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Following discretization, a non-linear ordinary differential equation of motion is
obtained that describes the forced respense of simply supported, predeformed plates. The
excitation, which derives from harmonically varying in-plane edge loading, results in both
external and parametric excitation. The equation of motion also includes the quadratic and
cubic non-linearities associated with mid-plane stretching. Periodic sclutions and their
stability are determined by using the harmonic balance method. By varying the magnitude
of predeformation, these solutions display two limiting types of behavior. Plate response
is driven mainly through external excitation for “large” predeformation and mainly
through parametric excitation for small predeformation. The solutions capture the inter-
action between parametric and external excitation for intermediate predeformation which
causes a change in stability of one solution. This change in stability leads to an instability
region for the limiting case of pure parametric excitation (vanishing predeformation).

I. INTRODUCTION

1.1. MOTIVATION

The presence of initial deformations in the plating of ship hulls is unavoidable. For
example, plate waviness may result after the panels are welded to the stiffeners. This
predeformation is identified herein as an important parameter affecting the dynamical
characteristics of structures composed of plate elements. The present study is focused on
the forced response of an (isolated) predeformed plate. The results derived for a single
plate are applied to the vibration of ship hulls [1], and are the subject of a future
publication.

1.2. RELATED STUDIES

Marguerre equations [2], sometimes also referred to as shallow shell equations, are often
used in the analysis of predeformed plates. Coan [3] used an assumed series for the lateral
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displacement to solve the compatibility equation; then, through a balance of the
coefficients for the functions in the series, he obtained a set of algebraic equations for the
amplitude of each term in the series. He used this approach to determine the static response
of plates with smali initial curvature loaded in edge compression. Yamaki [4] used a similar
approach, but instead of balancing the coefficients, he applied the Galerkin method to
discretize the equilibrium equations. Plates loaded statically in edge compression with
various combinations of boundary conditions were treated by following this method.

Schultz [5] used the Coan—Yamaki approach to investigate the effect of initial deflections
on the static performance of ship plating. He presented expetimental results showing good
agreement with analytical predictions. Jan [6], complemented Schultz’s results by combin-
ing lateral and compression loads acting on the plate.

Cummings [7] studied the vibration of cylindrical shell segments under freely supported
boundary conditions. He considered both free vibration and forced vibration due to an
external lateral pressure. Somerset and Evan-Iwanowski [8] presented results of exper-
iments with simply supported flat plates under parametric excitation. Leissa and Kadi [9]
studied the effect of curvature upon the natural frequencies of shallow shells using the
approach of Coan and Yamaki. They also incorporated the tangential inertia of the plate
and found the influence to be small. Clamped rectangular plates under uniformly
distributed lateral periodic loads were studied by Yamaki, Otomo and Chiba [10]. After
the Coan—Yamaki approach was used to discretize the problem, the harmonic balance
method was applied to solve a set of coupled Duffing equations. They also presented the
results of experiments [11], confirming their computation. The effect of geometric
imperfections on natural frequencies of simply supported flat plates under in-plane uniaxial
and biaxial compression was studied by Hui and Leissa [12]. Hui [13] later considered
laterally loaded plates and hysteretic damping, Ilanko and Dickinson [14] examined the
linear vibration of simply supported, geometrically imperfect, rectangular plates, Their
calculations, based on a Rayleigh—Ritz discretization, were corroborated by experimental
results [15].

1.3. PRESENT STUDY

The objective of the present study is to examine the non-linear response of predeformed
plates. Marguerre equations, altered to include plate inertia, are discretized by using the
approach presented by Coan [3] and Yamaki [4). The excitation considered is a distributed,
harmonic, in-plane force acting on the edges of the plate. The combination of in-plane
excitation and predeformation produces both external and parametric excitation terms in
the governing equation of motion. Furthermore, the predeformation leads to quadratic
non-linearities and to increases in the plate natural frequencies over those associated with
and undeformed plate,

2. PROBLEM FORMULATION

The problem of interest is illustrated in Figure 1, and consists of an originally flat
rectangular plate of width @ and length 4. The plate has simply supported edges along
y = +£b/2. Along x = +4/2, the edges remain simply supported for lateral deflections and
are loaded by the average dynamic stress p.(¢t) for in-plane deflection. The plate
predeformation is described by w,(x, ¥).

