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Abstract 

In this paper we present an algorithm for estimating state-dependent polynomial coefficients in the nonstationary-state 
hidden Markov model (or the trended HMM) which allows for the flexibility of linear time warping or scaling in 
individual model states. The need for the state-dependent time warping arises from the consideration that due to 
speaking rate variation and other temporal factors in speech, multiple state-segmented speech data sequences used for 
training a single set of polynomial coefficients often vary appreciably in their sequence lengths. The algorithm is 
developed based on a general framework with use of auxiliary parameters, which, of no interests in themselves, 
nevertheless provide an intermediate tool for achieving maximal accuracy for estimating the polynomial coefficients in 
the trended HMM. It is proved that the proposed estimation algorithm converges to a solution equivalent to the 
state-optimized maximum likelihood estimate. Effectiveness of the algorithm is demonstrated in experiments designed to 
fit a single trended HMM simultaneously to multiple sequences of speech data which are different renditions of the same 
word yet vary over a wide range in the sequence length. Speech recognition experiments have been performed based on 
the standard acoustic-phonetic TIMIT database. The speech recognition results demonstrate the advantages of the 
time-warping trended HMMs over the regular trended HMMs measured about 10 to 15% improvement in terms of the 
recognition rate. 

Zusammenfassung 

In dieser Arbeit stellen wir einen Algorithmus zur Sch~itzung zustandsabh/ingiger Polynomkoeffizienten beim nicht- 
station~iren Hidden Markov Model (THMM) vor, der eine flexible Zeitskalierung der individuellen Modellzust~inde 
gestattet. Der Grund fiir eine zustandsabh~ingige Zeitfinderung folgt aus der Beobachtung, dab wegen der Sprech- 
raten~inderung und anderen zeitabhiingigen Faktoren in der Sprache verschiedene Datenfolgen, die man als Lernfolgen 
eines Satzes von Polynomkoeffizienten verwendet, oft betr/ichtlich in ihrer L/inge variieren. Der entwickelte Algorithmus 
verwendet Hilfsparameter die zwar selbst keine unmittelbare Bedeutung besitzen, aber nichtsdestotrotz geeignet sind, die 
maximale Genauigkeit der Sch/itzung der Polynomkoeffizienten des THMM zu erzielen. Es wird gezeigt, dab der 
vorgeschlagene Schfitzalgorithmus gegen eine L6sung konvergiert, die der zustandsoptimierten Maximum-Likelihood- 
Schfitzung ~iquivalent ist. Die Brauchbarkeit des Algorithmus wird anhand von Beispielen gezeigt, bei denen 
ein einzelnes THMM gleichzeitig fiir mehrere Folgen, die das gleiche Wort mit stark unterschiedlichen 
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Folgenl/ingen darstellen, entworfen wird. Untersuchungen zur Spracherkennung wurden mit Hilfe der akustisch- 
phonetischen Datenbank TIMIT durchgeffihrt. Sie zeigen die Vorteile der zeitskalierten THMM gegeniiber den 
regulfiren THMM von ca. 10-15% Verbesserung hinsichtlich der Erkennungsrate. 

R~sum~ 

Dans cet article, nous pr6sentons un algorithme pour l'estimation des coefficients du polyn6me d~pendant de l'6tat 
dans le mod61e de Markov fi &at non-stationnaire each6 (ou HMM) qui permet une d6formation ou un changement 
d'6chelle flexible lin6aire temporellement dans des 6tats de modules individuels. Les besoins pour des d~formations 
temporelles d6pendant de l'+tat surviennent lorsque l'on prend en consideration que, due aux variations de d6bit et 
fi d'autres facteurs temporels en parole, les s~quences de donn6es de parole segment~es utilis6es pour suivre un seul 
ensemble de coefficients polynomiaux varient souvent de mani6re appreciable dans leurs longeurs. L'algorithme est 
d6velopp~ en se basant sur un sch6ma g6ngral avec l'utilisation de param+tres auxiliaires, lesquelles, bien que n'ayant pas 
d'int6r~t par eux-m~mes, procure n6anmoins un outil interm6diaire pour atteindre une pr6cision maximale pour 
l'estimation des coefficients du polyn6me du HMM. I1 est prouv+ que l'algorithme d'estimation propos6 converge vers 
une solution ~quivalente fi I'estimation du maximum de vraisemblance fi &at optimis& L'efficacit~ de ralgorithme est 
d+montr6 par des exp+rimentations concues pour utiliser un seul HMM simultan~ment sur des s6quences multiples de 
donn6es de la parole ayant des rendus diff6rents du m~me mot et dont la longeur de la s6quence varie dans une grande 
mesure. Des experimentations de reconnaissance de la parole ont ~t6 r6alis6es sur la base de donn6es standards 
acoustique-phon6tique TIMIT. Les rgsultats de reconnaissance de la parole d6montrent que les avantages des HMMs 
fi d~formation temporelle sur les approches HMM normales sont de 10 fi 15% en terme de taux de reconnaissance. 

