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We employ certain lifting ideas from Bercovici ef al. (Oper. Theory Adv. Appl.
47 (1990), 195-220) in order to study the structured singular value. This can be
used to study problems concerned with robust stability in control theory under
various perturbation classes. © 1994 Academic Press, Inc.

1. INTRODUCTION

The structured singular value introduced by Doyle and Safonov [3, 10]
has proven to be an important tool in control theory. (See these works
for the physical and engineering background about these ideas.) Unfortu-
nately, it is very difficult to work with the structured singular value di-
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rectly. Therefore much research has been concentrated on using a certain
upper bound which we will define below.

In several works [1, 8, 9, 11] it has been shown that in fact this upper
bound actually gives a non-conservative measure of robust stability with
respect to various perturbation measures. Motivated by this work, we
would like to show how the lifting technique of [1] may be extended to
operators on Hilbert space.

The basic idea is that the upper bound for the structured singular value
defined in terms of certain scaling operators (see Section 2) may be inter-
preted as a structured singular value on a larger space with respect to an
enhanced perturbation structure. This is made precise in Theorem 1 (the
Lifting Theorem) below.

We now briefly sketch the contents of this paper. In Section 2, we
define the structured singular value, its upper bound, and we derive some
of its elementary properties. We follow the discussion of [1] here. In
Section 3, we collect a number of lemmas which we will need in order to
extend the finite dimensional lifting theorem of [1] to infinite dimensional
operators. Then in Section 4, we state and prove our lifting theorem
relating the structured singular value and its upper bound. Finally in
Section 5, we apply this to systems with time-varying perturbations.

2. BACKGROUND ON STRUCTURED SINGULAR VALUE

We would like to formally introduce the structured singular value now
and give some of its basic properties. We base this discussion on [1].
Instead of working over diagonal sets of matrices as in [5], we can more
generally work over an algebra of operators.

We now give the following mathematical definition to this setup. Let
¢ be an arbitrary complex separable Hilbert space, and A C £(%€) (the
space of bounded linear operators on €), a subalgebra. For A € ¥(¢),
A # 0, we define the structured singular value

ma(A) = [inf{)|X]|: X €A, -1 €0 (A"
Moreover, we set
a4y = inf{lX AX . X €A},
where A’ is the commutant of A. Note that for A = (%), u,(4) =
fia(A) = ||A|, while for A = Cly, py(A) = @,(A) = ||Al, (the spectral
radius of A).

We now summarize some of the elementary properties of u, without
proof. See {1, 5] for all the details.
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LEMMA 1. Notation as above.
. wy(A) = sup{||AX]||, : X € A, |X] = 1}.

2. g is upper semicontinuous.
3. If€ is finite dimensional, then wu, is continuous.
4. pa(A) = 4,(A).

3. PRELIMINARY RESULTS

In this section, we state and prove a series of technical lemmas which
will allow us to extend the proof of the Lifting Theorem of [1] to the
infinite dimensional case. As above, € will denote a complex separable
Hilbert space. We begin with the following.

LEMMA 2. Let X be a finite dimensional linear subspace in £(€) and
let Q € L(€) be such that for every X € X, there exists h, € €, |h,| =
I, Qh,— 0 and {Xh,, h,) — 0. Then there exists finite rank operators K,
0<K,=<1,TrK, =1 such that |QK,||, = 0 and Tr (XK,) — 0 for all
X € & where |||, denotes the trace class norm.

Proof. For each integer n = 1 consider the set S, consisting of those
linear functionals ¢ on ¥ which can be written as

&(X) = Tr(XK), XeZ,

for some finite rank operator K such that 0 <= KX < J, Tr K = 1, and
IQK|; < 1/n. Clearly S, is a convex subset of ¥*. We claim that the
closure of S, contains zero. Indeed, if it did not, the bipolar theorem
would imply the existence of X € ¥ such that Rp(X) = 1forall ¢ € §,.
This, however, is contrary to the hypothesis. Thus we can find ¢, € S,
such that ||¢,|| < 1/n. If we write ¢,(X) = Tr(XK,) with 0 < K, < I,
Tr K, = 1, and ||QK,|; < 1/n, the sequence K, satisfies the requirements
of the lemma.

LEMMA 3. Let A be a finite dimensional C*-algebra. Then A has only
finitely many equivalence classes of cyclic representations.

Proof. As seen in [12, Chap. I, Sect. 11), A is isomorphic to a sum
of the form @Y, L(C"). For eachj = [, 2, ..., N there is an irreducible
representation ¢; of A on C", and every representation of A is uniquely

determined up to unitary equivalence by a sequence (m,, m,, ..., my) of
cardinal numbers. The representation corresponding to (m,, m,, ..., my)
is simply

" ey D B,
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where ¢ denotes the direct sum of m copies of ¢. Now, if ¢ has a cyclic
vector, then ¢{™’ must also have a cyclic vector, and thus ¢" |£(C")
has a cyclic vector. Since ¢{"/ acts on a space of dimension m;n,, the
existence of this cyclic vector supplies

m;n; = dim $(C") = n};

hence, m; = n;. Clearly there are only [TY, (n; + 1) N-tuples with (m,,
my, ..., my) satisfying these inequalities. |

LEMMA 4. Let Y; € £(€) and h; € € be sequences which satisfy
(i) sup; rank Y; <, sup|V}|| < o=;
(i) lim..|(Y, — Dk = 0;
(i) ol = 1 Vj.
Then lim inf,_.||Y)||s, = 1.