The Marguerre equations [2], sometimes also referred to as shallow shell equations, are
used to study the dynamic response of predeformed plates. For this purpose, the static
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lateral load is replaced by the plate inertia, so that the governing bending and in-plane
equations, including the lateral predeformation of the plate, are

D[3%w/ax* + 2 8w /dx? dy* + 8w 6y
= —pW + A[F,,(w +wy) o — 2F (W +wp) o, + F (W +wp) ] (H
QUF[ox + 2 3°Fox? 9y + 0°Fjay"
= E[wl, — w W, + 2Wo o W — Wy W — Wo o, W, (2)

where the plate flexural rigidity is D = ER*/[12(1 —v?)] and E is Young's modulus,
F(x, y, t} is the Airy stress function, h is the plate thickness, w{x, y, t) is the dynamic
deformation of the plate measured from the predeformed state, w,(x, y) is the plate
predeformation (unstressed state), v is the Poisson ratio and p is the mass per unit area
of the plate. The Airy stress function, F, is defined as

N (h =Ey)” Ny/h =F. and ny/h = _F.xw

where N, N, and N, are the components of the in-plane stress resultant in the indicated
directions {force per unit length). These relations satisfy identically the two in-plane static
equilibrium equations, when the in-plane inertia is negligible. This assumption, which will
be employed here, follows the findings of Leissa and Kadi [9], who noted a very small
reduction in natural frequency when the in-plane inertia is included.

The predeformed plaie is simply supported on its four edges, and is assumed to be
stress-free. Moreover, the predeformation of the plate is assumed to be

wy(x, ¥) = hW,cos (nx/a) cos (zy/b), 3)

which represents the leading term in a Fourier series expansion for general predeformation.
W, is the (presumed known) amplitude of the predeformation expressed as a fraction of
the plate thickness, A.

The associated boundary conditions are

w=0 and M,=0 onx=+a/2, w=0 and M,=0 ony=+b/2, (45
N,=0 on x=+a/2 and y=+b/2, (6)

Figure 1. The predeformed plate geometry.
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u a2, p,y=u%aj2, 1), %x, £6/2,0)=0"(Lb/2,1), (7.8

a2

b2
h j c(xa/2,y,t)dy = p,(£)hb, h f o(x, £b/2,rydx =0. (9, 10)
—bf2 —af2
Here M, and M, are the bending moments per unit length about the x- and y-axes,
respectively, p,(¢) is the specified average dynamic in-plane stress applied along x = +a/2,
o2 and o) are the membrane stresses in the x- and y-directions, respectively, and #° and
v? are the mid-surface displacements in the x- and y-directions, respectively. Conditions
(7) and (8) require that the plate edges move uniformly in the x—y plane without distortion.
The distribution of the in-plane displacement field is specified as uniform, but its
magnitude cannot be specified a priori. Conversely, the distribution of in-plane membrane
stresses cannot be specified, but its resultant (integral) can be specified as a prescribed
function of time.

3. SOLUTION METHOD

The governing equations {1)-(10) are discretized following Coan [3] and Yamaki [4]. A
one term separable solution for w(x,y, ) is selected which satisfies the out-of-plane
boundary conditions {4) and (5). Substitution into the in-plane equation (2) reduces it to
a non-homogeneous biharmonic equation in the stress function F. The general solution,
found in terms of particular and homogeneous solutions, is rendered unique through
satisfaction of the remaining in-plane boundary conditions (6)<10). Substitution of the
stress function solution into the out-of-plane equation (1) and application of the Galerkin
method results in a single non-linear ordinary differential equation of motion. Periodic
solutions and their stability are determined by using the harmonic balance method.