Key words: Speech signal; Acoustic transition; Scaling; Hidden Markov model; Nonstationarity; Time warping; Auxili- 
ary parameter; Viterbi algorithm 

1. Introduction 

The standard hidden Markov model (HMM) 
developed in [1, 10] and widely in use for speech 
recognition [11] contains the mathematical struc- 
ture of a (hidden) Markov chain with each state 
associated with a distinct independent and identi- 
cally distributed (i.i.d.) or a stationary random pro- 
cess. The model is used as a type of data-generator 
for speech signals and approximates the near con- 
tinuously varying speech signals in a piece-wise 
constant manner. Such an approximation would be 
a reasonably good one when each state is intended 
to represent only a short portion of sonorant 
sounds. However, since the acoustic patterns of 
continuously spoken speech sounds are almost 
never stationary in nature (c.f. [12]), it is desir- 
able to improve this piece-wise constant approxi- 
mation. Some recent work has been intended to 
achieve improvement of the approximation accu- 
racy via use of piecewise polynomials, which was 
developed within a general framework of the non- 
stationary-state H M M  (or the trended H M M )  [4]. 

In that model, polynomial trend functions (or re- 
gression functions on time) are used as time-vary- 
ing means in the output Gaussian distributions in 
the H M M  states. The observation vector se- 
quences, O ,  t = 1, 2 . . . . .  T, are generated from the 
model according to 

M 

Ot = ~ Bi(m)t m + Rt(~q), (1) 
m = O  

where the first term is the state-dependent poly- 
nomial regression function of order M, the second 
term is the residual noise assumed to be the output 
of an i.i.d., zero-mean Gaussian source with 
a state-dependent covariance matrix ,~i, and state 
i at a given time t is determined by evolution of the 
underlying Markov chain in the HMM.  

The trended H M M  takes a significant leap from 
the standard H M M  in its generality and in its 
economical use of model parameters for approxi- 
mating highly dynamical patterns of the speech 
signal. But despite these desirable properties, the 
trended H M M  has nevertheless introduced its own 
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specific problem in speech modeling and recogni- 
tion applications. That is, speaking rate variation 
from one speech data sequence (which we call 
'token') to another, given the same underlying 
phonetic representation for the HMM states, 
must be normalized. Because, unlike the standard 
stationary-state HMM, the polynomial trend 
function for each state of the trended HMM is 
varying with time, significant variability is 
necessarily introduced when using the same, single 
trend function to describe speech data from 
multiple (state-segmented) tokens from the same 
word with varying token durations. The varying 
token durations are the results of speaking rate 
variations and of other temporal factors in speech 
(e.g. [6, 9]). 