Proof. Since lim(h; — Y;h;) = 0, the projection &; of &; onto the range
of Y; will satisfy [|k]| = 1 and k; — Y;k;— 0. We can therefore assume that
h; € range Y;. Since these spaces have uniformly bounded dimension, we
may as well assume that everything occurs in a finite dimensional space.
That is, we may assume that dim € < . In this case, we may also assume
that the Y, converge in norm to an operator Y and that the h; converge
in norm to a unit vector h. Clearly Yh = h, so that 1 € o(Y). Since
dim ¢ < x, the spectral radius is continuous on £(%), and so we conclude
that lim inf,_.[|Y}|, = 1, as required. |

We will now state two additional results which we will need to prove
the Lifting Theorem in the next section. The first result is on a relative
Toeplitz—~Hausdorff theorem from [3].

THEOREM 1. For all T, Q € L(€), the set

Wo(T) = {\ = lim(Th,, h,) : h, € H, ||, = 1, lim QA = 0}

n—x

is a compact convex set.

The second result concerns the continuity of the spectrum on closed
similarity orbits whose proof may be found in [4].

THEOREM 2. Let T € £(€)andlet D, € L(€) be a sequence of invertible
operators such that

T, =lim D,TD; .

Jx
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If the set {D;, D' : j =1, 2, ...} is contained in a finite dimensional
subspace, then ||Ty|l,, = || T]\s,.

4. THE LIFTING THEOREM

In this section we will formulate and prove the Lifting Theorem which
turns out to be very useful in analyzing the structured singular value. In the
finite dimensional case, i.e., € being finite-dimensional, it was employed in
[1] to show that u,(A) = i,(A) when the relevant diagonal algebra has
three or fewer blocks, and so it gave an alternative proof of a result due
to Doyle [5].

Let HS(%) denote the space of all Hilbert—-Schmidt operators on €
equipped with the Hilbert space structure

(T, T,) :=Tr(T% 1)),

where Tr denotes the trace. Define the operator L, : HS(€) — HS(%) by
L, := AX. Now we set

By(A) = (L),
where
A:={L,:X€eAY}.
In what follows, we will assume that A’ is finite dimensional «-algebra,

but that ¢ is arbitrary. We can now state the following.

THeorReM 3 (Lifting Theorem). Let A’ be a finite dimensional
s-algebra. Then

fua(A) 1= Ts(A),

Proof. The proof follows exactly the proof of Theorem 3 in [1] with
several modifications necessary since ¥ may be infinite dimensional. The
lemmas that we proved above were designed to exactly push the proof
through in this case. For the convenience of the reader, we will give all
the necessary details.

First note as in [1], one can easily show that

Ha(A) = ;a(A) = 2, (A).
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If 4,(A) = 0 there is nothing to prove. Therefore we may assume without
loss of generality that 4,(A) = 1 and we must show that z,(A) = 1.
Choose invertible operators X; € A’ such that | X;AX; '|— @,(A). Since
A’ is afinite dimensional algebra, we may assume without loss of generality
that X;AX;' — Ay, [Ay] = 1. (This follows since A4, belongs to the finite
dimensional space A'AA'.) Obviously [ XA, X || = | Ay forall X, X '€ A",
Now for X € A', ||X|| < 1, we have that
7= X)AT+ X+ X2+ )= 1.

Hence for every X € A’ and for sufficiently small ¢ = g, > 0, there exists
h = h; with [|h]| = 1, such that

((f — eX)ANI + eX + e2X2 + - P =1 — & (1
that is,
(A¥Aoh, h) + 2eM(AF(ApX — XADh, h) + O(el) = 1 — ¢
or, equivalently,
2eM(AF(ApX — XAh, h) + O(e%) = (I — AFAph, h) — &% (2)

Dividing by ¢; and letting &, — 0 as j — =, we see from (1), (2) that we
have a sequence |||l = 1, such that

{1 - AfAh;, h)— 0, 3)
lir_n inf R(AF(AX - XAph;, hjy = 0. (4)
f—bx
Hence we can conclude that
Iim inf RYX — A§XAph;, h) = 0. 5
j—»x

Set
Q:=1-AFA,, T:=X - AfXA,.
Then from (3), (5), we see that

h)=0. (6)

A

Qh,— 0, lim inf R(Th,
}'—nc
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Applying the above argument to {X for any { € aD (the unit circle),

we see that there exists a sequence A", |#{¥| = I, such that
Qh©—0,  liminfRL(Th;, h) = 0. 7)
o

Now from Theorem |, relative to the operators Q and T, we see that
Wo(T) is a compact, convex set. (This result plays the role of the
Toeplitz—Hausdorff theorem in (1].) Hence if 0 & W,(T), then there would
exist { € oD such that

liminf R¢(Th;, b)) <0
j——)‘L

for every sequence {A;} of unit vectors such that lim.,. [|Qh| = 0, thus
contradicting (7).

