
Enzymes involved in mammalian oligosaccharide biosynthesis 
Shunji Natsuka and John B Lowe 

Howard Hughes Medical  Institute and University of Michigan Medical  School, Ann Arbor, USA 

Several new sialyltransferases, N-acetylgalactosaminyltransferase and fucosyl- 
transferase genes have been reported in this past year. These sequences have 
advanced our understanding of the structural, functional and evolutionary 
relationships amongst the glycosyltransferases, including their roles in selectin 
ligand biosynthesis. Ablation of the murine N-acetylgalactosaminyltransferase I 
gene through gene 'knock out' technology has yielded insight into the role of 
this gene in the developing mouse. Novel 'O-linked' protein glycosylation 
events described in the past year have added to the substantial known 
diversity in the oligosaccharide structure and glycosyltransferase repertoire of 

mammalian organisms. 
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Introduction 

Eukaryotic organisms synthesize otigosaccharide chains 
through the actions ofglycosyltransferases, coupled with 
oligosaccharide-chain remodeling events catalyzed by 
glycohydrolases. These latter enzymes, including glu- 
cosidases and mannosidases, for example (reviewed in 
[1]), typically operate during the early stages of pro- 
tein N-glycoside maturation (Fig. 1). By contrast, both 
early and late stages of oligosaccharide chain synthesis 
require glycosyltransferases [2-4]. With few exceptions, 
each glycosyltransferase can catalyze the synthesis of a 
single glycosidic linkage. Because recent work has in- 
dicated that multiple distinct enzymes can synthesize 
identical sugar linkages, there must be roughly a few 
hundred distinct glycosyltransferases, and corresponding 
genes, to synthesize the multitude of distinct oligosac- 
charides identified in mammalian species. 

Molecular cloning efforts initiated in 1986 [5-7] have to 
date yielded the discovery and characterization of more 
than 30 different mammalian glycosyltransferase genes 
[5-20,21°-23°,24-32,33°°,34°°,35-48,49°',50,51,52"°,53, 
54°°,55°°,56°]. Each of the glycosyltransferase genes or 
cDNAs cloned to date predict enzymes with a com- 
mon topology, consisting of a short (less than 25 residues) 
amino-terminal cytoplasmic domain, a single transmem- 
brane segment, and a larger carboxyl-terminal catalytic 
domain (generally more than 325 residues) in the lumen 
of the Golgi apparatus. Several Golgi oligosaccharide- 
processing enzymes also share this type II transmembrane 
topology, suggesting that this topology has an important 

function in these Golgi-resident proteins. Some, though 
not all, mammalian glycosyltransferases are themselves 
subject to post-translational processing by glycosylation; 
many are also processed into soluble forms through pro- 
teolytic events. 

Despite the topological similarity of thes e glycosyltrans- 
ferases, sequence analysis of cloned enzymes suggests 
that there is generally little, if any, detectable pri- 
mary sequence similarity between members of enzy- 
matically distinct glycosyltransferase families, although 
glycosyltransferases within rather small catalytically re- 
lated families may share primary sequence similarity. 
There are, for example, no discernible significant pri- 
mary sequence similarities between the human H blood 
group 0t(1,2)fucosyltransferase [25] (GDP-fucose: 6- 
D-galactoside 2-0t-n-fucosyltransferase) and any of the 
ct(1,3)fucosyltransferases [33",34 °'] (GDP-fucose:[~-D- 
N-acetylglucosaminide 3-Ct-L-fucosyltransferases), de- 
spite the fact that these two classes use the nucleotide 
sugar substrate GDP-fucose, and can operate on iden- 
tical oligosaccharide precursor substrates. By contrast, 
the ct(1,3)fucosyltransferases share substantial amounts 
of primary sequence similarity. This review summa- 
rizes recent progress in the structural and functional 
definition of mammalian glycosyltransferases through 
molecular cloning approaches. We also discuss recent 
results obtained through genetic 'knock out' of the 
murine N-acetylglucosaminyltransferase-I gene, which 
encodes a key enzyme in the synthesis of complex type 
asparagine-linked glycosides. Current understanding of 
the relationship between selectin ligand synthesis and 

Abbreviations 
EGF--epidermal growth factor; ELFT--ELAM-1 ligand fucosyltransferase; Fuc-T--fucosyltransferase; 

GIcNAc-T-I--N-acetylglucosaminyltransferase-I; PCR~polymerase chain reaction. 
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Fig. 1. The biosynthesis of N-linked 
oligosaccharides. Representative exam- 
ples of each type are shown; micro- 
heterogeneity within each structural ex- 
ample yields many more structures than 
are shown here. 

ct(1,3)fucosyltransferases is outhned, with a discussion of  
recently described novel protein glycosylation modifica- 
tions. 