To alleviate this difficulty, we have developed an 
algorithm which implements time warping in the 
state-dependent polynomial regression functions. 
Since the source of the difficulty is that each state in 
the model in (1) is not flexible enough to fit simulta- 
neously to multiple tokens of speech data (which 
are different renditions of the same word yet vary 
over the sequence length), we introduce the token- 
dependent auxiliary time-warping parameter to 
normalize out the effect of the token duration. The 
time-warping parameters are called auxiliary ones 
because they are not considered intrinsic para- 
meters of the model, but, rather, they are used only 
as a tool to improve the accuracy in estimating the 
intrinsic parameters - state-dependent polynomial 
coefficients B~(m) in (1). These auxiliary parameters 
work by linearly adjusting the state duration using 
one separate 'optimal' scale for each individual 
token. The sole function of the auxiliary parameters 
is to group all the tokens available for training in an 
optimal way such that the variability of the state 
duration does not affect estimation of the intrinsic 
parameters of the model. The proposed algorithm 
is a two-stage iterative optimization procedure 
where estimation of the auxiliary parameters and 
the polynomial regression parameters is carried out 
alternatively. To simplify the complexity introduc- 
ed by the Markov chain in the trended HMM, the 
proposed algorithm is embedded within each step 
of the global segmental K-means-like algorithm 
[8]. We prove in this paper that the proposed 
two-stage iterative algorithm converges to a 

solution which is equivalent to the state-optimized 
maximum likelihood estimates. 

A related work for modeling the nonstationary 
features of speech signals is the dynamic-program- 
ming-based template matching algorithm proposed 
in [7]. The major difference is that the time-warp- 
ing trended HMMs are parametric models while 
the dynamic-programming-based template match- 
ing algorithm is nonparametric in nature. 

The organization of the paper is as follows. In 
Section 2, we give the formal formulation of the 
trended HMM incorporating the state-dependent 
time-warping mechanism. The two-stage iterative 
optimization algorithm, as a kernel step in the 
global segmental K-means-like algorithm, is pre- 
sented in Section 3. This section also provides the 
convergence proof of the algorithm. Experimental 
results on fitting the trended HMMs to speech 
data, which are different renditions of the same 
word but vary significantly over the speech 
token length, are shown in Section 4. Comparisons 
between the data-fitting results with and without 
using the time-warping mechanism illustrate 
the need for time warping in the trended HMM 
and show effectiveness of the proposed algorithm 
for achieving the desired time warping. In Section 5, 
we present the results from the speech recognition 
experiments based on the standard acoustic- 
phonetic TIMIT database. The recognition 
results demonstrate the advantages of the time- 
warping trended HMMs over the regular trended 
HMMs. 

2. Model formulation 

The trended HMM with state-dependent time 
warping studied in this paper can be viewed as 
a data-generative type of model and be formally 
defined in terms of the following form for data 
generation: 

O r = O i l - - - - : - - - I +  R,(Ei),  t =  1 . . . . .  T, (2) 
\ ,ti } 

where 0 , ,  t = 1 . . . . .  T, is the observation data se- 
quence generated by the model (possibly vector- 
valued such as the cepstral vectors computed from 
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the speech waveform), i is the label of the state in 
the H M M  (at time frame t), and O~(" ) is a determin- 
istic function of time t and indexed by state label i. 
The form of gi(.) is chosen in this study to be 
polynomial functions since they are not only com- 
putationally simple, but also provide good approxi- 
mations to most arbitrary functions. (For speech 
data in the spectral domain, relatively low-order 
polynomial functions are expected to suffice for 
acceptably good approximations.) In (2), the time- 
shift parameter ~ registers the time when state i 
in the HMM is just entered before the function 
Oi( ' )  becomes effective; i.e., ( t -  z~) represents the 
sojourn time in state i at time t. 2~ is the time- 
warping parameter associated with state i, which 
transforms the time points within state i to a 
canonical scale (see Section 3 for detail). 
When multiple tokens are used in the training step, 
parameters z~, 2~ are also made dependent on 
each individual token. Note that parameters T~, 21 
are considered as auxiliary parameters, which 
will be discarded at the termination of the training 
step. 

Now given K tokens in the training data and 
given that the generic regression function 9~(') 
takes a polynomial form up to order M, the follow- 
ing specific data-generative trended H M M  
(generating the K training tokens) is considered in 
our discussion: 

{ t  - ~,,~'x "~ 
0 , ,  = ,.., B , . , , | ~ ]  + R,,t(Z,), 

m=0 ',, Ar, i / 

t = 1 . . . . .  s t ,  r = 1 . . . . .  K ,  (3) 

where Or., denotes the rth token of the training 
data at time t, n, is the length of the rth token, and 
B~,,'s are the polynomial coefficients, considered as 
the intrinsic parameters of the model, to be esti- 
mated. Altogether, the parameters of this trended 
HMM are summarized as consisting of the follow- 
ing four sets: 
1. A = (a~j), i , j  = 1 . . . . .  N ,  is the transition prob- 

ability matrix of the underlying Markov chain 
with a total of N states. 

