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Abstract-Rubbery materials can undergo deformation induced microstructural changes leading to 
softening of response and permanent set. In this work, these materials are modeled by a constitutive 
equation that incorporates the following micromechanism : when the deformation becomes large 
enough, network junctions break during further increments of deformation and then heal. New 
networks are formed by this conversion process, each unstressed in the local configuration at which 
it is formed. The constitutive equation is used to describe the response of the particles of an initially 
flat circular membrane which is inflated by lateral pressure. The original material and each newly 
formed network are assumed to respond as neo-Hookean elastic materials. Results of a numerical 
simulation show the influence of this conversion process on the distribution of stretch ratios, inflated 
shapes and the relation between the pressure and the crown stretch ratio. 

1. INTRODUCTION 

The general form of the constitutive equation for non-linear elastic solids is based on 
assumptions which imply that stress arises from a single unchanging material micro- 
mechanism at all stages of deformation. However, rubber-like materials exhibit changes in 
micromechanism evidenced by the occurrence of permanent set under large deformations 
(Hart-Smith, 1966). Rajagopal and Wineman (1992) have presented a constitutive theory 
which can be used to model such mechanical response. In their model, the stress is deter- 
mined by one micromechanism within some regime of deformation ; as deformation 
increases, a new micromechanism arises which affects the mechanical response. They con- 
sidered the particular example in which material acts as a rubbery solid if the deformations 
are not too large. When deformations become sufficiently large, network junctions in the 
original material break and then reform to produce a new network with a new unstressed 
local configuration. Their work allowed for continuous conversion of the original material 
to new networks as deformation proceeds. It was shown that the material can undergo 
substantial softening, and that there is permanent set when the stress is removed. 

There have been several applications of this constitutive theory to problems involving 
non-homogeneous deformations. The examples all assume that the material is incom- 
pressible and that new networks are generated at sufficiently large deformations. Wineman 
and Rajagopal (1990) studied the finite extension and torsion of a circular cylinder. They 
showed that as the angle of twist increases, there evolves an inner core of material which 
consists of the original network and an outer shell of the modified material. These regions 
are separated by an interface whose radius is determined by the angle of twist. They also 
studied the influence of the material response on the torque-twist relation. 

Huntley (1992) considered the problem in which a hollow concentric cylinder is fixed 
at its inner surface and its outer surface is rotated about the centerline. Each particle of the 
cylinder is subjected to a simple shear deformation, the magnitude of which decreases with 
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increasing radius. As the rotation increases, the cylinder develops an inner core of multi- 
network material and an outer shell of original material. They are separated by an interface 
whose radius can be determined from the shear response of the original material and the 
applied moment. 

Huntley (1992) also analysed the radial expansion of thick-walled hollow spheres 
under either internal pressure or external radial tension. Each particle is subjected to equal 
biaxial extension, with the stretch ratio decreasing with the radius. As in the other examples, 
there are two regions of material response. There is an inner spherical shell of multi-network 
material and an outer shell of original material. The radius of the interface is determined 
by the radius of the inner or outer surface. Huntley determined the influence of the material 
response on the pressure-radius relation of the hollow sphere. 

The present work is concerned with a thin uniform circular sheet of material which is 
fixed at its boundary, and which is subjected to a uniform pressure over one of its surfaces. 
The sheet inflates into an axially symmetric bubble in which each particle can be regarded 
as being in a state of unequal biaxial extension. It is expected that the crown region consists 
of multi-network material, while the support region consists of the original material. There 
are several reasons for studying this membrane inflation problem. First, it simulates a 
possible experiment. Indeed, the inflation of a circular membrane has been used in non- 
linear elasticity in conjunction with the dete~ination of material properties. Treloar (1944) 
measured profiles of the inflated sheet. Adkins and Rivlin (1952) calculated the profiles 
using a measured strain energy density function in order to compare their results with the 
data of Treloar. Hart-Smith and Crisp (1967) and Wineman et al. (1979) each proposed 
methods for using the measured profile to determine the strain energy function in non- 
linear elasticity. It may be possible to use this experiment as a means of measuring properties 
in the constitutive theory considered here. Second, in the examples mentioned above, the 
interface lies in the interior of a cylinder or a sphere. The membrane configuration provides 
a means of directly observing the location of the interface. Third, the problem requires a 
more sophisticated method of solution for the deformation than in the previous examples. 
Finally, when the material response is non-linear elastic, the pressure-membrane height 
relation usually has a local maximum. It is interesting to determine the effect on this 
maximum for the material response considered here. In this work then, consideration is 
given to the development and application of a new constitutive equation, issues that arise 
in carrying out a numerical solution, and implications of this material model for the 
response of the structure. 

The constitutive equation is presented in Section 2 and the equations governing the 
response of the inflated membrane are presented in Section 3. Section 4 contains the 
formulation of the boundary value problem for the inflated shape of the membrane. This 
is solved by the numerical method outlined in Section 5. Results for a numerical example 
are discussed in Section 6. 

2. CONSTITUTIV~ EQUATION 

Consider a body which is homogeneous, initially stress free and which undergoes 
homogeneous deformations. Let K(O) denote the configuration of a body in its initial 
undeformed stress free state, which is taken as a reference configuration, and let x(t) denote 
its configuration at a later time t. The deformation gradient of configuration raft) with 
respect to configuration k(t) is denoted as F:. 