Recently isolated glycosyltransferase genes 

Since the glycosyltransferases are generally non-abundant 
proteins, it has been difficult to purify these enzymes 
for molecular cloning purposes. Cloning methods have 
therefore been developed to allow the isolation of  gly- 
cosyltransferase genes without the need for protein pu- 
rification (reviewed in [3-5]). These include expression- 
cloning approaches, low-stringency hybridization meth- 
ods, and polymerase chain reaction (PCR) cloning with 
primers derived from sequences conserved in catalyti- 
cally similar glycosyltransferases. An expression cloning 
method originally developed by Seed et al. [57,58] (see 
also [59]) has been applied, with some modification, to 
glycosyltransferase cloning [15,24,26,29,34°',39,42,43]. 
This approach generally involves the screening of  mam- 
malian cDNA expression libraries transfected into a 
mammalian host cell, using a genetic selection or screen 
for a novel glycosylation phenotype. Selections or screens 
rely on antibodies or lectins capable of  detecting a no- 
vel surface-localized glycosidic modification correspond- 
ing to the glycosyltransferase of interest. Although this 
method can select directly for a functional cDNA, its 
successful use requires host cells with the proper gly- 
cosylation phenotype (i.e. competent in the synthesis 
of  the desired enzyme's precursor substrates, but de- 
ficient in the desired enzyme itsel0, and reagents that 
can detect, or select for, the oligosaccharide product of  
the desired enzyme. 

Rapid and technically straightforward low-stringency 
hybridization methods have also been used to isolate new 
members of gene families encoding catalytically similar 
glycosyltransferases [28,30,32,33°°]. This approach can- 
not be expected to yield genes corresponding to glyco- 
syltransferases with catalytic properties distinct from the 
probe enzyme, however, because interfamily sequence 
comparisons suggest that these enzymes will maintain 
primary sequences virtually entirely distinct from the 
probe sequence. PCR cloning approaches have been 
used to circumvent this difficulty in some instances, 
where previous sequence comparisons have identified 
short conserved sequence motifs amongst a group of 
enzymes with shared, and distinct, catalytic properties. 

Sialyltransferases 

Biochemical experiments have indicated that mam- 
malian organisms may encoded numerous sialyhrans- 
ferases. Sequence analysis of  the first several cloned sialyl- 
transferases identified a conserved peptide motif in these 
enzymes (Fig. 2), embedded within otherwise dissimi- 
lar protein sequences. Paulson and co-workers [48] used 
this observation to design oligodeoxynucleotide PCR 
primers with degenerate sequences corresponding to 
the ends of the 'sialyl' motif  [45]. These primers were 
then used with the PCR to amplify novel sequences 
from cDNA libraries. In one instance, this approach 
yielded a PCR product with a novel sequence, from a 
human placenta cDNA library. A cDNA subsequently 
isolated from the hbrary with the PCR product was 
shown by sequence analysis and expresson studies to en- 
code a novel ct(2,3)sialyltransferase, termed STZ [54°°]. 
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The enzyme STZ can efficiently sialylate both glyco- 
protein and glycolipid substrates, to form the terminal 
sequences NeuAcct2-3Galj31-3GalNAc and NeuAc0t2- 
3Gal~I-4GlcNAc. This enzyme cannot form the prod- 
uct NeuAc~t2-3Gal[31-3GlcNAc, nor can it operate on 
terminal Lewis x or Lewis a trisaccharide determinants 
to form sialyl Lewis x or sialyl Lewis a moieties. These 
results lend additional support to previous observations 
(cited in [28]) indicating that ~t2-3sialylation precedes 
a regulated ctl-3fucosylation event in the ordered syn- 
thetic process of  these two selectin ligands. 