2. B = ( B i . m ) ,  i =  1 . . . . .  N ,  m = 0  .. . . .  M, are the 
polynomial coefficients, of order m and asso- 
ciated with state i, in the state-dependent deter- 
ministic regression function of time. 

3. (z,,i, 2,,i), i = 1 . . . . .  N, r = 1 . . . . .  K, are the aux- 
iliary parameters in the polynomial regression 
function associated with state i for token r. 

4. ,Y,~, i =  1 . . . . .  N ,  are the covariance matrices, 
associated with state i, of the Gaussian i.i.d. 
residual R, . t (Z i ) .  

Note that, in the above, only (A, B, Z) are the 
intrinsic parameters, which are independent of the 
training token, of the trended HMM, while the 
time-shift and warping parameters (z , , i ,  2,,i) serve 
only as auxiliaries whose role is to adjust the 
length of each training token for obtaining accurate 
estimates of the intrinsic model parameters. In 
the speech recognition step, the auxiliary para- 
meters for the unknown utterance are estimated 
independently so as to adjust the duration of 
this new token to its own optimal scale for match- 
ing the trended H M M  obtained in the training 
step. 

3. A l g o r i t h m  for  p a r a m e t e r  e s t i m a t i o n  

In this section, we present an algorithm for esti- 
mating the parameters in the trended HMM con- 
taining the state-dependent time-warping mecha- 
nism. This algorithm is embedded within each step 
of a global iteration, whose goal is to reduce the 
training complexity involving a multiple-state 
Markov chain to essentially that involving no Mar- 
kov chain (or single-state Markov chain). (This is in 
the same spirit as the segmental K-means algo- 
rithm l-8].) This global segmental K-means-like al- 
gorithm involves two iterative steps: the segmenta- 
tion step and the optimization step. The parameters 
A = (aij) and zr, i's are readily determined from the 
result of the segmentation step (for fixed 2,. is and 
B~,m's), while 2,.i's and Bi.m'S are estimated in the 
optimization step (for fixed A = ( a i j ) a n d  z,,[s). The 
segmentation step can be carried out by a Viterbi- 
like algorithm [11], with a slight modification in 
incorporating an additional optimization loop for 
the state sojourn time. We mainly focus on the 
optimization step in this paper. 

Once all the state boundaries are determined in 
the segmentation step, the entire process for para- 
meter estimation of the trended HMM is broken 
down into several independent and essentially 
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identical processes for estimating the parameters 
associated with each individual state. Therefore, for 
notational simplicity, we hereafter drop the state 
label i and consider only the parameter estimation 
for one single state. Further, we assume that the 
covariance matrix Si is diagonal with the dth diag- 
onal component a j .  Hence the estimation for each 
dimension of the vector can be treated separately, 
and for simplicity in writing we consider scalar- 
valued data sequences only. Thus the K tokens of 
the vector-valued observation speech data can be 
simplified into K samples of one-dimensional se- 
quences each with length n,, r = 1 . . . . .  K, 

01,1, 01,2, . . . ,01. . ,  (token 1) 

0 2 , 1 ,  0 2 ,  2 . . . . .  02 ,n2  (token 2) 

0~,1,0x.2 ..... Ox,.. (token K). 

