45)
may be rearranged as

Ca

G

. oL, 7,
€, = I_ZE [A,Sn___ (]

C.. Ca.
A (2_ Ca C;)
+A,S, . (1 - é‘i)] (46)

where C, indicates approximations by the analytical or
scs methods. When ¢, is zero, the expansion in eqn (22)
is exact at node i and MBE = 1. A positive value of ¢,,
implies 3S/0t > C,0P./0r; the predicted change in
saturation is less than the true (mass conservative)
change, or MBE < 1. Conversely, ¢, < 0 signifies an
over-prediction in saturation change and MBE > 1.

Examination of eqn (46) indicates e, depends on the
degree of nonlinearity in P(S,); similar findings were
presented by Milly.Z Nonlinearity in the van Genuchten
form of B(S..) occurs in two regions (see Fig. 1): at the
saturation front during the primary displacement of the
wetting phase by a nonwetting NAPL, and near
S. = §,,. For the simulated organic infiltration prob-
lems, the controlling nonlinearity appears to be the
former region; the discrepancy in predicted NAPL
saturation distributions occurs primarily in the position-
ing of the saturation front and the water saturation
behind the front is well above §,,. At the saturation
front, |C,_ > C, > |C, . for flow in the direction of
i—1 1o i—1, resulting in a nonzero ¢, . The inexact
expansion of 9S/0t over the nonlinear region of P(S,.)
explains the poor mass balance accuracy evidenced in
Figs 4 and 5.

If F(S.; is linear (ie. C; =C; =C; ). the
residual €, is zero and any of the C, forms should
yield good mass balance accuracy. This hypothesis was
tested by increasing the initial uniform organic satura-
tion from zero to 0-1., forcing organic infiltration
over the generally linear segment of R!S,) in Fig 1.
Using initial and boundary conditions given in Table 2,
predictions were obtained on a 60-element grid
with maximum time steps of 1-0 and 0-1s for systems 1
and 2. The resulting mass balance errors are listed
in Table 3 and demonstrate that good accuracy is
obtained with all C, schemes when P(S,.) is linear. The
predicted saturation distributions agreed closely for all
cases.

The influence of nonlinearity in P{S,} on mass
balance accuracy was investigated by plotting incre-
mental MBE against time in Fig 6. The P-S formulation
exhibits constant MBE =1 and excellent cumulative
mass balance accuracy. In comparison, all pressure-
based solutions display oscillatory behavior in MBE{r}
with varying frequency and amplitude. The dcs and rdcs
forms exhibited especially large amplitudes in MBE({r)
which could be damped by increasing the convergence
criterion. In the other schemes the convergence criterion
had little influence on the amplitude of MBE. For all
schemes. grid size had the greatest effect on frequency
and amplitude of oscillations. Time step size had little
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overall influence in the mass conservative cases, but
greatly influenced cumulative mass balance accuracy in
models employing the analytical capacity forms.

Heuristic explanations can be offered for the observed
behavior in MBE(7; by examining the nodal residual
given by eqn (46). Consider the analytical and ses
approximations. Figure 7 illustrates the capacity coeffi-
cients of these schemes at three nodes at the toe of the
saturation front. When the saturation front initially
enters a new element i —1 at time 71— 1, both §p_._ .,
and C, .. are small, whereas immediately behind the
front S, . and IC;,_, are relatively large. Hence at the
saturation front C,_;:/ C—,,—: > 1 and behind the
front C,,_, / C,_-,_1. = l. The nodal residual ¢; is thus
nonzero yielding MBE # 1.

The relative magnitude of the last two terms in eqn
(46) alternate in response to the nodal saturation values.
As the front initially enters node i — 1 there is a period
of pressure build-up without appreciable desaturation,
i.e. A,S; . = 0. The second term in eqn (46) increases in
relative magnitude producing a positive slope in the
MBE{:). Once the entry pressure is exceeded, A, S, -
increases, correspondingly increasing the relative mag-
nitude of the last term in eqn (46). This produces a
negative slope in MBE{;). The interplay between the last
two terms in eqn (46) as the saturation front enters and
fills each element accounts for the oscillatory behavior
of MBE(r). Reducing the element size increases the
number of elements encountered by the saturation front,
increasing the frequency of the MBE!{r}. A smaller
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element size also requires less time to establish the entry
pressure, reducing the amplitude of MBE(:).

