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Mass balance errors in modeling two-phase 
immiscible flows: causes and remedies 

L inda M. Abriola & Klaus Rathfelder 
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Mass balance accuracy of two-phase immisdble flow models used for contAmi~qnt 
hydrology applicatiom is c~amilled th.roush colnparisol~ of fsaile element add finite 
difference solutions of the pressure-based and pressure-saturation formulations. The 
influence of model formulation and initial conditions on mass balance performance 
is explored. Model s~muiations demonstrate that accurate solutions for multiphase 
flow prob]em~ can be obtained with either finite clement or finite difference, 
pressure-based or pressure-saturation formulations, if coei~mts and initial 
renditions are properly umted. In the pressure-based formulation, capacity 
mefEdmts arise from the ~ponsion of the saturation variables in tmns of 
capinary pressure. Mass b~tA-ce accuracy depends upon the proper evaluation of 
the capacity coef~ems when the capillary pressure--samrmion relation is 
nonlinear. Capacity coe~_ent approximations for finite element pressut~based 
models are developed which preserve elemental ~pansion of the saturation 
derivative. These approximations are shown to produce good mass balance results 
and aceutate solutions, in contrast with traditional finite element approaches. When 
the or runic liquid is initially absent from a domain, simulations reveal that mass 
balalge ~ is obtained only when the iuitial pressure distribution is established 
from a zero capillary pressure camdition. The influen~ of matrix mass lumping and 
the minimum value of the capacity coefficient on model performance is also 
investigated. 

Key words: NAPL, immiscible, muitiphnse, flow, numerical model, mass balance. 
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Pc = Po - P .  
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a-fluid capacity coefficient z 
a-fluid capacity coetf~ent  approxima- :3,.,3m 
tions by the analytical or scs methods Af 
o-fluid mass transport across the Az,At 
computational domain e 
intrinsic permeability tensor e,, 
,~-fluid relative permeability 
length of  the linear elements 
a-fluid mass storage % 
fitting parameters of  the van Genuch- ~ = 
ten fitting tune-don /~o 
linear basis functions 0,0 ° 
c~-fluid pressure 
capillary pressure p,,, 
a-fluid saturation, effective saturation, [A] ~ 
and residual saturation [A'] r 
time 
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time weighting c.~'4ticient for the 
analytical Ca approximations 
vertical distance 
fluid and matrix compressibilities 
backward difference operator 
spatial and temporal discretization 
convergence criterion 
elemental residual between the discre- 
tized temporal saturation derivative 
and the expanded form 
a-fluid specific weight 
a-fluid transmissibility 
a-fluid dynamic viscosity 
porosity, porosiw at the reference 
pressure 
a-fluid density 
local mass matrix 
local mass matrix obtained in the FEcs 
formulation 
local stiffness matrix 
local right hand side matrix 
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Subscripts and superscripts 
a subscript denoting the organic (o) or 

i 
k 
L 

Abbreviations 
dcs 
FD 
FE 
FEcs 
MBE 
P-S 
rdcs 

$c$  

SS 

water (w) liquids 
index to indicate nodal position 
iteration counter 
subscript denoting a mass lumped FE 
variant 
overbrace notation denotes elemental 
approximations 

distributed chord slope formulation 
finite difference 
finite element 
finite element chord slope formulation 
incremental mass balance error 
pressure saturation formulation 
row distributed chord slope formula- 
tion 
standard chord slope approximation 
simultaneous solution scheme 

EqTRODL'CTION 

Widespread subsurface contamination by hazardous 
organic non-aqueous phase liquids (NAPLs) has 
focused attention on the development of predictive 
models for immiscible multiphase fluid flow• Although 
several mathematical modeling strategies have been 
employed, the most attractive approaches in terms of 
accuracy and flexibility are multiphase flow models 
based upon the solution of  coupled mass balance 
equations. 2,s'2s The majority of  immiscible flow simula- 
tors in the contaminant hydrology literature 
employ implicit time-stepping procedures in the 
simultaneous solution(SS) of the phase mass balance 
equations. 2-4'9-12'17"19'20'24'27'28 Depending upon the 

selection of the primary dependent variables in the SS 
scheme, alternative formulations can be developed. Two 
approaches examined in this work axe the pressure-based 
formulation and a mixed pressure-saturation (P-S) 
formulation. 

The pressure-based formulation uses fluid pressures as 
the primary variables. These state variables are con- 
tinuous, regardless of soil heterogeneity or liquid 
saturation distributions. Two-dimensional pressure- 
based models have been developed with finite difference 
(FD) 3'4 and finite element (FE) solution proce- 
dures.l~'2°'24'2~'2s- . - Alternatively, the P-S formulation 
employs water saturation and water or organic pressure 
as the primary variables. Air pressure remains static or is 
not considered in models developed to date. The P-S 
formulation has been implemented with FD methods in 
two 919 and three dimensionsJ ° 

A crucial step in the construction of the pressure- 
based formulation is the expansion of the saturation 
derivative in terms of pressure, incorporating saturation 

variables into the so-called capacity coetficient. Material 
balance accuracy is known to be sensitive to the 
specification of  this capacity coefficient. FD models 
employing the standard chord slope approximation of  
the capacity coefficient have been shown to conserve 
mass for applications in petroleum engineering, e soil 
science, 7'23 and contaminant hydrology• 3'4 However, 
several researchers have reported poor mass balance 
accuracy in FE pressure-based models with applications 
m sod science ,'23 and contanunant hydrology r Efforts 
to remedy these errors have focused on the procedure 
used to evaluate the capacity coefficient, l~ Numerical 
experiments have produced mixed success, however, and 
a comprehensive explanation of the errors has not been 
presented. In one instance the pressure-based formula- 
tion was abandoned entirely in favor of an alternative 
mass conservative formulation which did not employ 
capacity coeffidents. -~ 

Proponents of the P-S formulation have reported 
good mass balance accuracy for this method. 9'19 All P-S 
models described to date consider a restricted case 
involving two-phase flow of incompressible fluids in a 
rigid soil matrix. Such a scenario does not require the 
use of capacity coeflidents, eliminating a source of mass 
balance errors observed in pressure-based models• When 
three phase flow or compressibility effects are consid- 
ered, however, the P-S formulation will incorporate 
capacity coefficients. Under such conditions, mass 
balance problems observed with the pressure-hased 
models may also become important in the P-S 
formulation. 

The ability of a numerical model to conserve mass is a 
necessary, but not sufficient, condition for solution 
accuracy. A model which exhibits poor mass balance 
hehaviour has limited practicality because of uncer- 
tainties in the model predictions. The need for accurate 
mass conservation in generalized multiphase flow 
models has motivated the research presented herein. 
The objectives of this work are to identify potential 
sources of  mass balance errors in FE and FD multiphase 
flow models, to elucidate the causes of  these errors, and 
to propose and evaluate approaches which can remedy 
such problems. For simplicity, model comparisons are 
restricted to one-dimensional, two-phase flow scenarios. 
Four aspects of a numerical model which may impact 
mass balance accuracy are examined: the specification of 
the initial pressure distribution, the evaluation method 
for the capacity coefficient, the assignment of a 
minimum capacity coefficient, and mass lumping 
procedures. 