After these simplifications (without loss of gener- 
ality), we may write the likelihood function contrib- 
uted by the data points within a state as 

L(Bo ..... BM; 2 1  . . . . .  2 K ;  0 "2) 

- ., { 1  
oc(a) .:,~; exp 2~r2 

r [  ~ / t \ m 7 2 }  
x x t o , , -  J • 

r = l  1=1 m=O 

(4) 
Note that in maximizing (4), the parameter a and 

the remaining parameters can be treated separately. 
An estimate of a can be obtained very easily from 
just the residuals based on the estimates for para- 
meters Bm and 2,. On the other hand, maximization 
of (4) with respect to only Bm and 2, is equivalent to 
minimization of the quadratic objective function 

O = o , , , -  n .  T, • (5) 
r = l  t = l  m=0 

Direct minimization of (5), unfortunately, is 
a multidimensional nonlinear regression problem, 
which would require intensive computation (and 
would also guarantee no global optimum in gen- 
eral). As an efficient solution to this multi-dimen- 
sional non-linear regression problem, we propose 

a two-stage alternating optimization method by 
taking computational advantages of linear regres- 
sion and of efficient methods of root finding for 
one-dimensional polynomial functions. 

3.1. Two-stage alternating algorithm 

The basic idea behind this algorithm is to decom- 
pose the complex optimization problem for (5) into 
two separate stages as follows. 
Sta#e 1: Given 2,, r = 1 . . . . .  K, first linearly scale 
times as x,.t = t/2,. Then _B = (Bo . . . . .  BM)' can be 
estimated by the solution of 

1 min ~ 0 , . ~ -  Bmx,,, . (6) 
_B r = l  t = l  m=O 

This can be easily solved by the ordinary linear 
regression method. The estimate can be written as 
the closed-form result: 

0<M+1,×1 = (x'x)-'x'o, 
where 

X ( n t  + ... + n r ) x ( M  + 1) 

M 
-1 x11 X~l --, Xll 

X 2 . . .  X M 1 Xl,nl  1,n~ 1,nt 

1 X21 X221 M • .. X21 

2 . . .  X M 
1 X2 ,n2  X2,n2 2,n2 

2 M 
1 xx, 1 Xg, 1 "'" X K ,  1 

2 M 
1 XK,nK X K ,  nx "" • XK,nK 

token 1 

token 2 

token K 

and 

O = (O1,  1 . . . . .  0 1 , n l  , 0 2 ,  1 . . . . .  0 2 , n ~  , 

)' 
• . . , O K ,  1 , - . . , O g , n ~  • 

Stage 2: Given Bo . . . . .  BM obtained from Stage l, 
we then estimate 2, for each r, r = 1 . . . . .  K, 
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independently by minimizing the objective function 
for the rth token: 

M i / t ' ~ - m " ] 2  

o,,- J 
which, after removing optimization-independent 
terms, is equivalent to minimizing 

M ," "., ) 

+ ~ (2 , ) -m BiB2M-mt m 
m = M + l  \ i = 1  

2M 

= E Cm(~r)-m, 
m = 0  

where 

• BiBm_it ra - 20,.tBmt m, 
i = 0  

m = 0 , . . . ,M,  
Cm ~-- m-M 

BIB2M-m trn, 
i=1 

r e = M +  1 .. . . .  2M. 

Minimization of Q, can be achieved by setting 

dQ, 2M 
= ~ ( - m ) C m ( 2 , )  - m - 1  = O, 

d2, ,,=l 

o r  

2M 

E mCm()Cr)2M-m- 1 = 0 ,  

m = l  

which can be easily solved by invoking standard 
polynomial root finding subroutines. 

Putting this two-stage alternating algorithm into 
an iteration, we have the following complete pro- 
cedure for estimating B m and 2,: 
(1) Set initial values for 2] °) . . . . .  2~ ) (e.g. set all 

2~o) ~o) 1); Set the iteration count n = 0; 1 , " ' ' , ~ K  = 

(2) Pass the values of 2~ ") . . . . .  2[ ") to Stage 1 and 
obtain estimates B~o ") . . . . .  B~); 

~ ( n +  1) ] ( n +  
(3) Estimate ,~1 . . . . . .  K ~), given B~o ") . . . . .  B~ ), 

through Stage 2; 
(4) Check convergence: if convergence occur, fin- 

ish; else set n = n + 1 and go to (2). 

The algorithm is considered to be convergent 
when the difference between the Q, values of two 
successive iterations becomes smaller than a pre- 
determined tolerance value. 