The Paulson group have also used this PC1L approach 
to isolate another novel cDNA, termed STX, from a 
newborn rat brain cDNA library [49°']. The cDNA se- 
quence predicts a protein with a type II topology and 
primary structure consistent with those of other sialyl- 
transferases. However, attempts to demonstrate that the 
recombinant protein manifests sialyltransferase activity 
have failed so far, even though a relatively wide vari- 
ety ofacceptor substrates have been tested. Nonetheless, 
it is very interesting that the STX gene is transcribed 
in newborn rat brain, but not in the adult brain, nor in 
other organs, including the kidney, liver, spleen, intes- 
tine, submaxillary gland and lung. These observations 
suggest that this putative sialyltransferase ,nay play a 
critical role in the developing central nervous system, an 
organ where substantial metabolic activity is devoted to 
ganglioside biosynthesis. 

Tsuji and collaborators [55"'] also used the PC1L 
method to isolate novel sialyltransferase genes, includ- 
ing a chicken GalNAc ~t2,6-sialyltransferase sequence 
and two distinct murine and rat ¢t(2,3)sialyltransferase 
genes [51,56"]. One of the products of the chicken 
sialyltransferase is the sialyl Tn determinant (NeuAc~2- 
6GalNAc~tl-Ser/Thr). This antigen has been identified 
in mammalian species as a 'cancer-related' epithelial cell 
antigen, and should be interesting to explore the expres- 
sion, regulation, and function of the human counter- 
part(s) of this gene in human carcinomas. 

One of the murine ct(2,3)sialyltransferases cloned by 
Tsuji et al. (ST3GalA.1) [55"'] is apparently the homo- 
logue of a porcine submaxillary gland Gal~l,3GalNAc~t- 
2,3sialyltransferase reported previously [47]. The other 
ct(2,3)sialyltransferases, isolated from both mouse and 

rat, are novel Gal[~I,3GalNAc 0t(2,3)sialyltransferases 
(ST3GalA.2). Although ST3GalA.1 and ST3GalA.2 ex- 
hibit roughly similar acceptor substrate specificities, they 
maintain distinct tissue-specific expression patterns. The 
ST3GalA. 1 gene is abundantly expressed in submaxillary 
glands, for example, whereas the ST3GalA .2  transcripts 
are most prominent in the mouse brain and liver. 

Sasaki et al. [52"'] have recently reported the use of 
a modified expression-cloning method in the isola- 
tion of a human Gal[31,3/1,4GlcNAcot2,3-sialyltrans- 
ferase gene. These investigators used a cytotoxic lectin 
[Ricinus communis agglutinin (1LCA120), which binds to 
~-galactosides], to select for a cDNA encoding a sia- 
lyltransferase that extensively masks the surface-local- 
ized [~-galactoside toxin receptors on the transfected, 
lectin-susceptible mammalian host. The resulting cloned 
cDNA encodes an ¢t(2,3)sialyltransferase capable of  us- 
ing both GaI~I-3GlcNAc and Gal~I-4GlcNAc. The 
sequence of  this enzyme is essentially identical to the 
~t(2,3)sialyltransferase cloned by Kitagawa and Paulson 
[54"'], who reported that this enzyme is unable to use 
Gal~I-3GlcNAc. This discrepancy has not yet been re- 
solved. 

N-acetylgalactosaminyltransferases 

Synthesis of O-linked oligosaccharides on cell sur- 
face and secreted proteins is initiated by the covalent 
modification of some serines or threonines with N- 
acetylgalactosamine. This reaction is catalyzed by one 
(or possibly more) UDP-GalNAc:polypeptide N-acetyl- 
galactosaminyltransferases. Two groups have indepen- 
dently reported the isolation of cDNA clones encod- 
ing the bovine form of  a UDP-GalNAc:polypeptide 
N-acetylgalactosaminyltransferase purified from bovine 
colostrum, and expressed in the small intestine [22 °] 
or placenta [23"]. This enzyme is predicted to main- 
tain the type II transmembrane topology typical of other 
glycosyltransferases. Initial characterization of  the accep- 
tor substrate specificy of  the recombinant form of the 
enzyme indicates that it transfers GalNAc to threonine 
residues at a rate more than 50-fold greater than trans- 
fer to serine residues in similar peptide sequence con- 
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hST6(G4GN) 
rSTX(?) 
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Fig. 2. Comparison of amino acid sequences of sialyltransferases in the 'sialylmotif'. Their substrate specificities are shown in parenthesis: 
G, galactose; GN, N-acetylglucosamine. Numbers on their names indicate linkage positions of glycosidic bonds. References are (from top): 
hST3(G3/4GN), [45]; mST3(G3GalNAc)-I, [46]; mST3(G3GalNAc)-II, [51]; hST3(G4GN/3GalNAc), [49"*]; cST6(GalNAc), [50]; hST6(G4GN), 
[40]; rSTX, [44]. Amino acids conserved in any three sequences are emphasized by outlined letters. 
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texts [22",23"]. These observations suggest the existence 
of  additional UDP-GalNAc:polypeptide N-acetylgalac- 
tosaminyltransferases. 

