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Abstraet--A state space based dual-rate self-tuning algo- 
rithm is proposed for the case where the output sampling 
rate is slower than the input update rate. A state space 
innovation model suitable for dual-rate self-tuning control is 
derived. The parameters of the innovation model together 
with the states are estimated by a recursive prediction error 
estimator. The control strategy has been based on a pole 
restriction principle. Simulation studies are presented to 
establish the practical usefulness of the algorithm. 

1. Introduction 
ADAPTIVE REGULATORS OFFER a practical solution to control 
problems where drift in the plant parameters or controller 
parameters may cause a sensitivity problem. Among the 
adaptive approaches the self-tuning regulators (STR) are 
becoming increasingly popular and have been tested in a 
number of process control applications (Sastry et al., 1977; 
Kallstrom et al., 1978; Mills et aL, 1991). In all of these 
applications, the sampling intervals in the input update and 
output measurements were equal. However, there are 
situations where the direct application of uniform rate STR 
poses implementation problems. Such situations may include 
the digital control of plants where the sampling period is 
required to be sufficiently small due to the fast plant 
dynamics, but the computational requirements per iteration 
demand a larger sampling interval. In other situations, such 
as chemical processing applications, the availability of output 
measurements may have a larger sampling interval compared 
to the control update (Lu et al., 1990). 

In these situations the dual-rate self-tuning presents a 
suitable solution to the control implementation problem. In 
addition to remedying the above, dual-rate sampling can also 
be used advantageously to prevent plants from becoming 
non-minimum in phase during the discretization (Kannaiah et 
al., 1984). In a dual-rate control scheme the input update and 
output measurements are done at two different rates. Since 
STR's are based on certainty equivalence coupling of 
parameter estimation and control design, a dual-rate 
self-tuner usually performs data collection, parameter 
estimation, control design and control implementation at 
different rates. 

A number of dual-rate self-tuning algorithms have been 
proposed in the literature (Araki and Hagiwara, 1986; Hang 
et al., 1989, 1993; Lu et al., 1990; Kannaiah et al., 1984). Most 
of them are based on an input-output model. In this paper 
the application of a state space model for dual-rate 
self-tuning is considered, where the output sampling rate is 
slower than the input update rate. The output sampling 
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interval is assumed to be an integral multiple of the input 
update rate. Such a situation may arise where the availability 
of output measurements has a large cycle time corresponding 
to the input. Even if the output measurement has an identical 
cycle time to the input, a slower model update corresponding 
to a larger sampling interval may be desirable in many cases. 
A reduced-order approximate model becomes more robust 
with a large sampling interval in the presence of unmodeled 
dynamics (Astrom and Wittenmark, 1989). 

In this paper, a state space innovation model suitable for 
self-tuning control is derived for the proposed problem. The 
parameters of the innovation model together with the states 
are estimated by a recursive prediction error (RPE) 
estimator. The control strategy has been based on a pole 
restriction principle. A simulation study is carried on in order 
to establish the feasibility of the proposed algorithm. 

The organization of the paper is as follows. Section 2 
presents the development of the innovation model. Section 3 
presents the joint parameter and state estimation algorithm 
of the innovation model using a recursive prediction error 
method. Section 4 deals with the control strategy and Section 
5 reports on the simulation study. 

2. State space innovation model  for  the dual-rate plant 
Consider the stochastic dual-rate plant given by the 

following state space model: 

~ ( k + l ) = A ~ ( k ) + B u ( k ) + F w ( k ) ;  k = 0 , 1 , 2  . . . .  ; (1) 

y (k )  = C i ( k )  + v(k); k = 0, J, 2J . . . .  ; (2) 

where i(k) • ~", u (k )  • ~ ' ,  y ( k )  • ~"' ,  w (k )  • ~q  and 
v(k)  • ~" '  are the state, control input, measured output, 
internal disturbance/modeling error and measurement noise, 
respectively. The output sampling interval is assumed to be 
an integral multiple J of the input sampling interval, i.e. y(k) ,  
k = 0, J, 2J . . . .  are only available as the output. The system 
matrices A, B, C, and F are of proper dimensions, w(k)  and 
v(k)  are assumed to have zero mean, and individually and 
mutually uncorrelated (white) random sequences with 
variances Zw and Y~, respectively. 