It is assumed that there is a regime of deformations from the reference configuration 
rc(0) in which the mechanical response is that of an incompressible, isotropic, non-linear 
elastic solid, Let F,, = Fb, a deformation gradient within this regime. The constitutive 
equation has the form 

where B0 = F,FT, I, and I2 are the principal invariants of B,,, B(1,, Z2) is the Helmholtz 
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free energy density function, 4 I = 28 W/al,, c#_ , = - 28 W/al, and p is the arbitrary scalar 
arising from the incompressibility constraint. 

This response can be regarded as governed by a single material micromechanism, the 
reconfiguration of macromolecules. It is assumed that there is a set of deformations at 
which a new micromechanism is activated. Further deformation then leads to changes in 
the microstructure of the material. For convenience in presentation, attention is focused 
on the specific micromechanism of scission of network junctions, i.e. cross-links or entangle- 
ments, and their subsequent reforming into new networks with new unstressed local con- 
figurations. [For further discussion, see Rajagopal and Wineman (1992).] 

In order to describe this process, let a scalar parameter s be defined which is associated 
with configuration rc(t) by the relation 

s = X(F,). 

Parameter s is called the deformation state parameter. At the initial configuration, t = 0, 
F. = I and s = 0. The value of s increases as the deformation becomes larger, and decreases 
as the deformation is reduced. For deformation histories which are described by a single 
parameter, such as uniaxial extension, equal biaxial deformation and simple shear, it is clear 
what is meant by an increasing or decreasing deformation. For more general deformation 
histories, there is no unique definition of what is meant by the deformation becoming 
“larger” or “smaller”. This depends on the particular deformation process under consider- 
ation. Relation (2) establishes a correspondence between time t and the deformation state 
parameter S. 

It is assumed that there is a set of deformation gradients F. corresponding to con- 
figurations at which the new micromechanism is activated. This event is characterized by 
introducing a scalar-valued activation function A(F,). The new micromechanism is said to 
be activated when a deformation gradient of the set satisfies the activation criterion, 

A(F,) = 0. 

Let each deformation gradient of this set have the same value of the deformation state 
parameter S, denoted by s,. Then the activation function is defined by 

A(F,) = C(F,)-s,. 

Material frame indifference, isotropy and incompressibility imply that functions A and E 
depend on F, through its invariants I, and Z2. These functions are now denoted by A(Z,, Zz) 
and X(Z,, Zz), where the same symbols have been retained for notational simplicity. 

Consider a sequence of deformations which increase from the initial state, while the 
corresponding values of the parameter s increase monotonically from the value s = 0. By 
(2), there is a one-to-one correspondence between the times t and the values of s during 
this sequence. It is convenient to utilize this correspondence and introduce a change from 
time parameter t to deformation state parameter S. Thus, retaining the same notation, K(S) 
now denotes the configuration corresponding to deformation state parameter S. Ff, denotes 
the deformation gradient of the configuration at the current state s with respect to the 
configuration at the initial state s = 0 and is denoted by F0 = PO. Also, introduce the 
deformation gradient F, = F$, which represents the deformation gradient of the con- 
figuration at the current state s with respect to the configuration at state s^. 

During each increment in the sequence of increasing deformation from activation, a 
certain volume fraction of network junctions of the original material is broken. This fraction 
depends on the extent of deformation of the original material. The newly broken network 
junctions then immediately reform to produce a new undistorted network. During further 
deformation, this newly formed network deforms and contributes to the total stress. It is 
assumed, for the sake of simplicity, that there is no scission of newly formed networks. The 
material, as it undergoes this process of microstructural transformation, is said to be 
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converting. In the remainder of this article, the terminology “network” is generalized to 
refer to either the original material or any newly transformed material. 

The total stress at each stage of deformation is defined to be the superposition of 
contributions from the remaining portion of the original material and from each network 
formed during the deformation process. Thus, if 0 is the Cauchy stress at the deformation 
state corresponding to state parameter S, 

s s 

CT = -pI+fP+ a(. ds^ 
3. 

(5) 

where : (1) p is an arbitrary scalar arising from the constraint of incompressibility ; (2) aR 
is the stress in the remaining original material ; (3) a(j) &is the volume fraction of converted 
material formed during the interval of deformation as the state parameter increases from s^ 
to s^+ dS ; (4) cN is the stress per unit volume in the network formed at j. The latter depends 
on the deformation gradient F,, which is the gradient of the current configuration with 
respect to the configuration of the material that formed at s^. 

Let b(s) denote the volume fraction of the remaining portion of the original material 
at state s. Then rrR has the form 

cR = b(s)[&B,+$_,B,‘]. (6) 

For simplicity, the rate of decrease of volume fraction of original material is assumed to 
equal the rate of increase of volume fraction of material with new microstructure. This 
implies that 

b(s) = 1 - 
s 

‘a($) ds^. 
& 

(7) 

The new network formed at 5 responds as an incompressible non-linear isotropic elastic 
material. Its configuration at s^ is taken as a stress free configuration. For simplicity of 
modeling, the mechanical response is assumed to be the same for each new network. Thus 

aN = &,Bj+Q_,~;l 09 

where Bf = F,FT, and $i, c_ I are material property functions which depend on the 
invariants of Bj. On combining (5), (6) and (8), the constitutive equation during the process 
of conversion as deformation increases beyond activation takes the representation 

o = -~1+b(s)[~,B,+~_,B,‘]+ 
s 

‘a(~)[~,B~+~_~B.i-‘l ds^. (9) 
% 

It is further assumed that at a typical state of deformation corresponding to s* > s,, 
there exists a sequence of deformations for which the state parameter decreases and no 
additional microstructural transformation occurs. Then, a(s) = 0, and the upper limit of 
the integral in (9) is fixed at s *. Moreover, (7) shows that b(s) is fixed at the value b(s*). 
Equation (9) becomes 