An expression-cloning approach has been used recently 
to isolate a murine cDNA encoding a ~(1,4)N-acetyl- 
galactosaminyltransferase that operates on glycoproteins 
with the terminal oligosaccharide NeuAc0t2,3Gal~l,4- 
GlcNAc~I,3Gal [21"]. This enzyme forms an oligosac- 
charide epitope defined previously as the human Sda 
blood group antigen [NeuAc0t2,3(GalNAc~l,4)Gal~l,4- 
GlcNAc~l,3Gal]. This latter antigen has also been de- 
fined independently as a functionally significant epitope 
(known as CT1 or CT2) on murine cytotoxic T cells. 
This murine CT [~(1,4)N-acetylgalactosaminyltransferase 
shares a substantial degree of  primary sequence simi- 
larity with a previously cloned human [~(1,4)N-acetyl- 
galactosaminyltransferase that creates a glycolipid anti- 
gen known as GM2 [20]. GM2 and the Sd a antigen 
share the identical ternfinal tetrasaccharide moiety, but 
differ in their underlying substructure (glycolipid ver- 
sus glycoprotein, respectively). An analysis of  these two 
enzymes should provide information on their peptide 
sequences that allow discrinfination between substrates 
with identical trisaccharide termini presented on other- 
wise dissimilar molecules. It will also be interesting to see 
whether the human Sd a blood group locus corresponds 
to the mouse sequence, and to explore the functional 
role of the CT1/CT2 epitope in immune cells. 

Ablation of the GIcNAc transferase-I gene in 
mice 

The gene targeting method developed by Capecchi et 
al. [60,61] is a powerful technique that is widely used 
to study biological function(s) of molecules whose ex- 
pression is regulated by a cloned gene. Two groups 
have independently used this approach to explore com- 
plex asparagine-linked (N-linked) oligosaccharides. A 
key regulatory step in the biosynthesis of  these molecules 
is catalyzed by the glycosyltransferase termed N- 
acetylglucosaminyltransferase-I (GlcNAc-T-I; the prod- 
uct of the mgat-I locus; Fig. 1) [35,36,38]. These inves- 
tigators created mice deficient in the GlcNAc-T- I  gene 
through standard gene targeting procedures [62°°,63"']. 
Mice heterozygous for one null mgat-I allele develop 
normally, and are without any obvious abnormal phe- 
notype. By contrast, homozygosity for the null mgat-1 
allele yields a lethal embryonic phenotype. These mice 
die at approximately 11.5 days of gestation. Homozygous 
null embryos have no detectable GlcNAcT-I activity, and 
are also (as expected) completely deficient in hybrid and 
complex type N-linked oligosaccharides. Blastocyst and 
morula formation, compaction and implantation pro- 
ceed normally without GlcNAc-T-I expression, suggest- 
ing that complex and hybrid type N-linked oligosaccha- 
rides are not essential for early mouse development. Null 
embryos are growth-retarded, however, have less than 

the normal number of  somites and exhibit a defect in 
neuropore closure. Approximately half of  the homozy- 
gous null embryos also exhibit a phenotype known as 
situs inversus, which apparently results from an inver- 
sion of  the normal developmental rotational process that 
yields organ asymmetry. The mechanisms responsible 
for each component of  this pleiotropic phenotype are 
not yet understood. These may eventually be shown to 
include disruption of essential N-linked oligosaccharide- 
dependent cell-cell recognition events during mid-em- 
bryogenesis, or a requirement for N-linked oligosaccha- 
rides in the proper folding, intracellular trafficking or 
turnover of developmentally important glycoproteins. In 
any event, most glycobiologists will be pleased that ma- 
ture N-oligosaccharides (complex and hybrid types, at 
least) are necessary for proper mammalian development. 

Fucosyltransferases and selectin ligand 
biosynthesis 

Leukocyte adhesion to E- and P-selectins is an early 
and important step in the process of leukocyte ex- 
travasation. The sialyl Lewis x tetrasaccharide is an es- 
sential component of the counterreceptors for these 
two selectins (reviewed in [64,65]). The final step in 
the biosynthesis of  the sialyl Lewis x tetrasaccharide is 
catalyzed by ct(1,3)fucosyltransferases (Fuc-T) operating 
on ct(2,3)sialylated N-acetyllactosamine type oligosac- 
charides [66] (Fig. 3). As noted above, there is as yet no 
precedent for an c~(2,3)sialyltransferase activity capable of 
sialylating the Lewis x tetrasaccharide to form the sialyl 
Lewis x antigen (Fig. 3). 