Now consider the optimal mean square state estimation of 
the plant. Since w(k)  and v(k)  are white and have zero 
mean, the following state estimation procedure can b e  
adopted 

i ( k  + 1 / k ) =  A ~ ( k / k )  + Bu(k) ,  (3) 

i ( k / k ) = i ( k / k - l )  f o r k ~ O , J ,  2J . . . . .  (4) 

~ ( k / k ) = ~ ( k / k - 1 ) + K e ( k )  f o r k = O , J ,  2J . . . . .  (5) 

e ( k ) = y ( k ) - C i ( k / k - l )  f o r k = O , J ,  2J . . . . .  (6) 

where i ( i / j )  denotes the estimate of i(i) from the 
observations up to the jth instant and K is an n × m matrix to 
be chosen optimally in order to minimize the mean square 
error of estimation of the states. 

Defining x(k) ~ i ( k / k  - 1) and L ~- A K ,  equations (3) and 
(4), and (3) and (5), respectively, may be combined to give 

x ( k + l ) = A x ( k ) + B u ( k )  f o r k ~ O , J ,  2J . . . . .  (7) 

x(k + 1) = Ax(k) + Bu(k )  + L e ( k )  

for k = 0, J, 2J . . . . .  (8) 
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Now equation (6) may be written as 

y ( k )  = Cx(k) + e(k)  for k = 0, J, 2J  . . . . .  (9) 

Equations (7)-(9)  give an alternative description of the 
dual-rate state variable model originally introduced by 
equations (1) and (2). We now show that if the gain matrix K 
is optimally chosen to minimize the mean square error  then 
the sequence e(k)  becomes an innovation sequence. 
Combining equations (2) and (6) one may obtain 

e ( k ) = C l ( k / k - 1 ) + v ( k )  f o r k = O , J ,  2J  . . . . .  (10) 

where i ( k / k -  1 ) ~ - i ( k ) - i ( k / k -  1) is the state estimation 
error. For a minimum mean square estimation, the 
estimation error  must  be orthogonal to the observations. 
Thus i ( k / k  - 1 )  must be uncorrelated to y(s) ,  s < k. Further  
v(k)  being individually white, is uncorrelated to y(s) ,  s < k. 
Therefore,  from equation (10) it may be concluded that e(k)  
is also uncorrelated to y(s) ,  s < k. In other  words e(k)  is an 
innovation sequence and the alternative plant description 
given by equations (7)-(9)  is an innovation representation. 

It can be shown by direct substitution that the equivalent 
description of the plant given by equations (1) and (2) 
corresponding to the output sampling interval is given by 

x(k +J) = _Ax(k) + ~ B_~u(k  + i - I) + _w(k) 

f o r k = O , J ,  2J . . . . .  (11) 

y ( k ) = C x ( k ) + v ( k )  f o r k = 0 ,  J, 2J  . . . . .  (12) 

where _A=A J, B_~=A s ~B, and _w is a zero mean 
uncorrelated sequence having variance 

S I 

~iZwfl, .v with ~ i = A i F .  
i o 

The corresponding innovation model is also obtained by 
successive substitution of equations (7)-(9)  

s 

x(k + J )  = _Ax(k) + ~'. B_~u(k + i - 1) + _Le(k) 
i - I  

f o r k = O , J ,  2J . . . . .  (13) 

y (k )  = Cx(k) + e(k)  for k = 0, J, 2J  . . . . .  (14) 

where _L = A s-  ~ L. 
This description is another  possible candidate for state and 

parameter  estimation of the plant. However,  a direct 
estimation of the plant parameters  and states from the model 
described by equations (7)-(9)  is more suitable from an 
adaptive control point of view. The control update requires 
the parameters  and states of the plant model corresponding 
to the input sampling rate. The estimation of these quantit ies 
from that of the model described by equations (13) and (14) 
is computationally tedious. 