NUMi~-RICAL PROCEDURES 

C, everniag eqeatlem 

The conventional form of the fluid phase mass 
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balance equations for a two phase orgauic-water system 
is: 

0 
[opoSa! = V. ~ooJh(VPo - %Vz)~ (1) 

where a = w,o repesent the fluid phases (w=water, 
o = NAPL), t is time [T], o is the dimensionless porosity, 
So is the dimensionless a-fluid saturation, f o  is the a- 
fluid density M / L  3", P,, is a-fluid ~ressure M/LT2], % 
is the a-fluidspecitic weight ~M/L'T2], z is the positive 
downward vertical direction, and 

kk,~ 
Xo = - -  (2 )  

/za 

is the a-fluid transmissibility, where k is the intrinsic 
permeability tensor :L2:, k,~ is the dimensionless a-fluid 
relative permeability', and Pa is the a-fluid dynamic 
viscosity- [M/LT i. Auxiliary relations include: 

1. Continuity of fluid saturations and pore volume, 

S.. - So = i (3 )  

2. CapillaD" pressure-saturation relationships, repre- 
sented in this study" by" the functional form of van 
Genuchten, 29 

S,, - $ ~  1 " 

"~'= ]---S--~ = [1 - (aPe)n]  
(4 )  

where 

Pc = Po - P,. (5) 
is the capillary pressure between the organic and 
aqueous phases, Sr~ is the irreducible water 
saturation, .~. is the effective water saturation, 
and a ,  n ,  a n d  m = 1 - 1 / n  are fitting parameters. 

3. Relative permeability - -  saturation relationships, 29 

k,~ = (3,,)1:2:1 - (1 - ~:=),a]2 ( 6 )  

k~ = (1 - S.)I/2[I -- %~'.]2m (7) 

Assumptions in this two-phase immiscible flow formula- 
tion include negligible interphase mass transfer, no 
internal source/sinks, and unique functional relations 
for Pc(S,.) and k,(S.),  ignoring hysteresis and organic 
liquid entrapment. 

S i m u l t a n e o u s  s o l u t i o n  f o r m u l a t i o n s  

The pressure-based SS scheme recasts the phase mass 
balance eq (1) in terms of the selected primary 
dependent variables, fluid pressures. Expanding the 
accumulation derivatives in terms of capillary pressure, 
eq (1) can be rearranged as: 

[oeo oP.] oeo 
OpoCo ;_ Ot -& ] + oposoao Ot (s) 

1 o rOPo 

where 3o and 3= are the a-fluid and matrix compres- 
sibilities, o ° is the porosity at the reference pressure, and 

°so  (9) 
c,, = opt 

is the a-fluid capacity coefficient. The pressure-based 
formulation easily accommodates the matrix and fluid 
compressibifity effects, although in typical contaminant 
hydrology applications these are often considered minor 
and are neglected. 9'm'lT'tg'2°'~ In this work compressi- 
bility" eiTects are neglected to facilitate comparisons with 
a P-S model. 

P-S formulations developed for contaminant hydrol- 
ogy problems employ water saturation and either 
organic or water pressure as the primary dependent 
variables. Models developed to date also neglect fluid 
and matrix compressibilities in order to completely 
eliminate the capacity-type coefficients. Following the 
approach of Faust, 9 the mass balance equations for a 
rigid matrix and incompressible fluids can be re.arranged 
using eqns (3) and (5) to eliminate So and P~, 

os~ 
o-~- = v. ~A~(VPo - vPc) - ~Vz)] (10) 

--0--~- = V. ~Ao(VPo - "y:oVz)~ (I I) 

This P-S formulation is considered well-suited to 
conditions where So = 0 because So does not appear 
explicitly in eqns (10) or (11)) 9 

Nmmrieal models 

The pressure-based formulation, eq (8), was solved with 
FD and FE algorithms. FD solutions were obtained 
with the model of Abriola, 3'4 modified for two-phase 
imm/scible flow. Considering only the vertical direction, 
the FD analogs employed in this model are: 

I 
• = "~, ~Po, . °Ca, A'Pc 2 ( A z ) 2 -  - .  - .  

- (Aj_~ - -  A , _ ~ ) P t  - ~i_iP,,,_ l: 
1 

÷ ~o,(x,_. ~- x,-i) (12) 

where At is the backward difference operator in time 
and Az is the uniform spacing of block i in the 
discretized space domain. The interblock transmissibil- 
it)- terms are evaluated as arithmetic means to ensure 
correspondence with FE solutions. 

Pressure-based FE solutions were obtained with the 
model of Reeves & Abriola. 27,21 This model uses 
standard piecewise linear interpolating functions to 
approximate elemental pressure, mobility and capacity 
variables, 

2 
PQ (z,t) ~ EPa,(t)Ni(z) (13) 

i=l 
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2 
o (z,t) ~- ]~_,)~,(ONi(z) (14) 

/--l 

(z,t) 2 
----- ZCo, (t)Ni(z) (15) 

I=l 

where Ni are the finear basis functions. Applying the 
Galerkin finite element method in local coordinates 
yields the elemental equations: 

[ .erA,Pc. 'I 
(16) 

where subscripts I and 2 refer to the left and right nodes 
of the linear elements, respectively, Le is the length of 
the element, and the elemental matrices are: 

oL, [ 3Cot + Coa Col-C, , ,]  
[A:" = 12 LCol + ca,  co, - 3C, oJ  (17) 

1 [ --J~l -- J~lt2 ~ , -  ~ ] (18) 

1 [ Au, + Aoo. ] (19) 

:F]." = ~ :~ -Ao, - Ao2 J 

Because all models evaluate interblock transmissihility 
coefficients as arithmetic means, the spatial descretiza- 
tion terms in the FD and FE pressure-based models can 
be shown to be identical. Differences in the solutions of 
these two models are thus attributable to the temporal 
diseretization terms. ~ 

A variant in construction of the mass matrix, iA]e, is a 
diagonalization procedure known as mass ' Imping 'm 
yielding, 

~A]e L oLe [2Col Co2 0 
= 6  ; Col -2Co2]  (20) 

Mass lumping procedures generally improve numerical 
stability and minimize oscillatory behavior. Although 
lumped formulations have been considered superior to 
the consistent form in appfications of unsaturated 
flow, ~'22 they have not been broadly applied in multi- 
phase flow models. 

A third model was developed which implements the 
P-S formulation. This model solves the mass balance 
eqns (10) and (11) using a point-distributed FD scheme. 
The formulation is identical to that of Faust, 9 except 
interblock transmissibility coefficients are evaluated with 
arithmetic means to ensure compatibility with the 
pressure-based models. 

All numerical models require an iterative solution 
algorithm due to nonlinearity of the transmissibifity and 
capacity relations. The Newton-Raphson iteration 
scheme is employed in both FD models, and a Picard 
interation approach is used in the FE code. A maximum 

difference convergence criterion is used in all models: 

,po~-i _ pot. 
max "pt-ll < • (21) 

where k is the iteration counter and • = 1 (-4),  unless 
indicated otherwise. 

Capacity eoelrz ents 

The method used to evaluate Ca directly affects mass 
balance accuracy of the numerical model. Soil scientists 
and petroleum engineers have recognized that to achieve 
mass conservation in FD simulators, expansion of the 
saturation time derivative must be exact, i.e. 

°So _ 8So ape (22) 
Ot OPC at 

The FD analog of eqn (22) leads to the standard chord 
slope (scs) approximation at node/.  