The FEcs, dcs and rdecs approximations cannot be
depicted graphically and thus the discussion above is not
necessarily applicable to these schemes. Similar oscilla-
tory behavior in Fig 6. together with an observed
damping when C, is constant, suggests that these
fluctuations may likewise be attributable to the non-
linearity in 2(S,).

The FD pressure-based model produced a saw tooth
wave pattern in MBE(s} rather than the sinusoidal
waves observed with the FE models. This result can be
explained by considering the nodal residual obtained by
rearranging eqn (23):

& =4S, —CX A (47)

The scs approximation is developed by imposing

2 =0. If C;7. is evaluated in a fully implicit
manner no oscillatory behavior is expected,
ie. e,_, D—-0 and MBE(r)=1. In the numerical
scheme, however, evaluation of Ca.. is lagged by
one iteration. This leads to an under-evaluation
of C,7 . at the saturation front and results in non-

cumulative mass balance crror (%)
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o

Fig. 8. Cumulative mass balance error at = 30s versus
average time step size. FE simulations are with System 2 data
using analytical (w = 0) capacity coefficients.

negative e,,D Consequently, MBE(¢) is bounded by
MBE < 1, producing the saw tooth wave pattern.

Figure 6 reveals that oscillations in MBE(r) do not
necessarily result in unacceptable cumulative mass
balance accuracy. For the mass conservative FE
schemes, MBE(7) is generally centered on MBE = 1; it
is displaced from MBE =1 in the non-conservative
schemes. The magnitude of the displacement correlates
with the cumulative error and is influenced by both Az
and At. This behavior is also exhibited in Fig 4 which
shows cumulative errors in the non-conservative
schemes decrease with decreasing Az or increasing At.
The influence of Ar is surprising because the improved
accuracy occurs despite the expected increase in
truncation error which is dominated by terms like
(—A1/2 + Ar*/3)S..5 Moreover, the magnitude of
accuracy improvement appears to be proportional to
the explicit weighting on the previous time step
information; w = 0 produces the greatest improvement
and w = 1 exhibits no improvement.

Additional analysis was undertaken to explore
cumulative mass balance errors from the FE analytical
C,, scheme {w = 0) for a range of element and step sizes.
Figure 8 reveals that cumulative accuracy consistently
improves with increasing Az until the error is virtually
eliminated at some critical average Az. At large time
steps, however, the trend reverses yielding increasing
error with increasing Ar.

The unanticipated influence of time step can be
explained by again considering the last two terms in
the nodal residual eqn (46). If the previous time step
solutions are employed to evaluate the analytical
capacity terms, these terms are constant, independent
of r—1 nodal saturations. Moreover, the ratio
Ci1-1/C 1.1 is large because 'C,_;, is undefined and
thus assigned a small nonzero value. Now examine the
A,S; | and A,S; terms. For small Ar, the time step is
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Fig. 9. Effect of maximum time step size on predicted NAPL
saturation distributions with the FE scheme employing
analytical {w = 0) capacity coefficients. Simulations employ
System 2 data and a 120-clement grid.

insufficient for the pressure build-up at node i—1 to
exceed the entry pressure. Consequently A,S;_; = 0, the
second term in eqn (46) is dominant, and €] is positive.
This analysis is supported by Figs 6—10 which shows
MBE(¢) lies below MBE = 1. For large Az the entry
pressure is exceeded within a single time step and A,S;_,
is nonzero. Thus the last term in eqn (46) becomes
dominant, ¢; is negative, and MBE(?) is offset above
MBE =1 in Figs 6—11. At some critical Ar there is a
cancelling of the last two terms in eqn (46) yielding
¢; = 0 and good cumulative mass balance accuracy.
The magnitude and average sign of ¢; is reflected in
the positioning of the saturation front. Figure 9 shows

FD - pressure based formulation

that the choice of Ar can impede, advance, or match the
correct position of the saturation front. The dependence
of cumulative error on time step size may partially
explain the improved mass balance accuracy obtained
with the modified chord slope approximation of
Kaluarachchi & Parker'” which effectively increases
the explicit weighting.