A comparison function for w(x, y, t) which satisfies the simply supported boundary
conditions (4) and (5) is

w(x,y, t)=h{(t)cos(nx/a)cos(ny/b), (11)

where {(¢) is a generalized co-ordinate. This choice is motivated by the fact that the (low
frequency) dynamic deformation is likely to resemble the shape of the predeformation,
given by equation (3). As with equation (3), equation {11) can also be interpreted as the
leading term in a Fourier series expansion for general w(x, y, 7).
Substitution of equations (3) and (11) into equation (2) results in the non-homogeneous
biharmonic equation
Fon¥2F ,+F, = ~EW{(3{ + W,)(n¥ab))cos (2nx/a) + cos 2ny/b)).

.
The particular solution of this equation is
F,= —(ER16)L (3¢ + W)l(1/4%) cos (2nx/a) + A?cos (2my /b)), (12)

where 4 = b/a is the plate aspect ratio.
By using the definitions of the non-linear membrane (mid-surface) strains [16], the
midsurface displacement of the x = ¢/2-edge in the x-direction can be expressed as

ai2
0 _ 0__ L.,2
up = j (Ex - 2W,x — Wy w.x) dx,
0

where €] = u’ + 3w’ 4+ wy,w, is the membrane strain in the x-direction. Substituting
equation (12) in this expression, results in

up(a/2, y, 1) = —(@/8) (hn[2)[ G{ + Wy). (13)
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Similarly, the y-displacement of the y = b/2-edge is
vp(x, b2, 1) = —(b/8)(hn /b)Y (3L + W,). (14)

Equations (13) and (14) imply that the edges do not distort. As also N, = hF,, =0, only
the homogeneous solution of the stress function need be used to satisfy the remaining
boundary conditions (9) and (10). The homogeneous solution

Fy= —p,cos (&t)(y*/2) (15)

includes an average in-plane stress, p, cos (wt), representing the harmonic excitation in the
x-direction, with frequency w.

By using equations (12) and (15), the stress resltant N, = hF, on the edges x = +a/2
is found to be

N, = h{E(hn P/4b2}{ L + Wy)A* cos (2my [b) — hp, cos (wt ). (16)

The first term in equation (16) guarantees straightness of the x = ta/2-plate edges, as
required by equation (7). Note that the resultant (integrated) in-plane force remains p, hb.
In the case of free vibration, the second term in equation (16) vanishes. Thus, there is no
resultant force on the plate edge, but the edge is not stress-free.

The complete solution for the stress function (12) and (15) and the expansion (11) for
w are substituted into the bending equation (1). After applying the Galerkin method, the
following ordinary differential equation is obtained for the generalized co-ordinate {(z):

Z + wi[l — 2u cos (@O + al?+ BL* = F cos (wt). a7
Here:

ERPm (142 Wi+ 4% IER Y + YW,
- _ (8,19
o= bt |:3(]ﬂv2)+ I T6pb* (18, 19)

3.4 '4 2 h ZW
g ERULE) L phlaf  phaRW o

16pb o P

Equation (17) captures the quadratic and cubic non-linearities associated with mid-plane
stretching. The linear stiffness term is proportional to @, which represents an approximate
fundamental natural frequency for the one-term expansion (11). The terms
{2umicos{wt)] and F cos{wt) capture, respectively, the parametric and external exci-
tation created by the in-planc loading. 2u is the ratio of the amplitudes of the average
in-plane load p, to the critical buckling load of the plate, 6%, = (i + 1~")'rnD/b%h.

The predeformation affects the response of the plate in three major ways.

1. It generates an external excitation. The combination of in-plane forces N, and
predeformation w, creates a vertical component of the in-plane force, denoted by N, w,
in Figure 2.