= A , S o ,  _ s o . _ , _ : - S o , ,  
A,PC. p,~,_. _ pc., (23) 

Finite difference schemes employing C ~ produce good 
mass balance aceuracy, e'?''23 In contrast, traditional FE 
schemes using C ~ demonstrate poor mass balance 
behavior. :a7-22 

Attempts to improve mass balance accuracy in FE 
models has motivated various modifications in the 
evaluation of the capacity coefficient. Kalnarachchi & 
Parker l: compared a number of procedures based on 
analytical derivatives of the capillary pressure function, 
eqn (4). Several of  these approximations derive from a 
weighted average of the analytical derivatives evaluated 
at the current and previous time levels, 

(7: = wC=(Pc~) 4- "1 - w.'Co(pc,) (24) 

where weights w=0-0:0-5, and 1-0 were tested. 
Kaluarachchi & Parker l~ also examined a mean 
pressure analytic scheme credited to Osborne & 
Sykes. 24 This approach evaluates the analytical deriva- 
tive as a function of the time averaged Pc, 

c= = Co(pc,_: (25)  

where Pc,_, = = ½ (pc,_, 4. Pc,). 
None of the above analytical schemes was found to be 

completely adequam in terms of mass balance ac~racy 
and these were subsequently abandoned in favor of a 
modified chord slope approximation, l~ This approach is 
based on an alternative definition of the capacity term, 
C~ = OSp/OPq, and is similar to the scs method except 
individual pressure terms are averaged over time. The 
modified chord slope approximation afforded some 
improvement in mass balance accuracy, however errors 
exceeding 5% were reported. 

Analogous to the derivation of the standard chord 
slope approximation used in FD solutions, the capacity 



Errors in modeling two-phase immiscible flows 227 

coefficient in FE solutions can be obtained in a mamuer 
which ensures that the expansion of OS/Ot is exact. 
Based on this principle, Milly 22 developed expressions 
for the capacity terms in an unsaturated flow model, in 
conjunction with mass lumping procedures. Following a 
similar approach, new mass-conservative time-stepping 
procedures are developed for FE pressure-bas~! models. 
These procedures are applicable for the development of 
consistent or lumped mass matrices. 

In a traditional FE implementation of the pressure- 
based formulation, eqns (13) and (15) are employed to 
separately interpolate Pc and Ca over each element. 
Within this traditional framework, the elemental 
approximation of the saturation derivative in eqn (22) 
can be equated with the expanded form, 

and row 2, 

CrdU 2A,S~ crY. 4A,S~ (31) 
~: = AtPc: + A,P~ a~ : A,~: + 3A,P~, 

where the numbered subscripts are the row and node of 
the local matrix, respectively. These expressions were 
developed in the work of Reeves u ~  and are termed row 
distributed chord slope (rdcs) approximations. Both 
C ~  and C~ "~  yield identities when substituted into eqn 
(27), ensuring that expansion of OS/Ot is exact over the 
element. 

The tics and rdcs approximations can also be 
developed in conjunction with mass lumping proce- 
dures. Expansion of the saturation derivative is 
preserved in this case by equating the elemental 
approximations: 

: : [ " ; * 'LA,P,  IJ' 

(~ T) C~ 0", ~ ~ (26) which yields the ,cs a p p r o = t i o n s :  
= C o , , ~ i  - -  i ~- 

c~.T" = 2a.So. _ a . s .  A,pc: A,p~ 
and application of the linear Galerkin finite element 

2A, S~ A,So. method yields C~L = A,P~, - Ad'~.j 

g [ ~ , $ ~  = ;AI ~ AtP~ 1 (27) and the rdcs approximations: 

Expansion of 8S/Ot can be preserved by developing 
element-dependent capacity coemcients such that the 
equality in eqn (27) is satisfied. Two procedures were 
tested. The first method solves the two by two system 
directly for the unknown element-dependent capacity 
coefficients producing: 

A,So, (a,~,  + 5A,P,,) - A, So,(A,P:, - A,~,)  
(Atpc:)2 + 4A,Pc. Atp~ + (A,p:~)2 

(28) 
A,So: ( a , ~ ,  - a,p.,)  + a,S~,(  Sa,Pc. -.- a ,p~)  

(A,p¢,)2 + 4A,P~ -,- (A,P~) 2 

(29) 

These expressions are referred to herein as distributed 
chord slope (des) approximations because nodal 
capacity coefficients depend on capillary pressures at 
both nodes in the element. These approximations were 
successfully used in a two-phase model developed by 
Gamliel. 13,14 

The second approach treats each equation in (27) 
separately, developing Co approximations that depend 
on the row of the local matrix. For row 1, 

C;.'~. = 4 A t S : '  ' ~  2AtSa" 
3 a , ~ . .  a,P:, C~,., : a,~. -,- ,<,~, (30) 

C~,.,~. L 3A,$o, 
- - = 2 A , ~ .  c ; . ~ ' : o  

3AtS~ 
: o = 2A,P  

(32) 

(33) 

(34) 

(35) 

A third approach which preserves expansion of OS/Ot 
employs a non-traditional FE procedure. Rather than 
separately interpolating Ca and Pc, an elemental 
approximation of eqn (22) is defined by collectively 
interpolating the expanded saturation derivative, 

~ OS,,, ~ O~'.~L -'- C OP~ (36) 
o, .: co,-  , _  o o, 

Applying the Galerkin finite element method to these 
non-traditional approximations generates eqn (16) with 
the mass matrix: 

t , ' r = - r  07) 

Again equating these approximations with the satura- 
tion derivatives in eqn (27) and solving for the capacity 
coegtcients yields the scs approximation in eqn (23). The 
capacity c o e l ~ e n t  approximations in this case are 
continuous at the elemental boundaries. This formula- 
don is referred to as the FEes approximation. 
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Fig. i. Drainage P~(S.) functions. 

The mass lumped variant of  the FEcs scheme is 

.A, .d " = oL,[Co.,: 0 '  ' (38) 
2 co, j 

which is equivalent to the L2 lumping scheme of Milly. 22 
Conceptually, however, this formuation is distinguished 
as a standard lumping procedure applied to the 

r 

elemental approximation OSo/Ot = CoL}Pc/Oi" Also note 
that assemblage of this approximation is equivalent to 
the fully implicit FD approximation. Consequently, 
evaluation of the capacity coefficients again yields the 
scs approximation in eqn (23) which is known to 
produce good mass balance accuracy in FD simulators. 

All modified chord slope approximations are easily 
implemented by substitution into the local matrix. One 
difficulty arises with chord slope approximations when 
the time rate of change in Pc is small, such that the 
denominator approaches zero. In this work, when 
implementing any of the chord slope approximations, 
the absolute value of  the denominator was inspected and 
required to be greater than 1(-10), otherwise Co was 
evaluated with an analytical derivative of  P~(S.). 

Additionally, Co was assigned a minimum absolute 
value of 1(-6) whenever calculated values fell below this 
level. The consequence of using a nonzero minimnm Ca 
is examined in a later section. 

NL'MERICAL EXPERLMENTS AND ANALYSIS 

Simnlatioa eouditlons 

The following numerical simulations involve one- 
dimensional vertical two-phase flow in a homogeneous 
porous medium. All solutions were obtained on a 
uniform mesh with variable time increments. The time 
step sizes were adjusted dynamically based on the 
number of iterations required for convergence but were 
restricted to a specified maximum size. 