The implicit assumption in the above approach is that 
there exists a one-to-one correspondence between the plant 
and noise matrices used in equations (7)-(9),  and those in 
equations (13) and (14). The necessary and sufficient 
conditions for the validity of this assumption is stated 
through the following proposition. 

Proposition. The matrices A,  B, and L given in equations 
(7)-(9)  are uniquely related to the matrices _A, _Bi 
(i = 1 . . . . .  J )  and _L given by equations (11) and (13), if and 
only if (a) the pair {A, B} is completely controllable and (b) 
A J 1 is nonsingular. 

Proof. The proposition is proved in two parts. First, the 
uniqueness of _A, _B~ (i = 1 . . . . .  J )  and _L for given A, B, and 
L can be clearly observed from the relationships following 
equations (12) and (14). Secondly, the uniqueness of A, B, 
and L for given _A, _Bi (i = 1 . . . . .  J )  and L is proved through 
contradiction as follows. 

We rewrite the relationships following equations (12) and 
(14) as follows: 

A s = A, (15a) 

A s i B = B i  f o r i = l  . . . . .  J, (15b) 

and 
L = [ A  J ' I l L .  (15c) 

The uniqueness of B for a given Bj can be observed by 
setting i = J in equation (15b). To show the uniqueness of A, 
we assume that in addition to A there exists another  matrix 
A .  that satisfies equations (15a) and (15b). Then it follows 
from equations (15a,b) that 

A . B = B s . _ i = A i B  for i = 0  . . . . .  J - l ,  (16a) 

A . B  = AN.JA.NSB = ANSA ' NSB = AiB 

f o r i = J , J + l  . . . . .  (16b) 

where N = int [i/J]. 
Equation (15a) is obtained from equation (I5b),  whereas 

equation (15b) is obtained by combining equations (15a) and 
(15b). Now from equations (15a,b) with i = 1,2 . . . . .  one 
gets 

[A,B I A2,B I A3B I'" "1 = lAB I A2B I A3B I "  "l, (17a) 
o r  

A . [ B [ A . B I A 2 . B I ' . . I = A [ B I A B I A 2 B [ . . . ] ,  (17b) 

which applying equalions (16a,b) further becomes 

A,[B lAB [A2B I'" "1 = A[B lAB [A2B [...1. (17c) 
The controllability of the pair {A, B} is a necessary and 
sufficient condition to impose that A .  = A. It can also be 
observed from (15c) that L is uniquely related to _L if and 
only if, in addition, A s-~ is nonsingular. 

Since, in general, the power of a matrix gradually makes it 
ill-conditioned, it is expected that as J increases the estimate 
of the noise matrix L may become erroneous. This sets an 
upper limit on J in order to get good estimate of L, This 
upper limit of J, however, will depend on the specific plant 
under  consideration. This problem is observed in our 
simulation too, and is reported in Section 5. 

3. Parameter and state estimation 
In this section a recursive prediction error (RPE) 

algorithm for joint parameter  identification and state 
estimation of the innovation model is derived. In this study, 
an observable canonical state space form is considered 
(EI-Sherief and Sinha, 1979) which puts the following 
restriction on the structures of A and C: 

1 L L , ,  . . . . .  
where 

Iz ] I ° ° '  - Aii = l,,i - I , AO = 
0 "'" 0 

t I a,,(l),  a,,(n,) 

for i # j, and [e ] 
C =  e"1+1. . (18) 

e n t + n 2  ÷ . . + n m  i + 1  

e i are the ith unit row vectors of appropriate dimensions, I. is 
an n x n identity matrix and the integers n~ are called the 
observability indices of the system with 

n 1 + n  2 q -  • • • 4 " n  m = n .  

B does not have any special structure. It is assumed that the 
observability indices n~ are estimated a priori. The problem is 
of estimating the unknown parameters  in A, B and L. 
Consider the innovation model given by equations (7)-(9)  
and the following criterion function 

V(fi) = ~E{g(k)Y2:,. 'g(k)}, (19) 
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where 0 = [0, ..... 0,,], 

...... ...... ,I, °, ...... ,'+'•," ...... ,I, 

~', =- covariance matrix of e(t), 

with a~ = [a/,(1)...a/,(n,) I ~/~(I)• •. I" I'" aj,,(n,,)], 
b/,,jth row of B, lJ .~/th row of L, 

{.'} denotes the estimate and E{.} denotes the expectation. 
Since the sequence e(k) is white with covarinace X,., the 
identification problem may be formulated as a minimization 
of V(O). 0 is the unknown parameter row vector of 
dimension no. 