2. The predeformation generates a quadratic non-linearity. The first term in equation
(16) captures the asymmetric response of the plate to lateral deflection { (see Figure 3).
For —2W,<{ <0, the central part of the plate (where the deformations are larger)
experiences a compressive load which tends to drive the plate away from the predeformed
position. This action is described by a quadratic non-linearity.

3. The predeformation stiffens the plate and increasecs the fundamental natural
frequency.
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Figure 2. The source of external excitation.

4. REGIONS OF RESONANCE

For the linearized system, the parametric excitation in equation (17) produces unstable
(unbounded) response for excitation frequencies @ ~ 2wy/r,n=1,2,3,... [17). The first
three instability regions are illustrated by the cross-hatched areas in the excitation
frequency—amplitude plane of Figure 4 [17]. The largest region adjacent to w = 2w, is the
region of principal parametric resonance. The non-linearities in equation (17) tend to
bound the response and lead to large amplitude, resonant plate oscillations near these
regions of dynamic instability.

The external excitation in equation {17) in combination with the non-linearities lead to
primary (@ =~,) and a number of secondary external resonances [18]). Subharmonic
resonances exist for @ ~ 2wy and ® ~3w, and superharmonic resonances ecxist for
@ ~ay/2 and @ = wy/3. Note that the subharmonic @ ~2w,, primary @ ~ o, and
superharmonic @ =~ @,/2 external resonances coincide, respectively, with the principal
(n = 1), second order (n = 2), and fourth order (n = 4) parametric resonances.

These (severe) regions of combined resonance are considered in this analysis and are
listed in Table 1. The first column indicates the approximate excitation frequency for each

N, + hp, cos (wt) o< {(£/2+ Wy)

S

I I
—2Wu - WO

X

Figure 3. The source of quadratic non-linearity.
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Figure 4. The first three regions of dynamic instability [17]. @ is the excitation frequency and w, is the natural
frequency.

region. The second and third columns indicate the parametric and external resonances
associated with each region and the frequency of the harmonic component of the response
in resonance.

The interaction between parametric and external excitation in the region of primary
resonance (m =~ w,) was analyzed by HaQuang er al. [19], using the method of multiple
scales [18]. In doing so, the parametric and external excitation were ordered at the first
and second order levels, respectively. Thus the solution obtained cannot reproduce the
response in the limiting case of pure external excitation.

In the present study, it is desired to have greater flexibility in assigning the relative
importance of the parametric and external excitations. The amplitude of the external
excitation (22) is proportional to the amplitude of the predeformation and ultimately
dominates for cases of (relatively) large predeformation. Thus, a solution is sought that
can capture the complete transition between pure parametric and pure external resonant
response. For this purpose, the method of harmonic balance is adopted [17]. In the
following, this method is used to determine periodic solutions and their stability

throughout the frequency range encompassing the three regions of resonance shown in
Table 1.

5. PRINCIPAL PARAMETRIC-SUBHARMONIC RESPONSE

In the principal parametric-subharmonic resonant region, the excitation frequency is
approximately twice the plate natural frequency. The harmonic balance solution must

TaBLE |
Regions of combined resonance

Combined Parametric External
resonance region resonance resonance

@ ™~ 2y Principal, w/2 Subharmonic, w/2

W~ w, Second order, w Primary,

W = wy/2 Fourth order, o Superharmonic, 2w
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therefore include a term with the frequency of the subharmonic resonance (w/2) as well
as a term with the excitation frequency (@) [17]: i.e.,

{(t)= A cos (wt/2) + B sin {wt;2) + C cos (wt) + D sin {(wt). (23)

Here A(t), B(t), C(¢) and D(¢) represent slowly varying response amplitudes. The first two
terms correspond to the principal parametric-subharmonic resonance, while the last two
terms capture (possible) primary external response. Differentiating equation (23) twice
leads to -