The influence of soil and fluid properties on numerical 
mass balance behavior was examined with comparisons 
from two media~contaminant systems. Transport of 
trichloroethaue in Borden sand was simulated with data 
from Demond & Roberts. 8 The second system employs 
data from Kueper ez al. t8 and Hest-Madsen, Is simulat- 
ing the migration of tetrachloroethylene in Ottawa sand. 
The Ottawa sand is a uniform, permeable soil that is 
readily drained over small displacement pressures. 
Conversely, the well-sorted Borden sand is less perme- 
able and has a wider pore distribution, resulting in 
larger displacement pressures. All soil and fluid proper- 
ties are listed in Table 1 and Pc(S2) relations for both 
systems are shown in Fig. 1. 

.Mass balance calculation 

Mass balance checks were used to assess each 
simulator's ability to solve the governing flow equa- 
tions, providing a necessary but not sufficient measure 
of solution accuracy. An incremental mass balance 

Table 1. Soft and O i l  INU'imetera used in aimulatiom 

Parameter System 1 System 2 

Soil type Borden sand #25 Ottawa sand 
Porosky 0.33 0-39 
Intrinsic permeability (cm2~ 8.36 x 10 -s 2-05 x 10 -6 
Matrix compressibility (cm" dyne) 0.0 0-0 
Residual water saturation 0.204 0-0617 
van Genuchten fitting parameters 

c~ (cra z dyne) 5.2 × 10 -s 1-87 x 10 -4 
n 5-62 6-19 

Organic contaminant 1,1,2-trichioroethane tetrachloroethylene 
molecular weii~ht (g tool) 133-4 143-8 
Density (gcm ~) 1.44 1"61 
Viscosity (poise) 2 0-0119 0-009 
Compressibility (on dyne) 0.0 0-0 

Water 
Density (g on-') 1-0 1.0 
Viscosity (poise) ~ 0-01 0.01 
Compressibility (cm':dyne) 0-0 0-0 



Errors in modeling two-phase immiscible flows 229 

coefficient was calculated at each time step using 

MBEo = F~'  (39) 

where ~ is the a-fluid mass storage at time t and F~ t is 
the net a-fluid mass entering the computation domain 
during the time step At. An MBEa value of unity 
indicates mass is perfectly conserved during the time 
increment At. 

Boundary fluxes in the FD models were evaluated 
with Darcy's Law at the interblock location between the 
boundary nodes (Bi) and the first interior node ( /+  1), 

where interblock transmissibilities are evaluated as 
arithmetic means. Boundary fluxes in the FE model 
were calculated by back-substituting predicted pressures 
into the FE equations and solving for the boundary 
integral term.is 

A cumulative mass balance error was also calculated 
using 

% cumulative error(t) = 100.1.0 - " ~  - Me~; 
EAt F~'  '" (41) 

where M°~ is the initial ,,-fluid mass storage at time zero. 

Model verification 

Each of the three numerical models was verified against 
analytical solutions developed by McWhorter & 
Sunada. 21 These integral solutions describe the 
unsteady horizontal flow of two incompressible viscous 
fluids taking full account of  capillary drive. Compar- 
isons were made for one-dimensional unidirectional 
displacement of water by trichioroethane in soil system 
1. The closed form solutions require a decaying organic 
influx given by: 

qo(O. t) = At -I/2 (42) 

where qo is the organic injection rate, and A is a constant 
associated with the steady- boundary saturation 
So = S~(O.t). For all model comparisons So was 
prescribed as 0.5 and the associated value of A was 
0-017187. 

Figure 2 compares the analytical and numerical 
solutions demonstrating close agreement for all three 
models. Small cumulative mass balance errors and 
deviations from the analytical solutions were observed 
in the pressure-based solutions. Thes errors can be 
attributed to the minimum Co designation and are 
discussed in a later section. The above comparisons 
verify" the ability of each of the three numerical codes to 
correctly solve the governing two-phase horizontal flow 
equations. 

Finite difference (pressure) 
0.5 ['~N::~-~,~.__ 'rl num~ric~ [ 
0.4 

~ 0.3 

~ 0.2 

"i 0.1 

o 0 

Finite difference (P-S) 
0.5 

[ ' ~ ~ . _ _  'rl numerical | 

0.3 

0.2 

"i 0.1 

Fini te  element 

0.5 [ ~  'I:3 numdr.ica.l I 
0.4 

~ 0 . 3  

. ~  0.2 

0.1 

~ o 0 5 10 15 20 
distance (cm) 

Fig. 2. Comparisons of anal)~ical and numerical solutions for 
the 1D unidirectional water displacement problem at time 100, 

500 and 1500 s. 

I ,  lleence of tie initial eomlifiom 

Implementation of the pressure-based formulation 
requires the specification of initial fluid pressures. 
When one of the fluids is absent from the domain, 
specification of the nonexistent fluid pressure is non- 
unique. For example, in contaminant hydrology 
problems a common initial condition is an uncontami- 
nated aquifer devoid of  NAPLs (i.e. So = 0). In the case 
of two-phase flow- any value of Pc -< 0 is consistent with 
S,~ = I. Consequently, there exists an ambiguity as to 
the correct specification of the initial nonexistent NAPL 
pressure distribution. Several approaches have been 
cited, while other researchers have neglected to fully 
disclose initial conditions. This issue has not been fully 
resolved within the literature. 

One approach to the specification of P~ follows the 
classical method used in unsaturated flow modeling. 
Here the gas phase pressure is assumed to remain 
uniform at atmospheric conditions such that P. : -P... 
By analog, the absence of the organic liquid in the 
multiphase flow problem can be similarly characterized 
by setting Po = 0, again implying Pc =-P,,. Numeri- 
cally, the negative capillary pressure is handled easily by 
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Table 2. I J i a l  aml beumlary coatHtlem mini in almulatlom 

Parameter I m ~  initial Or~- ic  Restricted Organic 
conditions infiltration So range drainage 

Column length (cm) 90 30 30 30 
Initial conditions 

P~ Hydrostatic Hydrostatic OP,, ~ % -- ),~ % 0 z -  ~ o - ~ .  P o - ~  
Po 0.0 P,. P,, - Pc Hydrostatic 
Pc - P .  0-0 Pc(S,. = 0.9) 16cm H20 
S,, 1.0 1.0 0.9 S,,(Pc) 

Boundary conditions (top) 
P.  
P~ 
S. 

Boundary con~tions (bottom) 
P,. (d)me cm')  

P~ (dy'ne-cm 2) 
s .  

0"0 0-0 0"0 %- l$-Ocm 
%. l$-Ocm % • 15-0 cm %. 15-Ocm P~ 

S~(~) S . (~)  S~(~) 1-0 

~ . .  90-0 cm ~ . .  30-0 cm ~ °  - ~ • 30cm ~ - P~ 

0.0 P .  P~ - Pc 0.0 
l.O 1-O 0.9 S,,(Pc) 

setting S ,  = S . .  A uniform negative capillary pres- 
sure condition on the nonexistent organic fluid was 
employed in 2D simulations reported by Kuppusamy et 
Nl .  ' w  

An alternative approach imposes the capillary 
pressure constraint in eqn (5); i.e. P~(S,,= 1 ) = 0 .  
Physically, the capillary pressure at S .  = 1 must be 
zero since no interfaeial curvature exists in the presence 
of  only one fluid. This constraint, however, leads to a 
nonzero initial organic pressure distribution in the 
absence of  the organic fiqnid. The Pc = 0 approach has 
been used in both pressure-based and P-S formula- 
tions. 9.26 

The influence of  the initial organic pressure condition 
on mass balance accuracy was examined for a simula- 
tion of  NAPL infiltration with the FD pressure-based 
code. A column was initially satuated with water in 
hydrostatic equilibrium and initial NAPL pressures 
were specified using either Po = 0 or Pc = 0. Boundary 
and initial conditions are given in Table 2. 