3.2. Convergence properties o f  the algorithm 

In this subsection, we prove convergence of the 
above proposed two-stage optimization algorithm 
and prove its equivalence to maximum likelihood 
estimation. The proofs follow the notations used 
in [3]. 

Let O = (Bo . . . . .  BM), A = (21 . . . . .  2K). Denote 
the estimates at the nth iteration of the algorithm 
by O ~"), A ~"). 

Theorem 1. The likelihood function in Eq. (4) is 
nondecreasin 9 over iterations of the algorithm, or 

L(O ~"+1), A ¢"+t~) >/L(O ~"), A~")). (7) 

Proof. We have 

L(@~.+ 1), A{.+ 1)) _ L(@~.), A~.)) 

= [L(O, .+1), A,.+ l,) _ L(O(.), A,.+ 1))] 
k ) 

Y 
(I) 

+ [L(O ~"), A~"+I)) _ L(O~"), A~"))] . 
k ) Y 

(II) 

Since Stage 1 and Stage 2 guarantee nonnegative- 
ness of (I) and (II), respectively, we immediately 
prove the theorem. [] 

Theorem 2. Suppose that the following "identifiabil- 
ity condition' is satisfied: 

L(O~.+ 1), A(.+ 1)) _ L(o(n), A ~")) 

/> rt II ( e  {"+ " ,  A ~"+ 1)) _ (e<. ) ,  A { . ) ) I I ,  (8) 

where q is a fixed constant and I1"11 is the Euclidean 
norm. Then ( 0  ~"), A t")) converoes to some (0" ,  A*) 
in the parameter space. (Note that the identifiability 
condition implies that if one set of parameters is 
different from another set, then their associated likeli- 
hoods must also be different; otherwise, the two sets 
of parameters would not be distinguishable.) 



D.X. Sun et al. / Signal Processing 39 (1994) 263-275 269 

Proof. From Theorem 1, the sequence L(O ~"), A (")) 
must converge to some value L* < oo. Hence, for 
any e > 0, there exists an n(e) such that, for all 
n I> n(e) and all J >~ 1, 

J 
{L(O ~"+j), A("+J)) _ L(O(.+J-1), A(.+J- 1))} 

j = l  

= L(O("+s), A(.+s)) _ L(O("), A (")) < e. 

Applying the identifiability condition, we obtain 

J 

> n Z I1( O¢"÷', A¢"+') - (O("÷j-x), A("+J-1))II 
j = l  

j~  (O("+ j), A(.+ J)) _ (O~.+ J- '), A(.+ J- ~)) >1 

>1 q II (0 ("+ s), A ("+ s)) - (0 ~"), A ~")) II. 

This inequality implies that the sequence ttT"'~ ("), A (")) 
is a Cauchy sequence, and it must converge, say, to 
(O *, A *). ((O *, A *) would be the ultimate estimate 
to be obtained if we would let the algorithm iterate 
infinitely many times.) [] 

Corollary. (0" ,  A *) is a stationary point of the like- 
lihood function, i.e., 

dd  L(o* ,A*)=O,  d L(O*,A*)=O, (9) 

where the derivatives are taken as 

d dL(O*'A*)=~-~-~L(O'A*) o=o*"  

Proof. Stages 1 and 2 described in the last subsec- 
tion assure that 

d 
doL(O("+l), A ("+1)) = O, 

d L(O(.), A(.+ 1)) = 0. (10) 

By taking limits of both sides (let n ~ or) and 
then applying Theorem 2, the corollary follows 
immediately. [] 

Our final task is to prove that (O*, A*) is in 
fact the maximum likelihood estimate. For this it 

suffices to show that the second-order derivative 
(d2/d(O, A)2)L(O *, A*) is negative definite. 

Theorem 3. Suppose that 

2 d E 

d~2 L(O(n)' At")) , dA 2 L(O(.), A(.+ t~) 

are both negative definite with eigenvalues bounded 
away from zero. Then 

d z 
d(O, A) 2 L(O*, A*) 

is negative definite. 