Five distinct human ct(1,3)fucosyltransferase genes 
have been cloned and characterized [26-32, 33%34"] 
(Table 1). Two of these, termed Fuc-TIV and Fuc-TVII, 
are transcribed in HL-60 cells [67"] and other leukocyte 
cell lines that express selectin ligands [27,28,33"',34"']. 
They are thus candidates for fucosyltransferases that con- 
trol selectin-ligand biosynthesis in leukocytes. By con- 
trast, transcripts corresponding to the Fuc-TIII, Fuc- 
TV and Fuc-TVI genes are not generally expressed to 
a significant degree in these cells. These observations, 
and genetic analysis of the Fuc-TIII and Fuc-TVI loci ,  
exclude these latter three genes from such consideration. 

Fuc-TIV [28,29] is also known as ELFT (ELAM-1 lig- 
and fucosyl transferase) [27]. Characterizations of the in 
vitro catalytic properties of  Fuc-TIV/ELFT indicate that 
it does not efficiently form the sialyl Lewis x tetrasaccha- 
ride from 3'-sialyl N-acetyllactosamine. Likewise, Fuc- 
TIV does not yield cell surface sialyl Lewis x expression 
when expressed in some cultured cell lines that can be 
converted to sialyl Lewis x positivity by transfection with 
other ct(1,3)fucosyltransferase genes [28,29]. By con- 
trast Goelz et al. [27] reported that Fuc-TIV/ELFT 
determines expression of E-selectin ligands and the 
sialyl Lewis x antigen when expressed in a dihydrofo- 
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Sialy l  Lewis  x 

Fig. 3. The biosynthetic routes of the sia- 
lyl Lewis x determinant. The broken line 
indicates a hypothetical route that would 
require a sialyltranferase with activities 
not found in any known sialyltransferase. 

late reductase-resistant Chinese hamster ovary cell line. 
Goelz et al. [68 °°] hypothesize that these discrepancies 
can be accounted for by differences in the glycosylation 
phenotype of  host cells used in these types oftransfection 
experiments. The biochemical basis of  these differences 
is not yet known, nor is it known whether human leuko- 
cytes maintain a glycosylation phenotype capable of sup- 
porting Fuc-TIV-determined sialyl Lewis x expression. 

The recent molecular cloning of another human 
ct(1,3)fucosyltransferase gene, termed Fuc-TVII, sug- 
gests another, Fuc-TIV-independent, route for sialyl 
Lewis x expression in leukocytes [33°°,34"°]. The lZuc - 
TVII gene is expressed in several types of cultured hu- 
man leukocytic cell lines. In vitro, the corresponding en- 
zyme can efficiently use sialyl N-acetyllactosamine as an 
acceptor substrate to form the sialyl Lewis x tetrasaccha- 
ride. Furthermore, expression of  this enzyme in COS-7 
and Chinese hamster ovary cells leads to surface expres- 
sion of the sialyl Lewis x antigen. Although these obser- 
vations suggest two possible routes for the biosynthesis 
of E- and P-selectin ligands, the relative contributions 
of these routes to this process remains to be explored, as 
does the possibility that there are other paths also, using 
other unknown enzymes. 

Novel O-linked oligosaccharides 

Many mammalian glycoproteins contain complex carbo- 
hydrates linked through O-glycosidic linkages to some 
serine or threonine residues (Fig. 4). Although the un- 
derstanding of the O-glycoside biosynthesis is less ad- 
vanced than that of N-linked oligosaccharides, O-glyco- 
sides are believed to be as biologically important as the 
N-glycosides. L- and P-selectin oligosaccharide ligands 
are born on O-glycosides of mucin-like glycoproteins 
[69-75], for example, and GlcNAc moieties linked di- 
rectly to serine or threonine residues on many nuclear 
and cytoplasmic proteins are thought to be important 
regulators of  protein-protein interactions (reviewed in 
[76]; see also Hayes and Hart, pp 692-696). 