The progression of  cumulative mass balance errors 
with time and the position of  the saturation fronts is 
plotted in Fig. 3. When the initial NAPL pressure 
distribution is established from Pc = 0, the cumulative 
mass balance error is small and diminishes over the 
course of  the simulation. Small errors suggest the 
predicted saturation front is correctly positioned. In 
contrast: large mass balance errors are observed when a 
uniform initial pressure distribution is chosen. The 
cumulative errors grow over the course of  the simulation 
as the NAP L advances deeper into the column and 
P~ = - P . ,  = % A h  deviates further from the condition 
Pc = 0. Propagation of  the saturation front is signifi- 
cantly impeded in this case. Thus it can be concluded 
that the correct initial pressure specification for an 
absent organic phase is Po = P~. 

When both fluids are initially present, the initial 
pressure field can be established from any initial 
saturation distribution by solving the sum of  the steady 

state flow equations: 24 

-(peAo% -- p . ,A .%)V~ = 0 (43) 

Influence of the calmdty ¢otMc/mt 

The influence of  C .  on mass balance accuracy was 
examined in simulations of  N A P L infiltration using the 
boundary and initial conditions in Table 2. The resulting 
cumulative mass balance errors are plotted in Fig. 4 as a 

12 / ' ' ' ' / 

10 I- ~ S y s t e m  1 

i ,  
0 

0 0.2 0 4 0 6 0.8 1 
• t / tnm" 

! 

~ P _ c  - 0 
~0 .8  . . . . .  = 0  

~ 0 . 6  S tem2 

MO'4 

Z~0.2 

0 
0 0.2 0.4 0.6 0.8 1 

x / L  
Fig. 3. Effect of initial NAPL pressure specification on 
cumulative mass baolance error and position of the saturation 
front. A, = 60/L and Atm~ = 20"0 and 0-5 s for systems 1 and 

2, respectively. 
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Fig. & Effect of  ,_~ and At on cumulative mass balance error at time 900 and 30 s in systems 1 and 2. A te . ,  in element size 
comparisons are 1-0 and 0.1 s, respectively'. Time step comparisons use a 20-element grid. 

func t ion  o f  A t  and  Az. Both  F D  schemes and  those  F E  
schemes which  preserve: expans ion  o f  the s a tu ra t i on  
der iva t ive  d e m o n s t r a t e  g o o d  mass  ba lance  accuracy ,  
wi th  e r rors  on  the o r d e r  o f  5 %  or  less. The  mass  ba lance  
e r ro r  does  no t  a p p e a r  to  be adverse ly  sensit ive to  A t  o r  
A z  over  the  range  examined .  In  con t ras t ,  F E  schemes 
using the s c s  or  ana ly t ica l  a p p r o x i m a t i o n s  p r o d u c e  mass  
ba lance  e r rors  on  the o rde r  o f  20% a n d  exhibi t  g rea te r  
sensi t ivi ty  to  A t  a n d  Az .  The  mass  ba lance  er rors  in 
these schemes can  be  a t t r i bu t ed  p r imar i ly  to  the  

temporal discretization terms because spatial discretiza- 
tion is identical for all models and mass balance 
accuracy in the conservative schemes is relatively 
insensitive to Az. 

Figure 5 compares the predicted saturation distribu- 
tions of  representative schemes with the P-S solutions. 
Recall that the P-S model does not require evaluation of  
a capacity coefficient in this two-phase case and hence 
exhibited excellent mass balance accuracy. Predictions 
from pressure-based formulations agree closely gith the 

Finite difference FE - trsditiontl chord slope F E -  tnslytmtl (w=l.0) 
I ~ ' - - r - - - r - - ~ -  ~ P S  Ig0 =ik . . . . . .  

_ _ [k~ . . - . .  P-based I~0 ceils I ~  ~ r ~  IZO cram I 

i "" I + ~ \  . - ,+-~  ® ,.t+. I % \  ..._.. Pmt2o ~ 1 
o ,k  ~ - - , - P + . d = ~  L ~ : ,...+,,.,co.,, j 

FE - u~lytica/(w=O.O) FE - row dia~buted chord alope PE - finite element chord slope 
1 

.8 o.8 

o+ 

O.4 

"~ 0.9 

° I 
xlL xlL xlL 

Fig. 5. Predicted NAPL saturation distribution g i th  selected capacity coefficient approximation forms. Time = 900 and 30 s in 
s)stems 1 and 2. 
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Table 3. Cmulative mmm balance errata ia mmlaflom o f  
NAPL idhratlea over the geaerdy Iiaear rqioa o f  

Pc(S-, < o-o) 
Algorithm Cemulative error (%) 

System 1 S)3tem 2 
FD, pressure based 0-1 8-6 x 10 -3 

FD, P-S formulation 5-0 x 10 -3 3-1 x 10--" 
FE, analytical ~w' • = 1-0) 0.09 0-86 
FE: time average Pc(w = 0-5) 0.16 1-47 
FE, previous time Pc(w = 0.0) 0.33 2.09 
Fe, mean Pc 0- i 5 1.46 
Fe, scs 0-08 !.26 
Fe, dcs 0-26 0-96 
Fe: rdcs 0-16 0-77 
Fe, fecs 0-32 0"01 

Time = 900 and 30 s for systems 1 and 2, respectis~ly. 

P-S solutions for the FD model and for those FE 
schemes which preserve elemental expansion of  the 
saturation derivative, i.e. precisely those schemes which 
~ield good mass balance accuracy. The non-conservative 
scs and analytical FE schemes under-predict the position 
of the saturation fronts in comparison with the mass 
conservative schemes. 

Errors observed in the presure-based FE solutions can 
be explained by failure to preserve expansion of  the 
discretized saturation derivative. This error can be 
quantified with an elemental residual, co ,  between 
the saturation derivative and the expanded form in eqn 
(27), 

'o =T_½ (44) 

The element-dependent C~  j, C~ nks, and C~ ~ approx- 
imations were developed on the basis of epsilono = O, 
and, hence, demonstrate good mass balance accuracy in 
Figs 4 and 5. The scs and analytical approximations do 
not necessarily satisfy expansion of the saturation 
derivative, in which case eo is nonzero. These latter 
approximations are continuous at the elemental bound- 
aries such that eo may be assembled and examined on 
a nodal basis: 

OLe " A S e-,. = - ~ - "  ~ o . - I - 4 A , S , ,  -AtSo._~) 

o L  e 
1 2  i ( c , ,  _: - - ( c o . _ .  

× - 

6C,,. - Co._. ) 

(45) 

Making the substitution AtPc. = A,S,,./C~., eqn (45) 
may be rearranged as 

o'. 
= - i T  . . . .  . 