S’ 

CT = -pI+b(s*)[c#~,B,+t#~,B,‘]+ I a(i) [& Bs + 6-I B; ‘1 dj. (10) 
% 
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3. BASK EQUATIONS 
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The body under consideration is initially a thin disk of uniform thickness 2ho and 
radius &, with ho/R0 xc I. If (R, 0,Z) denote the coordinates of a cylindrical coordinate 
system, the body initially occupies the region defined by 

OGRRRo, 0<@<22n, -ho<Z<ho. (11) 

It is assumed that each particle of the disk is in an initial undeformed stress free 
configuration, and that the particles are identical. The mechanical response of each particle, 
as it undergoes a local homogeneous deformation, is described by the constitutive model 
in Section 2. 

The particles on the surface R = R. are fixed to a rigid boundary. The sheet is assumed 
to undergo axisymmetric inflation caused by uniform pressure q. applied to the surface 
2 = -ho. The surface 2 = ho remains free of traction. As the sheet inflates, each particle 
undergoes a different local homogeneous deformation history. During this process, some 
particles may undergo conversion. In order to calculate the stresses, it is necessary to track 
the local con~guration history of each particle. The method for a~omplishing this is 
described in Section 4. 

When the pressure q. is sufliciently small, each particle responds in its non-linear elastic 
regime. Since ho/R0 c 1, the deformed state can be approximated using the theory of non- 
linear elastic membranes [see Green and Adkins (1960)]. The midsurface Z = 0 in the 
reference state deforms into a surface of revolution. According to the membrane theory, 
line segments which are perpendicular to the midsurface in the reference state can be 
regarded as remaining straight and perpendicular to the surface in its deformed state. The 
variation of kinematic quantities through the thickness of the deformed membrane can be 
neglected. That is, the deformed shape of a surface Z = constant is approximately the same 
as the deformed shape of the surface 2 = 0. Consider the stress components acting on 
surfaces ~~ndic~ar to the midsurface. The variation of these stresses through the thick- 
ness can also be neglected. Consider a surface Z = constant. The stress components acting 
on the deformed state of such a surface can be neglected compared to the other stress 
components. In effect, it is sufficient to consider quantities associated with the deformed 
midsurface. Only their variation over the midsurface need be determined. 

Examples involving neo-Hookean and Mooney-Rivlin materials [e.g. Green and 
Adkins (1960)], show that the stretch is greatest at the axis of symmet~ of the inflated 
sheet, i.e. its “crown”, and decreases monotonically toward the outer support. Thus, the 
deformation state parameter s, which increases with the deformation, can be expected to 
be greatest at the axis of symmetry and decrease toward the support. The particle at the 
crown is the first to undergo activation and conversion. During inflation, the sheet then 
consists of a central region of material undergoing conversion and an outer region of elastic 
material. 

It is assumed that the membrane approximation remains valid during the conversion 
process. Consider the particles on a cylindrical surface of radius R in the reference con- 
figuration. All such particles have approximately the same deformed state, and hence 
approximately the same value of the deformation state parameter. Thus conversion is 
assumed to occur simultaneously at all particles on that surface. During the conversion 
process, these particles are at the same state and hence have the same value of the defor- 
mation state parameter. As in the case of an elastic membrane, kinematic quantities vary 
only over the midsurface. 

Equations for the kinematics of deformation and for equilibrium, incorporating the 
membrane approximation, are now presented. They are analogous to those for a non-linear 
viscoelastic membrane [see Wineman (1976), where additional details can be found]. 
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The coordinates of a particle P on the midsurface of the reference confi~ration are 
(R, 0,O). The radius R of a particle acts as its label. If (r, 8, z) are the coordinates of particle 
P in an inflated state, then 

r = r(R), 

8 = 0, 

z = z(R). (12) 

r(R) and z(R), RE [0, R,], describe the inflated shape of the midsurface. They also depend 
on a parameter, each value of which is associated with a fixed state of inflation. This 
inflation parameter is introduced below. The quantities and equations presented in the 
remainder of this section apply over the midsurface for each fixed state of inflation, that is 
for each fixed value of the inflation parameter. For the purpose of notational brevity, this 
parameter is suppressed until it is needed. 

It is a consequence of the axisymmetry of the deformation that the circumferential, 
meridional and normal directions, relative to the deformed state of the midsurface, are 
principal directions of stretch. Using the notation introduced in Section 2, ;l,, denotes the 
ratio of the current length of a line element to its length in the initial configuration. (&)i, 
i = 1,2,3, denotes a principai stretch ratio. For notation convenience, we now let li = (no)<. 
The stretch ratios are : 

in the meridional direction, 

in the circumferential direction, 

iI* =f; 

in the normal direction, by incompressibility, 

23 +. 
-1 -2 

(13) 

(14) 

(15) 

Equilibrium equations 
The principal directions of stretch are also principal directions of stress, due to material 

isotropy. Consider a material element bounded by surfaces whose normal vectors are in 
the me~dional and circumferential directions in the deformed midsurface, and in the 
direction normal to the midsurface. Let the normal stresses on these surfaces be denoted 
by cL, c2, (r3, respectively. According to the assumptions of membrane theory, lo3/a, 1 -x 1, 
103/a2 1 a 1. Hence, each particle is in a state of plane stress. 