& = A cos(wt/2) + B sin (wt/2) + € cos (wr) + D sin (wr)
— w4 sin (wt/2) + wB cos (wt/2) — 2w  sin (wt) + 20D cos (wt)
— A(w?/4) cos () — B(w?/4) sin (wf) — Cw? cos (wt) — Dw? sin (wt),

where second order derivatives of the amplitudes are neglected, {17]. Substituting this result
and equation {23) into equation (17) and equating coefficients of like harmonics leads to
the following state equations governing the slowly varying amplitudes:

A =:u[ |:wo(] +#)—m—:|+a(AD BC)+38— [¥+C2+D2H, (24)
B= _é [ [wo(] —u)— “’—2] +af{AC + BD)+ 3= [@+ C+ Dz]], (25)
¢ =~2-13;[D[w§ w’]+adB + 38— [@wi%ﬁ]], (26)

. A? (C*+ D%
D= 2w[1«“ Clwi—wl]—« T—m [——2——+A2+Bz]]. 27

The singular points of equations (24)-(27) satisfy the conditions A = B=C =D =0 and
provide the steady amplitudes for periodic solutions. The stability of each periodic solution
is determined by linearizing equations (24)+(27) about the singular points and computing
the eigenvalues of the resulting Jacobian matrix.

Closed form expressions for the periodic solutions are presently derived by using the
approximation of Troger and Hsu, [20]. The steady state forms of equations (26) and (27)
are linearized and provide the amplitudes for linear response:

C~Fllwi-w?), D=0 (28, 29)

From the steady forms of equations (24) and (25), note that the trivial solution, 4 = B =0,
is always a solution.

With X =./A4?+ B? denoting the amplitude of the remaining (resonant) part of the
solution, the steady forms of equations (24) and (25) provide two additional solutions:

= (4/3f)[(w?*/4)(1 — p) + aC + 3FC?/2], (30}

= (@38 [(@¥/H (1 + p) — aC + 3FC%2). (31)
The solution (30) exists provided that @ > w,, where

o =2/l — p) + «C + 3C%2, (32)

and solution (31) exists provided that « > w,, where

wy =2/ wi(l + ) — aC + 3CY2. (33)
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Figure 5. The influence of predeformation on the instability region for principal parametric resonance.

Note that in the limit of vanishing external excitation (W,—0, F =0, C —0), equations
(32) and (33) reduce to the stability boundaries for principal parametric resonance reported
by Bolotin [17]. These stability boundaries are altered by the (additional) external
excitation considered herein.

The stability boundaries for the two cases of vanishing (W, ={) and non-vanishing
(W, = 0-20) plate predeformation are illustrated in Figure 5. Inside the regions defined by
the curves, the trivial solution (X =0) is unstable and the plate oscillates laterally while
being exciled by the in-plane force. In this and all following examples we consider a steel
plate with E=2-113E 10kg/m?, v =03, pg/h =8 gm/cm’® (g being the gravitational
acceleration = 980 cm/s?), aspect ratioc b/a =500, a=0762m and thickness
h = 15-32 mm; these dimensions correspond to a deck plate of a large ship. The
predeformation causes the instability region to shift to the right in response to the increased
plate natural frequency (18). For the flat plate, the fundamental natural frequency, @, is
417 1/s, and the buckling stress, o2, = 835 kg/mm?®, The predeformation also increases
slightly the width of the instability region,

0-83

0-66

0-50

0-33

Resonant response amplitude, X

1 | |
800 840 880 920
Excitation frequency, w (rad/s)

Figure 6. The principal parametric-subharmonic resonance. In this example, u = ¢-05.
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In Figure 6, the (resonant) principal parametric-subharmonic amplitude, X, is piotted
versus excitation frequency, for values of predeformation of 0-0 and 0-2. The solid and
dashed curves denote stable and unstable periodic solutions, respectively. Solution stability
is assessed as follows. Substituting 4 = 4* + a(¢) and B = B* + 5(1) into equations (24)
and (25), where A* and B* are the (steady) amplitudes of a periodic solution, leads to two
autonomous state equations governing the perturbations a(¢z) and b(¢). These variational
equations are linearized and the eigensolutions are determined. Instability is indicated
when any eigenvalue has a positive real part. This analysis reveals.that the trivial solution
(4* = B* =0) is unstable for o, < @ < w, and is stable outside this region. Moreover, the
solution X" = X is always stable (for @ > @, ) while X = X is always unstable (for o > w,).
Thus two stable periodic solutions coexist for @ > m,.