Thus, we have shown that for each X € A’, there exists a sequence hj.
[All = 1, such that

(1= AfAQh—0, (X — AfXAgh,, h)— 0. (8)

Note that the sequence h; depends on X. The reason that we now have
to “*Lift’’ to the space of Hilbert—Schmidt operators is to find a sequence
independent of X.

Thus we apply Lemma 2 to obtain K, such that
1QK)[i—0,  Tr((X — A§XAp)K))— 0. 9)

We can write K; = H}, where H; is a positive Hilbert—Schmidt operator
for j = 1. Hence we get from (9) that

”LXLAOHjHZHS —|LxyHl}s— 0 VXeaA'. (10)

Passing to appropriate subsequences of the j’s, we can now apply
Lemma 3 to obtain partial isometries U; and V; on ¥ = HS(¢) commuting
with Ly, X € A’, such that the initial space of U, is {LyH,: x € A}, the
initial space of V;is {LyAyH,: x € A'}, and

ULyH;= LyH,, ViLyAgH = Ly A H;, vXeA’
with some fixed j,. Without loss of generality, we can assume that the
limits H = lim;,. U;H;and K = lim,_. V;L, H;existin ¥; := {LyH; : X
€A'tand ¥, = {LyL, H; 1 X € A'}, respectively. Then (10) implies that
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ILxKls = |LxHs . VXeA'.

Therefore there exists a partial isometry W with initial space H; and final
space K; such that

WLK=L,H VXEA'.

Hence R, := U} WYV, are partial isometries, commuting with Ly, X € A’,
and rank R; = U WV, < rank W < <. Also
I(RLs, — DHllus = WV, Ly H;, — UH{lys — | WK — H|lys = 0.

J

We now apply Lemma 4 (with HS(€) in place of ¢ and R;L, in place
of ¥;) to deduce lim inf;.|[R;L, |l,, = 1. Since R; commutes with Ly,
X € A’, we have

Ly RiL,Ly;1— R,L, in norm

for k — . We can then apply Theorem 2 to deduce that ||R;L,,

lsp =
|R;L,ll,- Consequently, we have

liminf||L,R/|l,, = liminf||R;L |, = liminf|R;L, || = 1.
ox F Jox

Thus,

Fa(A) = pus(Ly) = liminf| L X, = 1 = @y (4),
f—-):r.

which completes the proof of the theorem. |

Remarks. (i) Theorem 3 was provenin[l] whendim € < <. Recently,
Fan has announced another proof of the Lifting Theorem in this case [6].

(i) Using the well-known fact that u, is continuous for € finite
dimensional, the theorem implies that &, is continuous in this case as
well [1].

5. TIME-VARYING PERTURBATIONS

Theorem 3 is valid for any finite-dimensional C*-algebra, A’'. We have
already remarked how this result was used in [1] to show that 4, = u,
for block algebras with three or fewer blocks. This result is also strongly
connected to some recent work on robust stability with respect to time-
varying perturbations [11].
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Let €2 be the space of square summable one-sided sequences in C, let
‘6 denote the set of all bounded linear operators on ¢ . Further, let A :
€% (C")— €2 (C") be an arbitrary bounded linear operator. In control theory
terminology, A defines a (possibly) time-varying system. Time-invariant
systems are defined by Toeplitz operators. (Here €2 (C") denotes the space
of square summable sequences in C”, i.e., the space of finite energy vector-
valued signals with n components.) Then we want to interpret {,(A)
as a structured singular value on an extended space with an enhanced
perturbation structure. Note % in this case is the Hilbert space ¢2(C").

Define the algebra of perturbations

5 0 ... 0
A;:{(_) 8_3 0 16, €E%,i=1, .., n}.
0 0 ... 8,

Then the commutant of A is the finite dimensional C*-algebra,

d 0 ... 0
a=g% o Ygeci=1
0 0 ... d

Note that a constant d € C defines an operator on €2 via multiplication.

From Theorem 1, it follows that the £ given by the infimum of [ XAX ™'
over all constant X-scales equals m,(A). The question is, what robust
stability analysis problem does 1,(A) correspond to?

The Lifting Theorem now gives the following interpretation of fi,(A).
We regard the operator A as acting on the set of Hilbert—Schmidt operators
# := HS(€%(C")) via left multiplication L,. The Hilbert space ¥ has a
very simple representation. Indeed, we see that an element 2 € % admits
the (time-domain) representation

h]l h]z - hl"
he | b k| an
Moy hy e B

where h; : €3 — €2 for | <i,j =< n, and Tr(h*h) < =.
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We would now like to give the following convenient representation for
an element 4 € ¥. Let r; denote the jth row of 4 in (11) and let r; denote
the transpose (i.e., write the row as a column) for 1 = j = n. Then
we represent

r

Then

0 0 ... A,
where 4, denotes the algebra of n X n matrices with elements in €. A

is a space of time-varying perturbations and we have from the Lifting
Theorem that

£a(A) = ui(Ly).
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