The differential equation of equilibrium in the meridional direction is 

where 

ar 
rl-z’ (17) 

and the equation has been transformed to apply in the reference configuration. The equation 
of equilibrium in the normal direction at each point on the midsurface is 
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(18) 

where rc, and rc2 are principal curvatures defined by 

u 
2 

= u: -y12Y’2 
I,&R ’ 

and q,, is the pressure. 
As shown by Green and Adkins (1960) an alternative to eqns (18)-(20) is given by 

2h012g1K2 = qO. (21) 

Using (20), this leads to the equation 

(22) 

Because the membrane is being inflated, it is reasonable to assume that near R = 0, 
q = ar/aR > 0 and the positive sign applies in (22). In the examples presented by Green 
and Adkins, the inflated shape of the membrane can expand beyond the support so that 
for some particles it is possible that r(R) 2 R,. In this case, q = ar/aR < 0. 

Stress-stretch relations 
Consider an orthonormal coordinate system whose base vectors, at each point of the 

deformed membrane, are in the meridional, circumferential and normal directions. With 
respect to this system, 

(23) 

where ii is a principal stretch ratio of a line element in the configuration at s^ with respect 
to its length in the initial configuration. Similarly, 

B0 = diag (Ai, A:, 1:). (24) 

The invariants of B, are 

II = n:+n:+n:, 
12 = A;* +1;2+1;*. (25) 

The deformation state parameter is taken to be a function of the radius in Ii-Z, space, that 
is, eqn (2) has the form 

S = S((z, -3)2+(z2-3)2), (26) 

where the specific form will be given in Section 5. 

SAS 31:23-I 
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Consider the response when s < s,, i.e. when activation has not yet occurred. The 
original network at a particle is assumed to respond as a neo-Hookean material, so that 
(b 1 = p”, a constant, and 4_ 1 = 0 in eqn (1). It follows from eqns (l), (24) and the membrane 
approximation c3 = 0, that 

01 = pO(n: -1:) 

02 = /do@: -n:>. (27) 

Next, consider the response when s > s,. As a particle undergoes conversion, each newly 
formed network is assumed to respond as a neo-Hookean material, so that in (9), 4, = pN 
a constant, and $_ I = 0. If the modulus of the remaining original material is denoted as 
p” = pR then, in general, pR # pN. It follows from (9), (23) and the membrane approxi- 
mation e3 = 0 that 

4. BOUNDARY VALUE PROBLEM 

The same approach is used here as was used by Wineman (1976) in the case of a 
viscoelastic membrane. A boundary value problem is established for the stretch ratios ;I, 
and & and the associated kinematic quantity q, defined in eqn (17), at each inflated state. 
Once these have been found for an inflated state, the deformation (12) can be calculated 
from eqns (13) and (14). The stresses can be evaluated using eqns (27) and (28). 

Smoothness assumptions on the deformation r(R), z(R) imply that 1, = ,& at R = 0, 
at each inflated shape of the membrane. Let this common value be denoted by t, which is 
referred to as the crown stretch ratio. According to the example for neo-Hookean mem- 
branes in Green and Adkins (1960), the crown stretch ratio increases monotonically as the 
membrane becomes more highly inflated. On the other hand, the pressure q. initially 
increases, has a local maximum, and then decreases as the membrane inflation increases. 
The crown stretch ratio I is therefore used to parametrize the inflated states. Thus, 

According to eqns (25), (26) and (29), s = s(R, t). For each value oft, &(R, t) and &(R, t) 

give the stretch ratio distribution and s(R, t) gives the deformation state parameter dis- 
tribution over the particles of the membrane. A given value of the deformation state 
parameter occurs at different particles R at different inflation levels t. For a fixed particle 
R, these functions give the stretch ratio and deformation state parameter histories as t 
increases. 

It is assumed that for a fixed particle label R, there is an interval of values of t for 
which s(R, t) has an inverse denoted by r = z(R, s). When this is used in (29), the stretch 
ratio is related to the deformation state parameters s, i.e. 1, = &(R, z(R, s)). Let t^ denote 
the value of the crown stretch ratio at a previous level of inflation, and let s^ denote the 
corresponding value of the deformation state parameter at particle R. Then, 
lE = I,(R, z(R, i)). The stresses at a particle R undergoing conversion are then calculated 
when this is used in eqn (28). 

Let the following non-dimensional variables be introduced into eqns (16)-(22), (27) 
and (28) : 
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The “-” notation is dropped for notational convenience. The form of eqns (16), (17), (19) 
and (20) are the same as before. Q replaces go/ho in eqns (18) and (22). pR no longer appears 
in (27) and (28) becomes 

(31) 

where p = ,uN/pR. 
Suppose that the value of the crown stretch ratio t is sufficiently small that s < s, for 

all particles. The equations governing the corresponding inflated state are given by (16)- 
(22) and (27). These are reduced to a system of differential equations for II, I,, q as follows. 
One equation is obtained by combining (15), (16) and (27) to give 

where 

(32) 

(33) 

with & given by (15). 
A second equation is the compatibility relation obtained by eliminating r between eqns 

(14) and (17), 

The third equation is obtained from eqns (18)-(20) as 

(34) 

(35) 

where 

together with eqns (15), (27), (33) and (34). The use of the superscript “e” indicates that 
the expression applies in regions of the membrane where the material remains elastic. 