Influence of the minimum capacity coefficient

A common problem in contaminant hydrology is the
infiltration of a NAPL into an uncontaminated aquifer
(S, =0). In the absence of the NAPL, F.=0 and
C, = 0. Because the pressure-based formulation tends
toward singularity as P. approaches zero, a small
‘dummy’ C, or S, is typically specified.!” Kueper &
Frind"® argue that a major advantage of the P-S
formulation is that it can easily accommodate condi-
tions of a nonexistent NAPL without fictitious repre-
sentation of the state variables.

The influence of the minimum C, on mass balance
accuracy was studied in simulations of NAPL infiltra-
tion in a 40-element domain, using inital and boundary
conditions given in Table 2. Figure 10 shows the
variation of cumulative mass balance error with the
log(min C,). A measure of the relative computational
effort (log [znumber of time steps x the total number of
iterations])* is also plotted.

Excellent mass balance accuracy was obtained with
each of the mass conservative C, forms when min
C. < 1(—6); mass balance accuracy degenerates drama-
tically when min C, > 1(—6). Thus, the fictitious or
‘dummy’ C, can be made sufficiently small such that
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Table 4. comparison of cumulative mass balance errors and computational work from consistent and mass lumped formulations in the
NAPL infiltration problem with System 2 data

C, form Consistent form Mass lumped form
Cumulative error (%) Work” Cumulative error (%) Work”

FE chord slope € = 1(—4)’

min C, = 1(-5) 1-58 518 3-36 5-46

min C, = 1(—6) 0-11 549 021 555

min C, = 1(-7) 0-10 582 0-03 568
FEdcs ‘e = 1{—4)!

min C, = 1{~5) 499 563 1-09 5-52

min C, = 1(—6) 599 533 0-85 562

min C, = 1(-7) 2-13 562 1-00 572

min C, = 1{-8) b 103 592
FErdes € = 1(—4)

min C, = 1(-5) b 4-56 552

min C, = 1{—6) b 0-46 5-58

min C, = 1(~7) b 096 577

min C, = 1(-8) b 1-03 591

9Work = log (number of iteration x number of time steps).
b Would not converge.

solution accuracy is not adversely affected. Although
soil type did not appreciably affect these observations
for the examined simulations, it is possible that the
optimal selection of min C, is problem-specific.
Consequently the specification of min C, should be
considered a possible source of mass balance error and
examined with appropriate sensitivity studies.

The plots in Fig 10 also provide evidence that the FD
and FEcs methods are more stable and accurate than the
FE dcs and rdcs schemes. The FD and FEcs methods
produce excellent mass balance results with a well-
defined trade-off between mass balance accuracy and
computational work. In comparison the dcs and rdes
methods produce somewhat poorer mass balance
accuracy, with errors generally ranging above 1%.
With these schemes, computational work appears to
be less dependent on min C,. In the case of the rdcs
method, the range in which accurate converged
solutions could be obtained is relatively narrow.

Influence of mass lumping

Mass lumping procedures have been advocated for FE
unsaturated flow models to control oscillatory solutions
in advection dominated problems.”? The diagonaliza-
tion of the mass matrix introduces additional dissipation
in the stiffness matrix which damps oscillatory solu-
tions.™ In general, mass lumping tends to improve
solution stability at the expense of some loss in
accuracy. 630

Mass lumping procedures were implemented in
connection with the FEcs, dcs, and rdes schemes
simulating organic infiltration in system 2 data on a
40-clement grid. Table 4 lists the resulting cumulative
mass balance errors from the lumped and consistent
formulations. Mass balance errors in the lumped models
agree favorably with those obtained from the consistent

models, and the predicted saturation distributions from
all models are in close agreement.