( c:,: 
- -  A , S , . .  2 C~.. C: .  J 

where C~, indicates approximations by the analytical or 
scs methods. When e~, is zero, the expansion in eqn (22) 
is exact at node i and MBE = 1. A positive value of e'~, 
implies OS/Ot > CoOPC/Ot; the predicted change in 
saturation is less than the true (mass conservative) 
change, or MBE < 1. Conversely, e~, < 0 signifies an 
over-prediction in saturation change and MBE > 1. 

Examination of eqn (46) indicates e~, depends on the 
degree of nonlinearity in PC(S,); similar findings were 
presented by Milly. 22 Nonlinearity in the van Genuchten 
form of PC(S~) occurs in two regions (see Fig. 1): at the 
saturation front during the primary displacement of the 
wetting phase by a nonwetting N A P L  and near 
S-, = S,~. For the simulated organic infiltration prob- 
lems, the controlling nonlinearity appears to be the 
former region; the discrepancy in predicted NAPL 
saturation distributions occurs primarily in the position- 
ing of the saturation front and the water saturation 
behind the front is well above St,. At the saturation 
front, IC,,,_. _> Co..I > [C,, :' for flow in the direction of 
i -  1 to i - 1 ,  resulting in a nonzero e~,. The inexact 
expansion of OS/Ot over the nonlinear region of Pc(S,,) 
explains the poor mass balance accuracy evidenced in 
Figs 4 and 5. 

If Pc(S~.) is linear (i.e. C,:.._. = C~, =C~,_,), the 
residual e~. is zero and any of the C,: forms should 
yield good mass balance accura~,. This h)~otbesis was 
tested by increasing the initial uniform organic satura- 
tion from zero to 0.1, forcing organic infiltration 
over the generally linear segment of Pc(S¢) in Fig 1. 
Using initial and boundary conditions given in Table 2, 
predictions were obtained on a 60-element grid 
with maximum time steps of 1.0 and 0-1 s for systems 1 
and 2. The resulting mass balance errors are listed 
in Table 3 and demonstrate that good accuracy is 
obtained with all C,, schemes when P_,(S~) is linear. The 
predicted saturation distributions agreed closely for all 
c a s e s .  

The influence of nonliuearity in Pc(S~) on mass 
balance accuracy was investigated by plotting incre- 
mental MBE against time in Fig 6. The P-S formulation 
exhibits constant MBE = ! and excellent cumulative 
mass balance accuracy. In comparison, all pressure- 
based solutions display oscillator" behavior in MBE(t) 
with varying frequency and amplitude. The dcs and rdcs 
forms exhibited especially large amplitudes in MBE(t) 
which could be damped by increasing the convergence 
criterion. In the other schemes the convergence criterion 
had little influence on the amplitude of MBE. For all 
schemes, grid size had the greatest effect on frequency 
and amplitude of oscillations. Time step size had little 
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Fig. 6. Mass balance errors vs time from simulations ~th  system 2 data: 1, P-S formulation; 2-3, FD pressure formulation; 4-5, FEcs 
formulation; 6-7, FErdcs scheme; 8-9, FE pressure based model with scs approximations; 10-12, FE pressure based model with 

analytical Co{w = 0) approximations. 

overall influence in the mass conservative cases, but 
greatly influenced cumulative mass balance accuracy in 
models emplo]ring the anaJytical capacity forms. 

Heuristic explanations can be offered for the observed 
behavior in MBE(t,'- by examining the nodal residual 
given by eqn (46). Consider the analytical and scs 
approximations. Figure 7 illustrates the capacity coeffi- 
cients of these schemes at three nodes at the toe of the 
saturation front. When the saturation front initially 
enters a new element i -  1 at time t -  1, both S0.:,_:, 
and C,'_L,_; are small, whereas immediately behind the 
front So,_: and 'C7,_] are relatively large. Hence at the 
saturation front C,:t-],/C,'-t.t_- >> 1 and behind the 
front C,:,_l / C,'_-j_l. ~ 1. The nodal residual e7 is thus 
nonzero yielding MBE ~ 1. 

The relative magnitude of the last two terms in eqn 
(46) alternate in response to the nodal saturation values. 
As the front initially enters node i -  1 there is a period 
of pressure build-up ~ithout appreciable desaturation, 
i.e. AtSz_: ~ 0. The second term in eqn (46) increases in 
relative magnitude producing a positive slope in the 
MBE(t). Once the entry pressure is exceeded, A,Sz_, 
increases, correspondingly increasing the relative mag- 
nitude of the last term in eqn (46). This produces a 
negative slope in MBE(t). The interplay between the last 
two terms in eqn (46) as the saturation front enters and 
fills each element accounts for the oscillato~ behavior 
of MBE(t). Reducing the element size increases the 
number of elements encountered by the saturation front, 
increasing the frequeno" of the MBE~t). A smaller 
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Fig. 7. Analytical and scs Ca approximations. 

element size also requires less time to establish the entry 
pressure, reducing the amplitude of  MBE(t). 

The FEcs, dcs and rdcs approximations cannot be 
depicted graphically and thus the discussion above is not 
necessarily applicable to these schemes. Similar oscilla- 
tory behavior in Fig 6, together with an observed 
damping when Co is constant, suggests that these 
fluctuations may likewise be attributable to the non- 
linearity in ~(S , ) .  

The FD pressure-based model produced a saw tooth 
wave pattern in MBE(t) rather than the sinusoidal 
waves observed with the FE models. This result can be 
explained by considering the nodal residual obtained by 
rearranging eqn (23): 

FD AtS,,. C;L~,_, A,Pc, (47) CO: ~ 

The scs approximation is developed by imposing 
e~.. FD = 0. If C,~C~. is evaluated in a fully implicit 
manner, no oscillatory behavior is expected, 
i.e. e ~ D = 0  and MBE( t )=  1. In the numerical 
scheme, however, evaluation of Ca~: is lagged by 
one iteration. This leads to an under-evaluation 
of C~.~_. at the saturation front and results in non- 
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Fill. 8. Cumulative mass balance error at t --30s versus 
average time step size. FE simulations are with System 2 data 

using analytical (w = 0) capacity coefficients. 

negative f in .  Consequently, MBE(t) is bounded by 
MItE _< 1, producing the saw tooth wave pattern. 

Figure 6 reveals that oscillations in MBE(t) do not 
necessarily result in unacceptable cumulative mass 
balance accuracy. For the mass conservative FE 
schemes, MBE(t) is generally centered on MBE = 1; it 
is displaced from MBE = 1 in the non-conservative 
schemes. The magnitude of the displacement correlates 
with the cumulative error and is influenced by both Az 
and At. This behavior is also exhibited in Fig 4 which 
shows cumulative errors in the non-conservative 
schemes decrease with decreasing Az or increasing At. 
The influence of At is surprising because the improved 
accuracy occurs despite the expected increase in 
truncation error which is dominated by terms like 
( - A t / 2 ~ A t 2 / 3 ) S : .  6 Moreover: the magnitude of 
accuracy improvement appears to be proportional to 
the explicit weighting on the previous time step 
information; w = 0 produces the greatest improvement 
and w = 1 exhibits no improvement. 

Additional anal)~is was undertaken to explore 
cumulative mass balance errors from the FE anal)~ical 
Co scheme (w = 0) for a range of element and step sizes. 
Figure 8 reveals that cumulative accuracy consistently 
improves with increasing At until the error is virtually 
eliminated at some critical average At. At large time 
steps, however, the trend reverses .vielding increasing 
error with increasing At. 