An alternative to eqns (35) and (36) is the non-dimensional version of (22), 

(37) 

Boundary conditions are obtained as follows. Continuity of the deformed midsurface 
implies that r = 0 and az/dR = 0 at R = 0. Equations (13), (14) and (17) then give 

11 =A2 =q= t at R=O. (38) 

Since the sheet is fked at its outer boundary, 
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&=l at R=l. (39) 

The system of differential equations (32)-(36), together with boundary conditions (38) and 
(39) define a boundary value problem for J.,, & and q when Q is specified. Its solution 
applies when t is sufficiently small that s(R, t) < s, for R E [0, 11. 

Next, suppose that the value of the crown stretch ratio t is such that s > s, over part 
of the deformed surface. As discussed in Section 3, this will be near the crown. The particles 
in this domain are undergoing conversion. The complement to this domain contains par- 
ticles which are still unconverted. The radius of the interface between the converting and 
unconverted material is denoted by R,. 

Equations (32)-(36) apply for RE [R,, 11. The equations for RE [0, R,] are derived in 
the same manner as were eqns (32)-(36), but with the constitutive equation given by eqn 
(31). Let the expression for 6, be substituted into the first term in eqn (16). The result can 
be written in the form 

a&T,) an, a12 aI ---= 
aR 

AdR+A*~+IZ,~’ (40) 

where Idenotes the integral in the expression for C, given by eqn (31), and 

Al =~{-cr,+26(1;+L:)-4as’(l:-1:)“[(Z,-3)+1:(Z2-3)]), (41) 
I 

A2 =~I-~,+zbn:-4as’(l:-1:)(1:-1:)[(1,-3)+1:(1,-3)]}. (42) 
2 

s’ denotes the derivative of the function defined in eqn (26) with respect to its argument. 
Recall the definition of z(R, 3) as the inverse of s(r, 2) for fixed R. Thus, when s^ takes 

the value s(R, t) in the integrand of I; z(R, s(r, t)) = t and the integrand vanishes. It follows 
that 

The result of evaluating aI/aR can be written as 

where 

A4 =; ‘a($sd3, 
2 s % R 3 

(43) 

(45) 

(46) 

(47) 

in which D1, is the total derivative of Iz, with respect to R at a fixed value d of the 
deformation state parameter, 
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(48) 

,I,, and Ja2 denote the partial derivative with respect to the first and second arguments, 
respectively. 

Let eqn (40) and (44) be substituted into (16) and use be made of (32). This leads to 

where 

(49) 

(50) 

with g1 and f12 given by eqn (31). An expression for aq/aR is obtained by substituting eqn 
(49) into (18) and again using (3 1). This expression is denoted by A;. The superscript “c” 
refers to expressions which apply in regions where the material is “converting”. 

The boundary value problem now consists of the system of equations 

Ai is given by A: for R E 10, R,], the domain of conversion, and by A; for the complementary 
domain, [R,, I], where the material is still unconverted. Note that A; = AZ = A2. Continuity 
of the solution is required at the interface between the domains. Boundary conditions (38) 
and (39) still apply. 

5. NUMERICAL METHOD OF SOLUTION 

The response of the membrane involves an interaction between the conversion process 
and the properties of the original and newly formed networks. The intention here is to 
focus on the conversion process. Consequently, it is assumed that .uN = pR in eqn (28), or 
JJ = I in (31). With this choice, it can be shown (Huntley, 1992), that the material softens 
near R = 0. This occurs because the scission of the original material network causes its 
contribution to the total stress to reduce faster than new contributions are produced by the 
increasing deformation of the newly formed networks. 

The solution procedure described here is based on the expectation, as described in 
Section 4, that s(R, t) decreases monotonically with R, and hence that the membrane 
consists of a central region of conve~ng material, R E [0, Ra] and an outer region of 
unconverted elastic material. 

The boundary value problem associated with each inflated state is solved numerically. 
The solution is found at radii denoted by Rj, j = 1,2,. . . , J, R, = 0, R, = 1, and at values 
of the crown stretch ratio denoted by tk. Solutions are first obtained for values of tk at 
which the particles of the membrane remain elastic. After determining the value of the 
crown stretch ratio at which conversion is initiated, solutions are then obtained for larger 
values of r, corresponding to increasing conversion. 

The method of solution for the elastic regime is discussed first. Let 
tk = l,(O, tk) = &(O, fk) be sufficiently small that ~(0, f,J < s,. As it is assumed that the 
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greatest deformation occurs at R = 0, it follows that s(R, t,J c sar RE [0, 11. A value of the 
dimensionless pressure Q is assumed and the system of differential equations (32)-(36) is 
integrated using the second order Runge-Kutta method. The integration process is begun 
at RI = 0 using boundary condition (38) with t = tk. The RungeKutta method uses the 
values of the right-hand sides of (32)-(36) at Rj in order to calculate the solution at Rj+ I. 
However, at R, = 0, the right-hand sides are undefined. This difficulty is resolved by the 
analysis of Adkins and Rivlin (1952), who showed that a necessary condition for the 
solution to be bounded at RI = 0 is that dl,laR = a&/8R = aq/i?R = 0 there. 