Recent advances in analytical methods for oligosaccha- 
ride structures have led to the discovery of several novel 
types of O-glycosides. Hase et al. [77-80] (see also [81]) 
have recently reported a xylosylglucose type sugar chain 
found on several blood clotting glycoproteins (Fig. 4). 
Although [~-linked xylose residues are widely distributed 
as a core residue on proteoglycans, the xylosylglycans re- 
ported by Hase et al. are the first examples of  0t-linked 
xylose residues in mammalian glycoproteins. Each of 

Table 1. Human ~(1,3)fucosyltransferases. 

Fuc-Tltl Fuc-TIV Fuc-TV Fuc-TVI Fuc-TVII 
(ELFT) 

Classification Lewis blood Myeloid type - 'Plasma type' Leukocyte type 
group type 

Potential /'4- 
glycosylation sites 

2 2 4 4 2 

Human chromosome 19 11 q21 19 19 9 

Catalytic products Le x, sLe x, Le a, Le x, VIM-2 Le x, sLe x, VIM-2 Le x, sLe x sLe x 
sLe a, VIM-2 

References [26] [27-29,90] [30] [32] [33,34] 
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the xylosylglucose-type oligosaccharides found to date 
occur on the epidermal growth factor (EGF)-hke do- 
mains on clotting factors or structurally-related glyco- 
proteins [77-80]. The ot(1,3)xylosyltransferase(s) and/or 
peptide: et-glucosyltransferases responsible for biosynthe- 
sis of these oligosaccharides are most probably expressed 
in hepatocytes, because the liver is the major site of  syn- 
thesis of  these particular coagulation factors. O-linked 
fucose residues have also been described on the EGF-like 
domains of some glycoproteins [82-85,86",87"',88°']. 
The positions of  attachment of fucose residues dif- 
fer from the xylosylglucose attachment sites, and the 
spectrum of glycoproteins that display O-linked fucose 
residues differ from the set of proteins modified by xy- 
losylglucose moieties [77-81]. Some of these O-linked 
fucose moieties are substituted with an N-acetylglu- 
cosamine residue, which is in turn modified by galactose 
and then sialic acid [87"•,88 ..] (Fig. 4). The enzymatic 
basis for synthesis of  these structures is an exciting and 
unexplored area, which will certainly lead to the dis- 
covery of  novel peptide: et-fucosyltransferase, and related 
enzymes. The function(s) of  these novel glycosidic struc- 
tures also remains to be explored. 

Gal~l-3GalNAc~l-Ser/Thr Mucin type 

NeuAc~2-6Gal~l-4Glc/~c~l-3Fuc~l-Ser/Thr O-Fucose type 

Xyl~l-3Xyl~l-3Glc~l-Ser/Thr Xylosylglucose type 

GlcNAc~l-Ser/Thr O-G1 cNAc type 

( glycosaminoglycan ) -Xyl~l - Ser/Thr Glycosaminoglycan core 

Fig. 4. Structures of O-glycosides linked to serine or threonine 
residues. Numerous other mucin-type oligosaccharide structures 
have also been described. 

Future prospects and conclusions 

Given the large number of  predicted mammalian glyco- 
syltransferases, continued growth can be expected in the 
number of  these enzymes for which structures and bio- 
chemistry are defined through molecular cloning efforts. 
While the approaches discussed here will certainly con- 
tinue to be useful, it may be necessary to develop novel 
techniques to obtain new glycosyltransferase genes that 
cannot be cloned with existing methods. This might 
include cloning methods based on the selection of, or 
screening for, an enzyme activity, instead of  using se- 
lections or screens that are dependent upon synthesis 
of a new surface carbohydrate determinant recognized 
by antibodies or lectins. 

We can also expect to see the discovery of additional 
novel oligosaccharide structures, analagous to the O- 
fucose and xylosylglucose type O-glycosides discussed 
above. These advances will be made, possible by the 
use of  recently developed, highly sensitive, methods 
for oligosaccharide structural analysis. These methods 
include matrix-assisted laser desorption mass spectrom- 
etry, for example, which can analyze picomole amounts 
of  sample [89,90], and two-dimensional mapping of 
fluorescent-tagged sugar chains, which can detect fem- 
tomole amounts of  glycoconjugate molecules [91,92]. 

In conclusion, the emerging array of cloned oligosaccha- 
ride-processing enzyme genes, coupled with new ana- 
lytical technologies and molecular genetic approaches to 
the study of  oligosaccharide function (e.g. transgenesis 
and gene targeting), open a bright and exciting future 
for glycobiology. 
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