6. PRIMARY AND SUPERHARMONIC RESONANCE REGIONS

Responses in the primary superharmonic and external resonance regions are analyzed
with one formulation. The harmonic balance solution must include terms with the
superharmonic frequency (2w), the harmonic frequency {(w), and a constant term as
discussed in reference [17]:

{{t)= A cos(2wt) + B sin 2wt) + C cos (wt )} + D sin (wt) + S, (34

The constant term captures the possible vibration drift generated by the quadratic
non-linearity [18]. Again, the quantities A(z). B(r), C(¢), D(¢) and S5(¢) represent slowly
varying response amplitudes. As shown below, this assumed solution form captures the
evolution of the response associated with the primary external resonance region (@ = w,)
to that associated with the superharmonic resonance region {(w = wgy/2).

By following the procedure outlined in section 5, the resultant amplitude state equations
are found to be

A = (1/4w){Duw} + B(w}—40? + a(2BS + CD) + 3B[(BAY/4) + (BD?2)
+ (BC?/2)+ BS*+ CDS +(BY/4)]}, (35)
B = —(1/40){Cuw} + A(0l — 40?) + a (245 + (C*2) — (D¥2)) + 3B[(ABY4)
+ (ADY2) + (ACH2) — (SDY2) + (SCH2) + AS? + (47/4)]}, (36)
C = (12w){Buw} + D(w}— ©?) + a(BC — AD) + 3B[(DBY2) + (DAY2) + (DC?4)
+ DS*— ADS + BCS +(D*/4)]}, (37)
D = (120}F + uwi(A + 25) — C(wi — w?) — a(BD + AC + 2CS) — 38[(CBY2)
+(CA%[2) +(CD?*4) + (C§%2) + BDS + ACS + (C*4)]}, (38)
—pwiC + Swi+ a[S2+ 34+ B+ C*+ DY) + 3B{AC*4 — (AD?4) + (SB?[2)
+(SA%2) + (SD¥Y2) + (SC¥2) + $ = 0. (39)

The singular points of equations (35)-(39) are determined by simultaneous solution for the
conditions 4 = B = C =D =0. Solution was first attempted by using standard New-
ton—Raphson iteration. This procedure, however proved to be very time demanding and
was not always successful. In particular, many combinations of initial guesses would
converge to the same root, or simply not converge at all. Greater success followed from
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Figure 7. The superharmonic cosine amplitude (i, =020, g = 0-05).

using the so-called continuation method [21]. Starting from a known root, this method
follows the solution branch by using a predictor—corrector scheme. The solution branches
were parameterized by using an arc length co-ordinate. For the predictor, fourth-order
Runge-Kutta integration was employed, and for the corrector Newton~Raphson iteration
was used.

In Figures 7 and & are shown the amplitudes of the cosine superharmonic (2w}, 4, and
cosine harmonic (w), C, respectively, as functions of the excitation frequency. The
amplitudes of the corresponding sine terms are zero. In this example, W, =0-20 and
i = 0-05. Two resonances occur over the indicated frequency range: (1) the superharmonic
at, approximately, @ = wy/2; and (2) the primary at approximately w = w,. Stable and
unstable solution branches are denoted by the solid and dashed curves, respectively. The
stability of the solution changes at the turning points. Furthermore, the solution branches
all bend to the right, indicative of a hardening type non-linearity. For the case considered,
the softening effect of the quadratic non-linearity is overshadowed by the stiffening effect
of the cubic non-hnearity.