A consequence is that the Runge-Kutta procedure, which is based on the increment- 
ation of the unknowns by values calculated from these derivatives, cannot get started. This 
difficulty is avoided by using the alternative equation (37) with the positive sign. q(R, t) is 
then expressed in terms of A,(R, t) and &(R, t). With this relation, the problem is reduced 
to a system of equations for A1 and ilZ given by (32)-(34). Using the Runge-Kutta procedure, 
variable R is incremented to the non-zero value R2 and the other quantities are evaluated 
at R, = 0. This causes a change in q from its value at RI = 0 which in turn allows the 
integration process to get started. One integration step is carried out using this reduced 
system. The full system (32)-(36) is used for the remaining steps, in order to allow auto- 
matically for the possibility that q = ar/aR becomes negative at some radial node. 

The computed value of &(l, t,J is used to check boundary condition (39). If the 
boundary condition is not satisfied for the assumed value of Q, a new value is chosen by a 
secant iteration method and the numerical integration of (32)-(36) is repeated. This process 
is continued until l&(1, tk) - 11 < E, for a specified value of E. 

The method of solution when conversion occurs is discussed next. Now the crown 
stretch ratio t has values tk for which ~(0, tk) > s,, and integrals appear in the right-hand 
sides hi in (51) owing to their presence in the expressions for c,, c2, AS, Ad, AS. Consider 
a specific radius R, and let the corresponding values of the deformation state parameter be 
denoted by Sk, where 

Sk = S(Rj, tk). (52) 

Note also that 

tk = z(R,,s,). (53) 

Equal increments tk+ , - tk need not correspond to equal increments Sk+ 1 -Sk. Moreover, 
an increment tk+ 1 - tk need not correspond to the same increment Sk+ 1 -Sk at different radii 
Rj. Thus, the integrals are approximated by a Simpson’s rule which allows for unequal 
increments in the integration variable s. 

Recall the notation & = A.,(R, z(R, J)). A typical term in the integral becomes 

where use is made of (53) and W, denote the weighting coefficients 

w, = (-c2tQc+z)8 

w 

2 
= tc+ II3 6 

6c 

(54) 

w 
3 

= (2c2+c-1) 

6c 
(55) 

with 6 = Sk+, -Sk, c = (sk+2--sk+d6. 
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Suppose that s,,, < s, and s,,,,, > s, for some value of m. Then the value t, at which 
s = s, for a particle Rj lines between two nodes. Such a point is indicated by a triangle in 
Fig. 1. As the lower limit of the integrals is s,, it is necessary to find this value of t,. Let 
PA,(Rj, t) be a second degree polynomial in t constructed by Lagrange interpolation through 
the points (tk, &(Rj, t,J), k = m-2, m- 1,m. P&(Rj, t) is used as an approximation to 
&(&, t) for ttz ftm_-l, t,,,+ J. Let Ps(Ri, t) be a function of t which is an approximation to 
s& t) for fo [t,,,_-2, t,,,+ J. It is constructed by using PA&R,, t) in eqns (25) and (26). Then 
t, is given by the solution to 

Sa = PS(Rj, t,)* (56) 

The value for stretch ratio &(Rj, t,) is then given by P&(Rj, t,). 
Consider integration from s, to s(&, tk), for some value of k. If there is an even number 

of increments in this integration interval, Simpson’s rule appro~mation (54) is used over 
each pair of increments. If there is an odd number of increments, the integral from s, to the 
next largest value of s is approximated using a trapezoidal rule. The remaining integral is 
over an even number of intervals and is approximated as before. 

Now consider the system of eqns (51) for some specific value of the crown stretch 
ratio, tK > t,. It is assumed that since the conversion process was initiated at R = 0, 
continued inflation has caused all particles within some radius R, to undergo the conversion 
process. For each RE [0, &,I, Ai and A3 contain integrals. These integrals can be approxi- 
mated by finite sum expressions which contain &(R, t,), . . . , &(R, tk), . . . , A,(& tx) and 
similar terms in D1, [see eqn (47)]. Suppose that I,@, t,), . . . , &(R, tK_ ,) and D&(R, t,), . . . , 
DA,(R, tK_ ,) have been previously determined. Then AE; and A”, depend on the unknown 
functions A,(R, tx), q(R, tK). They also depend on the variable R both explicitly and through 
the dependence on R of the previously determined solutions corresponding to tk ,< r,_ , . 
Thus, a set of ordinary differential equations for &(R, tK), q(R, tK) on RE [0, R,] is obtained. 
The set for RE [R,, 1] is given by eqn (51) with Ai = AT. 

This system of equations for the entire domain is integrated using the second order 
Runge-Kutta method. This method is selected because evaluations are required only at the 
nodal points Rj, and not at intermediate points as is called for by the fourth order method. 
Recall that dependence on R arises through the previously obtained solutions &(Rj, tk), 
q(Rj, tk), k < K, at these nodal points. The evaluation of Ai at Rj uses these previously 
stored values. 

Fig. 1. Inflated profiles for increasing crown stretch ratios, showing the particle paths and conversion 
front. Triangles denote the intersections of the conversion front (solid line) with particle paths 

(dotted lines), rectangles denote intersections with profiles (dashed lines). 
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The integration process beings at R, = 0 using boundary condition (38) with t = tK. 
The Ai involve expressions which are undefined at R, = 0. Since the Runge-Kutta method 
requires the evaluation of Ai at the nodal points, the same difficulty arises which was 
discussed in conjunction with the solution method in the elastic regime. By an analysis 
similar to that of Adkins and Rivlin (1952), it can be shown that 
aL,/aR = a&/aR = aq/aR = 0 at R, = 0. The discussion provided in conjunction with the 
solution method in the elastic regime again applies here. 