Mass lumping was found to improve stability of the
numerical solutions. The dcs and rdes methods bene-
fitted greatly from mass lumping, exhibiting an oscilla-
tion free incremental MBE(f) which was close to unity
after an initial adjustment period. The improved
stability of the lumped schemes expands the conver-
gence range over € and min C,, especially with the rdcs
approach where none of the consistent forms would
converge for e < 1{—4). Greater stability is also
accompanied by improved cumulative mass balance
accuracy and generally increased computational work.

The mass lumped FCcs method is equivalent to the
implicit FD approach and hence produces a saw tooth
wave in MBE(z) similar to that observed in the FD
solutions. Mass lumping in this scheme results in some
loss of cumulative mass balance accuracy and generally
increased computational effort. A possible source of the
error increase is the min C, designation which was
shown previously to affect mass balance accuracy in the
FD model.

FE solutions of organic liquid drainage and redis-
tribution under gravity control have been shown to
exhibit greater mass balance errors than corresponding
infiltration problems.!” Therefore, mass balance beha-
vior was examined in an advection dominated two-
phase NAPL drainage problem in system 2 using initial
and boundary conditions given in Table 2. For the
purpose of investigating mass balance accuracy only,
these simulations assume P.{S,) is non-hysteretic such
that the drainage function can adequately represent
imbibition processes. Predicted organic saturation
distributions on 40- and 120-element grids are shown
in Fig. 11.

In the upper plot. the FD P-S and pressure-based
solutions agree closely and exhibit a strong dependence
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Fig. 11. Comparison of predicted NAPL saturation distribu-

tions for the organic liquid drainage problem at simulation
time = 10s.

on mesh spacing. The coarse grid solutions exhibit a
slightly dispersed drainage front and a saturation profile
behind the front which differs markedly from that of the
fine grid solutions. Although saturation profiles are not
in agreement, both coarse and fine grid solutions
produce good cumulative mass balance accuracy as
shown in Table 5. This problem demonstrates mass
conservation is not a sufficient condition for solution
accuracy.

The observed discrepancies in the saturation profiles
are believed to be due to the hyperbolic character of the

coupled flow equations during drainage over the flat
linear portion of P(S,) where capillary dissipative
effects are small. Analogous to the Buckley-Leverett
problem, solving these equations with midpoint weight-
ing on the transmissibility terms produces mass
conservative, but physically inaccurate, solutions.® It
can be shown that additional numerical dissipation from
upstream weighting of transmissibilities on the 40-
element grid produces solutions which are aligned
closely with the midpoint weighting results on the 120-
element grid.

Inspection of the middle plot in Fig. 11 shows that FE
solutions with consistent mass matrices do not exhibit
the same spatial discretization dependence of the
saturation profile behind the drainage front. The coarse
grid FE solutions do show some numerical dispersion at
the saturation front, similar to the FD solutions, and
also a slight undershoot at the toe of the front,
analogous to that observed with unsaturated flow
models.” The fine grid FE consistent and FD solutions
agree very closely.

The effect of lumping is displayed in the bottom plot
in Fig. 11. The lumped FEcs scheme is equivalent to the
FD pressure-based formulation, and thus, organic
saturation predictions exhibit similar behavior and
close agreement with the FD results. Mass lumping
climinates undershoot at the toe of the front, but also
creates a discretization dependence of the saturation
profile observed with the FD solutions. The lumped dcs
and rdes schemes produced similar results, but are not
shown in Fig. 11. Inspection of Table 5 shows mass
lumping reduced the cumulative mass balance error,
although this is an insufficient criterion for accuracy in
this advection dominated problem; it also improved
stability and reduced the computational work.