Define 

~(k) = -{dt(k)/dO} = {dj~(k)/dO} 

(dim:m xne). (20) 

W(k) provides a descent direction for the minimization of 
V(0). In order to compute W(k) the following variables need 
to be defined. 

0(k) = {di(k)/d0}lo=~, 
and 

[ OlA(0)i(k) + a(O)u(k) + L(O)e(k)l/oOl,= ~ 
M(k)= ,  ~_ fork =0, J, 2J . . . .  (21) 

[ OlA(O)ft(k) + B(O)u(k)]/O0[o;~ O, J, 2J, 
for . . . .  

With the above definitions and following the approach of 
Ljung and Soderstr0m (1983) an RPE algorithm for the 
recursive minimization of V(0) is then given as follows. 
For k = J, 2J, 3J . . . .  
(i) Compute the predicted output y and its parameter 
derivative qJ 

.9(k) =Ci(k)  (dim:m × 1), (22) 

~ ( k ) =  CO(k) (dim:m ×no). (23) 

(ii) Compute the prediction error and the innovation 
covariance matrix 

g(k) = y ( k ) - 9 ( k )  (dim:m × l), (24) 

Z,.(k) = ~ ( k  - J) + J [g(k)g(k) T - Z,.(k - J)] 

(dim:m ×m). (25) 

(iii) Compute the parameter adaptation gain 

A(k) = [A~',.(k) + qt(k)P(k - J )W(k )T] - '~ (k )P(k  - J )  

(dim:m ×no). (26) 

(iv) Update the parameters 

0*(k) = 0(k - J )  + g(k)TA(k) (dim:l × no), 

0,~, ['0*(k) if0*(k) E D~, (27) 
~r) = [0(k - J )  otherwise. 

(v) Update the parameter covariance matrix 

1 [P(k - J) - P(k - J)W(k )rIAZ,.(k ) 

+ U2(k)P(k - J )~(k)  T] 'U2(k)P(k - J)] 
P(k) = if O*(k) ~ D~ 

P(k - J) otherwise, 
(dim:no×no). (28) 

(vi) Obtain the next state estimate 

i(k + 1) = A(0)i(k) + B(O)u(k) + L(0)f(k). (29) 

(vii) Compute 0(k + 1) 

0(k + 1) = [a(0) - L(O)CIO(k) + M(k) 

(dim:n ×he). (30) 

While for k # J, 2d, 3J . . . . .  

(i) Obtain the next state estimate 

i(k + 1) = A(0)i(k) + B(O)u(k). 

(ii) Compute 0(k + 1) 

0(k + 1) = A(O)O(k) + M(k) 

In the above 

g ( k )  = [p . , (k ) .  

where/zj(k) = 

0 uT(k) 0 

.~V(k) 0 0'  

~ uT(k) •0 

£T(k) 0 0" 

(31) 

(dim:n xno). (32) 

• ] (dim:n x no) 
~,.,(k) 

(33) 

where the partitions in the above correspond to the partitions 
in Oj given in equation (19). 

In equation (27), D, is a stability region given by the 
condition that all eigenvalues of A a- *(A - LC) lie within the 
unit circle. This can be tested by using the Jury criteria 
(Astrom and Wittenmark, 1989). This condition ensures that 
the RPE algorithm remains stable. It may be emphasized 
here that the above condition does not imply that the 
dynamic system should be stable. A is a forgetting factor with 
0.95 -< A -< 1.0. A may be generated by the following equation 

,~(k) = ~ - ;~,[;~ - ,~(k - 1)1; ~(0) = ,~,,, (35) 

where Ao and A~ are the initial and final values of A, and A, 
controls the rate at which the transition takes place• 
Although from a theoretical point of view, A~ should be 1 to 
ensure convergence to the constant plant parameters, in 
order to keep the algorithm open to possible change in plant 
parameters a~ is normally chosen as less than 1. To start the 
iteration P(0) may be set to I or 10I, elements of 0(0) may be 
set to the best guess or to small values (-=0.1) and elements 
of A(0), 0(0), M(0) and W(0) may be set to zero• 