The unanticipated influence of time step can be 
explained by again considering the last two terms in 
the nodal residual eqn (46). If the previous time step 
solutions are employed to evaluate the analytical 
capacity terms, these terms are constant, independent 
of t - 1  nodal saturations. Moreover, the ratio 
CTz-i/C;-i.z-i is large because sC~_I, t is undefined and 
thus assigned a small nonzero value. Now examine the 
A~Sz_l and AzSi terms. For small At, the time step is 
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System 2 data and a 120-element grid. 

insufficient for the pressure build-up at node i - 1  to 
exceed the entry pressure. Consequently A,Sj_I ~ 0, the 
second term in eqn (46) is dominant, and e~ is positive. 
This analysis is supported by Figs 6-10 which shows 
MBE(t) lies below MBE = 1. For large At the entry 
pressure is exceeded within a single time step and AtSi_ ! 
is nonzero. Thus the last term in eqn (46) becomes 
dominant, e, is negative, and MBE(t) is offset above 
MBE = 1 in Figs 6-11. At some critical At there is a 
cancelling of  the last two terms in eqn (46) yielding 
e7 = 0 and good cumulative mass balance accuracy. 

The magnitude and average sign of e7 is reflected in 
the positioning of the saturation front. Figure 9 shows 

that the choice of  At can impede, advance, or match the 
correct position of  the saturation front. The dependence 
of cumulative error on time step size may partially 
explain the improved mass balance accuracy obtained 
with the modified chord slope approximation of 
Kalnarachchi & Parker 17 which effectively increases 
the explicit weighting. 

Inf luence o f  tile minimum cspacity coemdem 

A common problem in contaminant hydrology is the 
infiltration of  a NAPL into an uncontaminated aquifer 
(So =0) .  In the absence of the NAPL, Pc = 0  and 
C., = 0. Because the pressure-based formulation tends 
toward singularity as Pc approaches zero, a small 
'dummy' C., or So is typically sp~fied.  1"6"17 Kuepcr Ar 
Frind 19 argue that a major advantage of the P-S 
formulation is that it can easily accommodate condi- 
tions of  a nonexistent NAPL without fictitious repre- 
sentation of the state variables. 

The influence of the minimum Ca on mass balance 
accuracy was studied in simulations of NAPL inf'dtra- 
don in a 40-element domain, using initial and boundary 
conditions given in Table 2. Figure 10 shows the 
variation of cumulative mass balance error with the 
log(min C,.). A measure of the relative computational 
effort (log [number of time steps x the total number of 
iterations]) 22 is also plotted. 

Excellent mass balance accuracy was obtained with 
each of the mass conservative Ca forms when rain 
Co _< 1 (-6);  mass balance accuracy degenerates drama- 
tically when rain Co > 1(-6). Thus, the fictitious or 
'dummy' Co can be made sufficiently small such that 
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Fig. 10. Effect of rain Ca on cumulative mass balance accuracy Oefi ordinate) and relative computational work (right ordinate). 
Simulations are with System 2 data. 



236 Linda M. Abriola & Klaus Rathfelder 

Table 4. eOml~risom of  emmalative m bulam~ ecrom sad comlmlatleml work from eomisamt xml mass lmml~l formulsflms ~ the 
NAPL Inlratlou ~ with System 2 clam 

Co form Consistent form Mass lumped form 

Cumulative error (%) Work" Cumulat ive  error (%) Work. 

rE chord slope ~E = 1(-4)~ 
min Ca = 1(-5) 1-58 
rain Ca = I(-6) 0.11 
rain ca = 1(-7) 0.10 

FEdcs "e = 1(-4)~ 
min Co = 1(-5) 4"99 
min Ca -- 1(-6) 5-99 
rain Co = 1(-7) 2.13 
min Co = 1( -8 )  b 

FErdcs ~e = 1(-4)~ 
rain ca  = 1( -5)  b 

rain Ca = 1 (-6) b 
min Co = I(-7) l, 
rain Ca = 1(-8) b 

5-18 3-36 5-46 
5.49 0-21 5.55 
5-82 0-03 5.68 

5-63 1.09 5-52 
5-33 0-85 5.62 
5-62 1.00 5-72 

1-03 5-92 

4-56 5.52 
0-46 5.58 
0-96 5.77 
1.03 5-91 

a Work = log (number of iteration x number of lime steps). 
b Would not converge. 

solution accuracy is not adversely affected. Although 
soil type did not appreciably affect these observations 
for the exumincd simulations, it is possible that the 
optimal selection of rain Co is problem-specific. 
Consequently the specification of rain Ca should be 
considered a possible source of mass balance error and 
examined with appropriate sensitivity studies. 

The plots in Fig 10 also provide evidence that the FD 
and FEcs methods are more stable and accurate than the 
FE tics and rdcs schemes. The FD and FEcs methods 
produce excellent mass balance results with a well- 
defined trade-off between mass balance azcuracy and 
computational work. In comparison the dcs and rdcs 
methods produce somewhat poorer mass balance 
accuracy, with errors generally ranging above 1%. 
With these schemes, computational work appears to 
be less dependent on min C,,. In the case of the rdcs 
method, the range in which accurate converged 
solutions could be obtained is relatively narrow. 

laflaence of mass lumping 

Mass lumping procedures have been advocated for FE 
unsaturated flow models to control oscillatory solutions 
in advection dominated problems. ~22 The diagonaliza- 
tion of the mass matrix introduces additional dissipation 
in the stiffness matrix which damps oscillatory solu- 
tions. 3° In general, mass lumping tends to improve 
solution stability at the expense of some loss in 
accuracy. 16.30 

Mass lumping procedures were implemented in 
connection with the FEcs, tics, and rdcs schemes 
simulating organic infiltration in system 2 data on a 
40-elemem grid. Table 4 lists the resulting cumulative 
mass balance errors from the lumped and consistent 
formulations. Mass balance errors in the lumped models 
agree favorably with those obtained from the consistent 

models, and the predicted saturation distributions from 
all models are in close agreement. 

Mass lumping was found to improve stability of the 
numerical solutions. The dcs and rdcs methods bene- 
fitted greatly from mass lumping, exhibiting an oscilla- 
tion free incremental MBE(t) which was close to unity 
after an initial adjustment period. The improved 
stability of the lumped schemes expands the conver- 
gence range over e and min Co, especially with the rdcs 
approach where none of the consistent forms would 
converge for e _< 1(-4). Greater stability is also 
accompanied by improved cumulative mass balance 
accuracy and gencrally increased computational work. 

The mass lumped FCcs method is equivalent to the 
implicit FD approach and hence produces a saw tooth 
wave in MBE(t) similar to that observed in the FD 
solutions. Mass lumping in this scheme results in some 
loss of cumulative mass balance accuracy and generally 
increased computational effort. A possible source of the 
error increase is the rain C, designation which was 
shown previously to affect mass balance accuracy in the 
FD model. 

FE solutions of organic liquid drainage and redis- 
tribution under gravity control have been showln to 
exhibit greater mass balance errors than corresponding 
infiltration problems, l: Therefore, mass balance beha- 
vior was examined in an advection dominated two- 
phase NAPL drainage problem in system 2 using initial 
and boundary conditions given in Table 2. For the 
purpose of investigating mass balance accuracy only, 
these simulations assume P~(S~) is non-hysteretic such 
that the drainage function can adequately represent 
imbibition processes. Predicted organic saturation 
distributions on 40- and 120-element grids are show-a 
in Fig. 11. 