From Figure 8 for the harmonic cosine amplitude, C, observe the strong interaction of
the solution branches in the two resonance regions. In particular, the stable solution
branch originating near the superharmonic resonance, w = w,/2, is continuous with a
stable solution branch at the principal external resonance region, « = ¢,. Note also that,
in this example with relatively large predeformation (W, = 0-20), the response near @ = w,
is dominated by the external excitation.

The influence of the plate predeformation is further investigated by examining the
response near the limit W;—0. At this limit, the external excitation vamshes and the plate
is subjected to pure parametric excitation. Thus, the region near w = w, must evolve from
one associated with primary external resonance to one associated with second order
parametric resonance; refer to Table 1.
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This evolution is highlighted in Figure 9, which illustrates solutions for the two cases
W, = 0-:01 and W, = 0-001 in the region w = w,. As before, u = 0-05 is used. The following
observations are made.

1. Notice the appearance of the harmonic sine term D in Figure 9(b). This term, which
appears only for cases of small predeformation, is indicative of the growing influence of
the parametric excitation. The solution branches for D are all unstable and the point where
they cross the frequency axis, P, for W, =0-01 and P, for W, =0-001, converges to one
boundary of the instability region in the limiting case of pure parametric excitation
(W, —0).

2. As the predeformation decreases, the two solutions of the harmonic cosine term, C,
migrate towards each other; refer to Figure 9(a). Their limiting position (W, —0) defines
the lower boundary of the parametric instability region. In this limit, they also approach
the frequency axis signaling the fact that the trivial solution is a solution for the case of
pure parametric excitation.

3. The stability characteristics of the negative solution branch of the harmonic
cosine term, C, are altered. In these two examples, stability is exchanged at the points
marked P,(W,=001) and P,(W;=0-001} as well as at the turning points marked
V (W, =0-01) and V,(W, = 0-001). Stability is lost at the points P, and P, through a Hopf
bifurcation.

4. In the limiting case of pure parametric excitation, the point P migrates towards the
frequency axis in Figure 9 and passes through the turning point to the upper portion of
the (negative) solution branch for C. Thus, as in the case W; =0-001, an unstable region
exists between the points marked P, and FV,. This instability region converges to the
frequency axis in the limit of vanishing W, where it becomes the instability region for
second order parametric resonance,

These findings are summarized in Figure 10, which shows the complete evolution
between externally driven response (*‘large” W) to parametrically drive response (W, — 0).

Amplitude, C
o
S

!

-5 ! | | 1 ] 1 \ I
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Figure 8 The harmonic cosine amplitude, C (W, = 0-20, x4 = 0-05),
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Figure 9. The amplitudes of the harmonic terms C (a) and D (b) for the response near w = w,. Solutions are
shown for W,=0-01 and (-001. In both cases, u = 0-05.

The amplitudes of the harmonic terms, C and D, are plotted in the excitation fre-
quency/predeformation plane near resonance @/w, = 1-0.

Qualitatively similar results were obtained by Ness [22] and by Hsu and Cheng [23], for
systems with combined parametric and external excitation, the first in the case of a

differential equation with negative cubic non-linearity, and the second in the case of linear
differential equations.

7. CONCLUSIONS

Plate predeformation introduces first order (linear) coupling of in-plane and lateral
response. This coupling results in externally excited lateral response for predeformed plates
subjected to in-plane loading. Moreover, predeformation leads to a small increase in the
fundamental plate natural frequency and generates a quadratic non-linearity describing
mid-plane stretching.

The predeformation significantly alters the character of the resonances associated with
combined external and parametric excitation. In particular, the response near ¢ = @, is
dominated by primary external resonance for (relatively) large predeformation 1. In the
limit of vanishing predeformation, the response near w = w, is dominated by a second
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Figure 10. The evolution of the solution branches between mostly externally excited (**large™ predeformation)
to purely parametrically excited (no predeformation). (a) Amplitude C; (b) amplitude D.

order parametric resonance. The transition between these two limiting cases follows from
the change in stability of one branch of the periodic solutions.
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