The computation of P(k) by equation (28) is not 
numerically robust• It is sensitive to round-off errors that can 
accumulate and may fail to keep P(k) non-negative definite• 
Various modifications have been proposed to reduce this 
problem• Interested readers are referred to Bierman (1977), 
Anderson and Moore (1979) and Ljung and SoderstrOm 
(1983)• In our simulation, equation (28) is used and no 
numerical problem has been encountered• 

The convergence of the proposed recursive algorithm can 
be analysed by considering the associated differential 
equation (de) (Ljung and SoderstrOm, 1983)• Although 
convergence to the true parameter value is not guaranteed, it 
can be shown that one of the possible convergence points of 
the algorithm is the true parameter 0. 

4. Pole restriction control 
The advantage of state variable based control is the 

efficient (eomputationally simple) implementation of advance 
control strategy using the following state feedback 

u(k) = -F(k)u(k) .  (36) 

The most popular control strategies using the state space 
model are the pole placement (PP) and linear quadratic (LQ) 
control• In the former, state feedback control is designed 
from closed loop pole specification while in the latter, control 
is designed by minimizing a quadratic cost function• PP and 
LQ have their own advantages and disadvantages. A control 
strategy that can be derived to incorporate the advantages of 
PP and LQ is the pole restriction control (PR) (Hang et al., 

0 

uT(k) ', 

0 ', i 

uV(k) ', 

T ,] (k), 0 0 
~ ' .  
i 

0 ', 0 ~T(k 
for k = 0, J , . • •  

0 0 O ]  

0 0 0 

for k #O,J  . . . .  

[dim:nj × (n + 2njm)] (34) 
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1991). Although other control strategies including the PP and 
LQ can be employed, in this paper we considered the PR 
control. 

In this approach, the closed loop poles are placed within a 
specified disk in the Z-plane using a modified LQ design. 
The disk is specified from the maximum permitted overshoot 
and settling time (or time constant) requirements of the 
system output. The design is based on the overshoot and 
settling time requirements, but the input amplitude usually 
remains small due to the less stringent requirement on the 
closed loop pole locations. In addition, once such a controller 
is obtained for a certain estimated plant model, the controller 
parameters need not be updated as long as the estimted 
closed loop poles remain within the specified disk. The basis 
of the pole restriction algorithm is the following result due to 
Furuta and Kim (1987). 

Construct the matrices 

,~ ( A - a l )  and /~=_B_ 
/3 /3' (37) 

and solve for P in the matrix Riccati equation (MRE) given 
as follows 

p - A T p A + A T P B ( R + B T p B )  I / ~ T p A - Q = 0 ,  (38) 

with R > 0  and Q = H T H  where the pair (A, H) is 
observable. Then the feedback rule 

with u(k)  = -Fx(k) ,  

F = (R q ' - B T p B ) -  IBTp/~, (39) 

ensures that all the closed loop poles of the system given by 
equation (1) lie inside a disk in the Z-plane having center at 
a and radius/3. 

Solution of the MRE in each iteration, however, makes the 
algorithm computationally very demanding. In order to 
reduce the computational requirements, the state feedback 
control design is called only when the eigenvalues of fi, - / ~ F  
move outside the specified disk. This can be done by 
checking whether the characteristic polynomial of A -  BF 
satisfies the Jury stability criteria. 