Suppose a solution for 1, has been obtained at Rj. In order to proceed to Rj+ , , it is 
first assumed that the particle at R,+, is undergoing conversion. The Ai are evaluated at 
Rj+, using the expressions for &, which apply in the conversion regime. These use the 
stored histories 1, and their derivatives at Rj+ , , including the extrapolated approximations 
to the values at conversion t,, as solved from (56), and &(Rj+,, t,) = P&(Rj+,, t,). The 
values of 1, (R ,+ ,, tK) are calculated using the Runge-Kutta method, and the corresponding 
value of the deformation state parameter is determined. Denote this value by P (Rj+ , , tK). 
If sest(R. ,+ ,, tK) 2 s,, the solution is accepted and the method proceeds to node Rj+2. 

If sest(R. ,+ ,, tK) < s,, it is assumed that the material at Rj+, has not begun to convert. 
A new radial node is introduced at R, = Rj + AR, AR c Rj+ , - Rj, to represent the radius 
R, of the interface between the regions of the converting and unconverted material. Such a 
point is indicated by a square in Fig. 1. For a specified value of AR, a Runge-Kutta step is 
taken using equations for the converting regime to evaluate the solution at R,. A secant 
iteration method is used to determine AR so that Is(Ri+ AR, tK) -s,l < E. For Rj~ [Ra, l] 
the material is assumed to be elastic and the governing equations are given by eqn (51) 
with Ai = A;. These are integrated using the Runge-Kutta method, with continuity assumed 
at R,. 

This section is concluded with a discussion of two numerical operations which occur 
in the computation of the various integrals. First consider az/aR which appears in eqn (48). 
It is evaluated at radius Rj and deformation state parameter Sk using the backward difference 
approximation 

& (Rj, sk) = “;;*I;;;‘*, 
J J 1 

(57) 

where tj,k = t(Rj, Sk) and iS the SOhtiOn of 

Sk = PS(Rj, tk), (58) 

and tj_ ,.k = t(R,_ , , Sk) and is the solution of 

Sk = PS(Rj_ 1) tk). (59 

Second, the value of 12,> = &&/at appearing in eqn (48) is to be obtained at Rj and tk. This 
is calculated using the backward difference 

1,~ (RI, tk) = 
P&(Rj,tk)-P&(Rj,tk-I) 

tk-tk-l 

6. NUMERICAL EXAMPLE 

In order to develop a numerical example, specific choices must be made for two 
material properties : the deformation state function in eqn (26) and the rate of conversion 
function a(s) introduced in (5). The form of the deformation state function is chosen as 

s = [(z,-3)2+(z*-3)2]““. (61) 

According to eqn (61), s is constant on a circle in the Zi-Z2 plane. This curve in the Zi-Z2 
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plane is selected because it is characterized by a single parameter, the radius, as opposed 
to, say, a straight line which requires specification of its intercept with the I, axis and its 
slope. 

As seen from eqns (15) and (25), the radius of the circle increases as t* near R = 0. As 
t becomes large, the radius increases very rapidly. If n = 2, for example, s also grows 
very rapidly and the increments in t must become extremely small in order to control 
computational error. This difficulty is avoided by selecting n = 8, so that s increases as t. 

The rate of conversion function is chosen to be quadratic on a finite domain, 

According to this definition of a(s) the process of material conversion occurs as the 
deformation state parameter s increases over a finite interval and the process terminates 
when s > s,. Since the deformations under consideration are finite, the parameters will not 
exceed some finite value. Thus, s, can be chosen sufficiently large that, in the present 
example, the conversion process need not reach completion. [It should be noted that other 
choices of a(s) can be made in which s, is unbounded.] Let the total volume fraction of 
material which may ultimately convert be denoted by C, where C < 1. Then, recalling eqn 

(7)P 

C = 
s 
SC a(s) ds. 
% 

It then follows from eqns (62) and (63) that 

6C 
a=- 

(& -&)3 

(63) 

(64) 

Values of s,, s, and C are selected so as to bring out the differences in response between 
the membrane undergoing conversion and a neo-Hookean membrane (no conversion, 
C = 0). Recall that t is the control parameter in the numerical simulation, and consider the 
relation between the pressure Q and the crown stretch ratio t for a neo-Hookean membrane, 
shown in Fig. 2. The local maximum in the pressure occurs at t = 2.20. Conversion is 

i 1:5 i5 A 

Fig. 2. Pressure vs crown stretch ratio, for neo-Hookean, “slow” conversion and “fast” conversion. 
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specified to commence at the particle at the crown of the membrane when t = 1.5. This 
enables the influence on the local maximum of the pressure to be observed. The value of 
the deformation state parameter at the particle at the crown corresponding to this choice 
oft is s,. It follows from eqns (15) (25), (61) and RI = & = t = 1.5 that s, = 1.358. 

For many choices of s, and C, application of the numerical procedure discussed in 
Section 5 has shown that the deformation state parameter s decreases for some particles 
when t becomes su~ciently large. That is, these particles undergo reversal of deformation. 
For particles which remain elastic (no conversion) this poses no difficulties. However, when 
there is conversion at a particle, new complexities arise as indicated in conjunction with 
eqn (10). Thus, values of s, and C are selected so as to allow simulation to be carried out 
over what is considered a reasonably broad range of deformations without the occurrence 
of reversal of deformation. Accordingly, C = 0.25. 