CONCLUSIONS AND RECOMMENDATIONS

This research has identified causes of mass balance
errors observed in pressure-based two phase flow
models. A number of remedies have been proposed
and evaluated. The results demonstrate that mass
conservative predictions can be obtained with FE and
FD pressure-based or pressure-saturation formulations
if capacity coefficients and initial conditions are properly
specified. Specific conclusions and recommendations are
summarized below:

1. When NAPL infiltration into a pristine aquifer is
considered, mass balance accuracy depends on
the proper specification of the initial nonexistent
NAPL pressure distribution. Mass conservative
solutions are obtained when the initial NAPL
pressure distribution is established on the basis of
B =0

2. Capacity coefficients imbedded in the pressure-
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Table 5. Comparison of cumulative mass balance errors and computaional work from consistent and mass lumped formulations in the
NAPL drainage problem asing 40- and 120-element grids

C, Form Consistent form Mass lumped form
Cumulative error (%) Work* Cumulative error (%) Work?
FD pressure based (40) 1-7(-4) 5-55
FD pressure based (120) 1-9(—4) 5-92
FD P-S formulation (40) 1-2(-6) 474
FD P-S formulation (120) 1-8(-6) 5-02
FEcs (40) 0-20 5-05 0-07 479
FEcs (120) 0-28 549 003 513
FEdcs (40) 2-48 793 1-07 4-88
FErdes (40) b 0-93 4-88

2 Work = log (number of iteration xnumber of time steps).
 Would not converge.

based formulation can be made sufficiently small
such that they do not appreciably affect mass
balance accuracy or numerical solutions when
E. = 0. In this work a min C, = 1(—6) was found
to provide both good mass balance accuracy and
good covergence performance. Examination of
solution sensitivity to min C, is recommended to
ensure acceptable mass balance results.
Mass balance errors in FE pressure-based models
result from failure to preserve expansion of 85/t
over the element when P(S,) is nonlinear. The
scs and analytical C, approximations employed
in traditional FE pressure-based models do not
necessarily preserve expansion of 85/ in the van
Genuchten form of P(S,) over the nonlinear
segment near S,. = 1. An analysis of the residual
error, €, shows that error canceling effects and
improved mass balance accuracy can be obtained
by increasing the explicitness of time weighting on
Ca. together with proper selection of Ar. The
residual error expressions can also be used to
explain oscillatory behavior in the incremental
mass balance error observed in all pressure-based
models. When E(S,) is linear, C, is constant
yielding good mass balance accuracy in all
models.
Conservation of mass in FE pressure-based
solutions can be obtained when C, is formulated
to preserve the elemental approximation of the
saturation time derivative. Within the traditional
FE framework the expansion is preserved with
the element-dependent des and rdes approxima-
tions. In a non-traditional FE approach using
fewer basis functions, expansion of the saturation
derivative is preserved with the FEcs form.
Although superior to previous FE formula-
tions, the des and rdes approximations exhibit
some instabilities manifested by large amplitudes
in MBE(f), a smaller convergence range than
corresponding FD and FEcs schemes, and
cumulative mass balance errors which are good
but generally greater than 1%. These instabilities

are apparently related to the distributed nature of
the time derivative since they are virtually
eliminated with mass lumping procedures. Addi-
tionally, the elemental dependence of the dcs and
rdcs schemes complicates extensions to higher
order interpolating functions or multi-dimen-
sional systems. In comparison, the scs approx-
imations used in the FEcs formulation are
continuous at the element boundaries and there-
fore are easily extended. The FEcs scheme also
has advantages in accuracy and stability over the
des and rdcs forms.

5. Mass lumping generally improves stability and
mass balance accuracy of the des and rdes FE
schemes and eliminates undershoot behavior in
coarse grid solutions. However, for advection
dominated systems, FE schemes with consistent
mass matrices are more accurate than lumped
schemes at a given discretization. Coarse grid,
lumped scheme solutions for such systems
exhibited an incorrect distribution of saturations
behind the drainage front.

Mass lumping in the FEcs formulation was not
beneficial in NAPL infiltration problems and only
slightly reduced cumulative error and work
requirements in advection dominated organic
drainage problems. Thus. there appears to be no
clear advantage in the application of mass
lumping to the FEcs scheme.

6. The consistent FEcs formulation is recommended
for FE pressure-based multiphase flow models on
the basis of superior accuracy, stability, and ease
in implementation.
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