Following the approach of Ahmed (1993), the self-tuning 
control using the pole restriction may be summarized as 
follows: In the kth iteration 
(a) if k is not an integer multiple of J, estimate the state 
vector x and q~ using equations (31) and (32), set 
F(k)  = F(k - 1) and go to (e), otherwise 
(b) estimate the plant matrices A, B , L  and the state vector 
x using equations (22)-(30). Obtain A and/~ using equation 
(37) 
(c) if the characteristic polynomial of A - BF satisfies Jury 
stability criteria set F(k)  = F(k  - 1) and go to (e), otherwise 
(d) solve for the symmetric positive definite matrix P in the 
discrete-time algebraic MRE given by equation (38) and set 

F(k)  = (R + ~Tp/~) I~Tp~ (40) 

(e) apply the control u ( k ) =  - F ( k ) i ( k ) .  
4.1. Tracking reference input. It is straightforward to show 

that when tracking of the step reference input y~ is desired, 
the control based on the above principle for a square plant 
(i.e. m = r) becomes 

u(k ) = - F(k )x(k ) + G(k )yr(k ), (41) 
where 

G I ( k ) - C [ I , , - A + B F ( k ) ]  ~B. 

5. Simulation studies 
In order to test the proposed algorithms and verify their 

feasibility, simulation studies are carried out on the following 
two-input two-output plant with J = 5 

[ o , o  1 ro6oo,ol 
x(k + 1) = 0.10 0.9O 0.05 x(k) +/0.18 0.10 / 

l_0.15 O.lO 0.90_1 1_0.10 0.203 
× u ( k ) + w ( k )  k = 0 , 1 , 2  . . . . .  (42) 

[~ 0 ~ ] x ( k ) + v ( k )  k = 0 , 5 , 1 0 , .  , y(k)  = 0 "" 

cov lw(k  )} = O.O011, cov {v(k )) = O.O0011. 

The plant is an unstable one with open loop poles at -0.1, 
0.83 and 1.06. The starting values of all the parameter 
estimates are taken as 0.05, except a22 and a33. a22 and a33 
are both taken at 0.6 which imply the initial assumption that 
the plant outputs are nearly decoupled with an average time 
constant of 0.6. The following starting values are used 

P (0 )= I ,  Ac~=0-95, Ar=0.95, h~=0.99, 

x=[0.0  0.0 0.0] 1. 

The simulation is started by superimposing zero mean 
random signals of variance 0.1 on the control inputs for the 
first 200 (input) iterations. This provided 'rich input' for the 
estimator so that good estimates of the system parameters 
and states are obtained quickly. 

For the pole restriction control, the performance 
specifications at the output are assumed to be (a) a damping 
coefficient of at least 0.5 (which corresponds to, at most, a 
16% overshoot) and (b) a 2% settling time of, at most, 
twenty (input) samples. The damping coefficient constraint 
confines the closed loop poles within the heart shaped region 
shown in Fig. 1, while the settling constraint confines the 
closed loop poles within the dotted circle. These, together, 
require that all the closed loop poles lie within the hatched 
region. For the proposed algorithm the hatched region is 
approximated by the inner solid circle in the Z-plane as 
shown in Fig. 1. The circle has a center at 0.3 and a radius 
0.5. Q and R matrices are taken as 0.011 and 1, respectively. 
The relatively large value of R assigns a high penalty to input 
amplitude demanding it to be smooth. 

Figure 2(a) and (b) shows the simulation results with the 
proposed control. The set point for output 1 is varied 
between -2.5 and 2.5 while the set point for output 2 is 
varied between -5.0  and 5.0. The input amplitude is 
restricted between :~20. The computation of the state 
feedback matrix F(k)  (and therefore solution of ARE) is 
required only seven times, at output iterations of 1, 2, 4, 9, 
61, 63 and 182. The closed loop poles at the end of 200 
(output) iterations are found to be at -0.1130, 0.8065 and 
0.6069, which also corresponds to a 2% settling time of 
approximately eight (input) samples. 

Figure 3(a) shows the normalized parameter estimation 
error (PEE) defined as 

119 - ~112 
PEE ii _0112 (43) 

where 0 contains the parameters of 0 that belong to A and B. 
After 200 output iterations the final estimated values of A 
and B are found to be 

0 1 0 ] [0.5825 0.0929 ] 
A = 0.0711 0.9306 0.0467 9 = / 0 . 1 8 5 7  09.0987.  