The simulation is carried out to t = 3.0. Let t, denote the stretch ratio of the particle 
at the crown if the conversion process there were carried to completion. The corresponding 
value of the deformation state parameter is s,. As a first case, t, = 3.1 and s, = 3.089 are 
selected. Thus, at t = 3.0, the volume fraction of the material converted at the crown, by 
(15), (25), (61)-(64), and ;1, = & = t, is 0.99C. For the purpose of comparison, a second 
case is considered with tc = 4.1 and s, = 4.096. When t = 3.0, the corresponding volume 
fraction of material converted at the crown is 0.64C. For convenience in discussing the 
results, the first case is referred to as “fast” conversion and the second as “slow” conversion. 

Equal radial increments AR = 0.01 and crown stretch ratio increments At = 0.01 are 
used in the calculations. 

The figures show results for three cases : no conversion (pure neo-Hookean response), 
“slow” conversion and “fast” conversion. Figure 2 shows plots of pressure versus crown 
stretch ratio. Note that the pressure has a local maximum in each case. The maximum is 
reduced and occurs at smaller stretch ratios as conversion occurs faster. Recall that when 
a particle undergoes conversion, the stress required to maintain a state of deformation is 
reduced, i.e. the response softens. The plots show this effect. When some of the particles of 
the membrane are undergoing conversion, their stiffness is reduced and less inflation 
pressure is required to produce a specified stretch ratio at the crown. When the conversion 
process occurs over a smaller range of stretch ratios, i.e. occurs “faster”, material stiffness 
reduces faster and therefore the required pressure is further reduced. 

Inflated membrane profiles at a crown stretch ratio t = 3.0 are shown in Fig. 3. This 
stretch ratio is produced in smaller inflated shapes as conversion occurs “faster”. Figure 4 
shows the increase in interface radius with the crown stretch ratio. The radius increases 
very rapidly as t increases from the value t, = 1.5 at initial conversion. It then approaches 

t 
Fig. 3. Inflated profiles at a crown stretch ratio of I = 3.0, for neo-Hookean, “slow” conversion and 

“fast” conversion. 
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Fig. 4. Interface radius vs crown stretch ratio, for “slow” conversion and “fast” conversion. 

a limiting value as r approaches t,. This limit interface radius is larger when conversion 
occurs “slower”. That is, there is a larger conversion zone when the conversion is “slower”. 

The reason for the results shown in Fig. 3 can be determined from the plots of the 
meridional and circumferential stretch ratios versus radius, in Figs 5 and 6, respectively. 
Plots are shown for t = 1.8, just after initiation of conversion, and for t = 3.0. The stretch 
ratios decrease from the crown to the support. At each particle undergoing conversion 
R E [0, R,], the stretch ratios are less than they would be were the membrane material to 
remain neo-Hookean. Therefore, the inflated profiles are smaller. Note that the unconverted 
particles RE [Ra, I] are at smaller stretch ratios than if there were no conversion. The 
material within the conversion region stretches more easily because of the softening effect 
associated with conversion. The response is softest near the crown. The specified crown 
stretch ratio thus occurs in the softer converting material in the inner core while the 
unconve~ed material in the outer layer is still at lower stretch ratios. This is seen in the 
stretch ratio distributions for t = 1.8, at which the interface radius is 0.5452 for “fast” 
conversion and 0.5551 for “slow” conversion. This effect is seen to be even stronger 
when t = 3.0. The interface radius is 0.6602 for “fast” conversion and 0.7043 for “slow” 

14 
0 0.2 0.4 0.6 0.8 

R 
Fig. 5. Meridional stretch ratio vs R at t = 1.8 and t = 3.0, for neo-Hookean, “slow” conversion 

and “fast” conversion. 
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R 
Fig. 6. ~ircumfe~ntiai stretch ratio vs Rat t = 1.8 and r = 3.0, for neo-Hookean, “slow” conversion 

and “fast” conversion. 

conversion. As t increases from r,, the material near the crown undergoes increased con- 
version and softening of response. This occurs to such an extent that the stretch ratios of 
these- particles reach the specified crown stretch ratio accompanied by reduced stretch ratios 
at the outer particles. Thus, in Fig. 5, consider the particles at radii greater than 0.7. For 
the case of fast conversion, the stretch ratios at these particles become smaller at f = 3.0 
than at t = 1.8. This suggests the evolution of a deformation reversal zone near the outer 
support, which spreads to meet the converting zone. When conversion is “faster”, this 
reversal zone spreads faster. 

Figures 7 and 8, respectively, show plots of me~dional and ci~umferential stresses 
versus crown stretch ratio for various radii. The stresses for the non-conversion (neo- 
Hookean) case increase monotonically with t at each radius. This increase is diminished by 
conversion. At R = 0, the increase is monotonic, although slower. At R = 0.4, the increase 
is still monotonic. However, the rate of increase is substantially reduced as conversion 
occurs faster. Note that, at R = 0.8, the meridional stress in the converting material has a 
local maxims and then begins to decrease. This occurs at particles in the outer region 

1 1.5 2 25 5 

Fig. 7. Meridional stress vs crown stretch ratio for neo-Hookean, “slow” conversion and “fast” 
conversion at several radii. 
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t 
Fig. 8. Circumferential stress vs crown stretch ratio for neo-Hookean, “slow” conversion and “fast” 

conversion at several radii. 

which remain elastic. As observed above, the stretch at these particles reduces, and by eqn 
(27), so does the stress. 

In summary, these results show that conversion can have significant implications. The 
softening of the more highly stretched material can allow redistribution of deformation 
throughout the membrane and recovery of deformation of the stiffer unconverted material. 
This possibility will be explored in future work. 
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