In the upper plot, the FD P-S and pressure-based 
solutions agree closely and exhibit a strong dependence 
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tio~ for the organic liqmd drair~ge problem at simulation 

time = 10s. 

on mesh spacing. The coarse grid solutions exhibit a 
slightly dispersed drainage front and a saturation profile 
behind the front which differs markedly from that of the 
fine grid solutions. Although saturation profiles are not 
in agreement, both coarse and fine grid solutions 
produce good cumulative mass balance accuracy as 
shown in Table 5. This problem demonstrates mass 
conservation is not a sufficient condition for solution 
accuracy. 

The observed discrepancies in the saturation profiles 
are believed to be due to the hyperbolic character of the 

coupled flow equations during drainage over the fiat 
linear portion of /'c(S~) where capillary dissipative 
effects are small. Analogous to the Buckley-Leverett 
problem, solving these equations with midpoint weight- 
ing on the transmissibility terms produces mass 
conservative, but physically inaccurate, solutions, s It 
can be shown that additional numerical dissipation from 
upstream weighting of  transmissibilities on the 40- 
e lement  grid produces solutions which are aligned 
closely with the midpoint weighting results on the 120- 
element grid. 

Inspection of the middle plot in Fig. 11 shows that FE 
solutions with consistent mass matrices do not exhibit 
the same spatial discretization dependence of the 
saturation profile behind the drainage front. The coarse 
grid FE solutions do show some numerical dispersion at 
the saturation front, similar to the FD solutions, and 
also a slight undershoot at the toe of the front, 
analogous to that observed with unsaturated flow 
models. 7 The fine grid FE consistent and FD solutions 
agree very closely. 

The effect of lumping is displayed in the bottom plot 
in Fig. 1 I. The lumped FEcs scheme is equivalent to the 
FD prcssure-based formulation, and thus, organic 
saturation predictions exhibit similar behavior and 
close agreement with the FD results. Mass lumping 
eliminates undershoot at the toe of the front, but also 
creates a discretization dependence of the saturation 
profile observed with the FD solutions. The lumped des 
and rdcs schemes produced similar results, but are not 
shog~t in Fig. 11. Inspection of Table 5 shows mass 
lumping reduced the cumulative mass balance error, 
although this is an insufficient criterion for accuracy in 
this advection dominated problem; it also improved 
stability and reduced the computational work. 

CONCLUSIONS AND RECO.'~LMENDATIONS 

This research has identified causes of mass balance 
errors observed in pressure-based two phase flow 
models. A number of remedies have been proposed 
and evaluated. The results demonstrate that mass 
conservative predictions can be obtained with FE and 
FD pressure-based or pressure-saturation formulations 
if capacity coefficients and initial conditions are properly 
specified. Specific conclusions and recommendations are 
summarized below: 

1. When NAPL infiltration into a pristine aquifer is 
considered, mass balance accuracy depends on 
the proper specification of the initial nonexistent 
NAPL pressure distribution. Mass conservative 
solutions are obtained when the initial NAPL 
pressure distribution is established on the basis of 
e~=0.  

2. Capacity coefficients imbedded in the pressure- 
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Table 5. Comparison of m~dafJve ma~ balance errors Rd eOmlFmZJw~ work frees e m i l a t  -.~ .,,ms l~,ped formJWdmm ks tlme 
NAPL ~ g ¢ ~ l  ~ 48. and 120¢lmamt 

Ca Form Con.~tent form Mass lumped form 

Cumulative error (%) Work a Cumulative error (%) Work* 

FD pr--~ure based (40) 1-7(-4) 5-55 
FD pressure based (120) 1-9(-4) 5-92 
FD P-S formulation (40) 1.2(-6) 4.74 
FD P-S formulation (120) 1.8(-6) 5.02 
FEcs (40) 0.20 5.05 
FEcs (120) 0-28 5.49 
FEdcs (40) 2-48 7-93 
FErdcs (40) b 

0"07 4"79 
0"03 5"13 
1 " 0 7  4-88 
0-93 4-88 

aWork = log (number of iteration xnumber of time steps). 
b Would not converge. 

. 

. 

based formulation can be made sufficiently small 
such that they do not appreciably affect mass 
balance accuracy or numerical solutions when 
Pc = 0. In this work a rain Co = 1 ( -6)  was found 
to provide both good mass balance accuracy and 
good covergence performlmce. ExAmination of 
solution sensitivity to rain C~, is recommended to 
ensure acceptable mass balance results. 
Mass balance errors in FE pressure-based models 
result from failure to preserve expansion of OS/Ot 
over the element when P~(S,~) is nonlinear. The 
scs and analytical Ca approximations employed 
in traditional FE pressure-based models do not 
necessarily preserve expansion of  OS]Ot in the van 
Genuchten form of Pc(S~) over the nonlinear 
segment near S ,  = 1. An analysis of  the residual 
error, e', shows that error canceling effects and 
improved mass balance accuracy can be obtained 
by increasing the explicitness of time weighting on 
C,,, together With proper selection of  At. The 
residual error expressions can also be used to 
explain oscillatory behavior in the incremental 
mass balance error observed in all pressure-based 
models. When P~(S~) is linear, Ca is constant 
yielding good mass balance accuracy in all 
models. 
Conservation of  mass in FE pressure-based 
solutions can be obtained when Co is formulated 
to preserve the elemental approximation of  the 
saturation time derivative. Within the traditional 
FE framework the expansion is preserved With 
the element-dependent dcs and rdcs approxima- 
tions. In a non-traditional FE approach using 
few'er basis functions, expansion of  the saturation 
derivative is preserved With the FEcs form. 

Although superior to previous FE formula- 
tions, the dcs and rdcs approximations exhibit 
some instabilities manifested by large amplitudes 
in MBE(t), a smaller convergence range than 
corresponding FD and FEcs schemes, and 
cumulative mass balance errors which are good 
but generally greater than 1%. These instabilities 

are apparently related to the distributed nature of  
the time derivative since they are virtually 
eliminated with mass lnmping procedures. Addi- 
tionally, the elemental dependence of the dcs and 
rdcs schemes complicates extensions to higher 
order interpolating functions or multi-dimen- 
sional systems. In comparison, the scs approx- 
imations used in the FEcs formulation are 
continuous at the element boundaries and there- 
fore are easily extended. The FEcs scheme also 
has advantages in accuracy and stability over the 
dcs and rdcs forms. 

5. Mass lumping generally improves stabifity and 
mass balance accuracy of the dcs and rdcs FE 
schemes and eliminates undershoot behavior in 
coarse grid solutions. However, for advection 
dominated systems, FE schemes with consistent 
mass matrices are more accurate than lumped 
schemes at a given discretization. Coarse grid, 
lumped scheme solutions for such systems 
exhibited an incorrect distribution of saturations 
behind the drainage front. 

Mass lumping in the FEcs formulation was not 
beneficial in NAPL infiltration problems and only 
slightly reduced cumulative error and work 
requirements in advcction dominated organic 
drainage problems. Thus, there appears to be no 
clear advantage in the application of mass 
lumping to the FEcs scheme. 

6. The consistent FEcs formulation is recommended 
for FE pressure-based multiphase flow models on 
the basis of  superior accuracy, stability, and ease 
in implementation. 
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