/ 
L0.129o 0.1300 0.89161 L0.0932 0.1973 

In order to investigate the estimation accuracy of the 
elements of L, the theoretical values of L and L are obtained 
as follows. Variance of w (see equations (11) and (12)) is 
computed using the expression following equation (12). Next, 
the steady state Kalman gain _K for the plant model 
corresponding to the output sampling rate is obtained by 
solving a matrix Riccati equation. Then _L and L, 
respectively, were obtained as _L=_A_K and L - A  (J ')_L. 
They are found as 

I-0.7346 0.1817] I-0.8128 0.3316] 
L =/0.7595 0.2135 / _L = ]0.8445 0.3686 / 

L0.2310 0.8992J L0.8185 0.8102_1 

The values in L, however, are very unreliable as the matrix 
A ~- t is near singular. The condition number of this matrix is 
found to be 2.8 × 104. The elements of L are also found to be 
extremely sensitive to slight changes in the elements of _L. 
The estimate of L and _L after 200 output iterations are found 
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to be 
0.8050 0.06081 

£ = [0.6278 0.3207/, 
L01532 04792j 
I-°6282 0.3703] 

L =A ~ '/2 = [0.6504 0.3945/. 
L0.5885 0.5749 J 

It can be observed that /2 is in large error with L. This is 
from the fact that due to near singularity of A J-~ a small 
error in ~ is reflected as a large error in L. In the line of this 
explanation, the elements of _L can be observed to be in good 
agreement with that of _L. 

The normalized state estimation error (SEE) defined as 

SEE IIx-~Jl z 
Ilxll 2 

is shown in Fig. 3(b). It can be seen that after 40 (output) 
iterations, the estimated states are very close to the true 
states. The initial large error in the state estimation is due to 
the poor parameter estimates and the addition of perturbed 
input during the 'tuning period'. 

Figure 4(a) and (b) shows the input and output where 
control inputs are updated only at output sampling instants. 
This corresponds to uniform-rate self-tuning. For this 
simulation an RPE algorithm was used for identifying the 
representation corresponding to the output sampling rate 
given by equations (13) and (14). A pole restriction (PR) 
control was used with the specification that the damping 
coefficient be at least 0,5 and have a 2% settling time of at 
most 4 (output) samples. These requirements are approxim- 
ated by enforcing the closed loop poles to lie within a circle 
in the Z-plane having a center at 0.1 and a radius 0.3. It can 
be observed that this plant cannot be satisfactorily controlled 
by employing uniform-rate sampling corresponding to the 
output availability. 

It has been mentioned in Section 2 that there exists a plant 
dependent upper limit of J beyond which the estimation of 

parameters and control will become ineffective. In order to 
observe the effect of varying J on the proposed self-tuning 
algorithm, the value of J has been gradually increased in the 
simulation. It is observed that both parameter estimation and 
control deteriorates as J is increased. The parameter 
estimates and control have been found satisfactory (final 
PEE < 0.05 and setpoint tracking being visually good) until J 
has been less than 10. When J became 10, final PEE became 
0.7 and the output failed to follow the set points. With J = 10 
the condition number of A J-I rose to 4,9 × 109. 

6. Conclusions 
In this paper a state space based dual-rate self-tuning 

algorithm is proposed. The algorithm is applicable when the 
output sampling rate is slower than the input update rate. A 
state space innovation model suitable for dual-rate 
self-tuning control is derived. The plant matrices and the 
innovation gain matrix together with the states are estimated 
by a recursive prediction error estimator. The control is 
achieved through state feedback employing a pole restriction 
principle. 

Results of a simulation study have been provided to 
establish the feasibility of the algorithm. It is shown that the 
proposed algorithm is well capable of controlling a plant 
having dual sampling rate at the input and output. It is also 
shown that a dual-rate self-tuner may provide tighter control 
compared to its uniform-rate counterpart. 

Although the state space based dual-rate adaptive control 
is demonstrated using an observable canonical state space 
form, the developments are equally applicable to a 
controllable canonical state space form. Direct identification 
of such a model and estimation of the associated states can 
also be done by a recursive prediction error (RPE) 
algorithm. This approach may reduce the computational 
requirements in some cases, if a pole placement control is 
adopted. However, the corresponding RPE algorithm will 
have a higher degree of nonlinearity which may pose some 
problems in the convergence to the global minimum. 
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