Proof. We have 

d 2 

d(O, A) 2 L(O(")' A(")) 

Vdd~o2L(O~"',A ~"') 

= d 2 
-;--~--;--7,.L(O ~"), A ~") ) 

L~tO dA 

Since 

J dO d-----A L(O("}' At"~) 
d 2 

-d-~ L(O("), A (n)) 

dA 2 L(O(.), At.)) _ L(Ot.), At.+ 1)) ~ 0 

and (d2/dA2)L(OIn),A ("+1)) is negative definite 
with eigenvalues bounded away from zero, we con- 
clude that (d2/dA2)L(O("),A ~")) is also negative 
definite with eigenvalues bounded away from zero. 
On the other hand, from (10) it is obvious that 

d 2 

dO dA L(O(")' A(")) = O, 

d 2 

dO dA L(O(")' At")) = 0. 

Putting together the above facts, we have that 
(d2/d(O, A)2)L(O ("), A ~"}) converges to a negative 
definite matrix, which is (d2/d(O, A) 2) L(O*, A*). [] 

In summary, Theorem 2 gives the convergence 
property of the two-stage iterative algorithm, 
and the corollary of Theorem 2, combined with 
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Theorem 3, proves that the proposed algorithm 
indeed leads to maximum likelihood estimates. 

4. Results on fitting trended HMMs to speech data 

In this section, we apply the state-dependent 
time-warping HMM, trained with the algorithm 
described in Section 3, to fit the acoustic-parameter 
sequences from different renditions of the same 
word which vary in the sequence duration. In par- 
ticular, we compare goodness of the data fitting 
between the trended HMM incorporating the time 
warping discussed in this paper and that without 
the time-warping mechanism built in i.e. the model 
in [4]. 

The first set of speech data was taken from two 
tokens of the word peek/pi: k/spoken  by a native 
English speaker with intentionally different speak- 
ing rates. The second set of speech data were se- 
lected from the TIMIT acoustic-phonetic continu- 
ous speech corpus. The two tokens used for illustra- 
tion were excised from the same word bike in the 
sentence 'sx332' uttered by two male speakers from 
dialect region 2 and region 7. 

The raw speech data was in the form of digitally 
sampled signal at 16 kHz. The mel-frequency cep- 
stral coefficients [2] were computed from the raw 
data with a Hamming window of duration 25.6 ms 
and with a frame rate of 10 ms. Trended HMMs 
with three states and with order three in the state- 
dependent polynomial regression functions on time 
are used to fit speech data from word peek. For 
speech data from the word bike (in TIMIT),  four- 
state trended HMMs with order three in the regres- 
sion functions are used. For  the sake of space sav- 
ing and for purposes of illustration, we show here 
only the data fitting results for the first-order cep- 
stral coefficient C1 from word peek and for the 
third-order cepstral coefficient C3 from bike. (Sim- 
ilar results were obtained for other cepstral coeffi- 
cients.) 

The solid, less smoothed lines in both graphs of 
Fig. 1 are C1 data sequences of two tokens uttered 
by the same speaker from the same word peek. The 
vertical axis represents the magnitude of CI data 
and the horizontal axis is the frame number (frame 
size 10 ms). Superimposed on the same graphs in 

Fig. 1 as dotted, more smoothed lines are the three 
sequentially advanced state-dependent polynomial 
regression functions in the previously developed 
trended H MM without time warping (i.e. the model 
in [4]). The polynomial coefficients in these regres- 
sion functions were estimated from the two tokens 
using the algorithm described also in [4]. Given the 
model parameters, the process of fitting models to 
the data proceeded by first finding the optimal 
segmentation of the data into the H MM states and 
then fitting the segmented data using the regression 
functions associated with the corresponding states. 
(Optimal segmentation of the data was obtained by 
a Viterbi-like algorithm.) The point in time in each 
graph where the otherwise continuous regression 
line is broken is the frame at which the 'optimal' 
state transition occurs. We note that the shapes of 
the data sequences of these two tokens are largely 
the same except the initial portion of the data in 
token one (left graph) is nearly twice as fast as that 
in token two (right graph). (But token one slows 
down during the mid portion.) With no time-warp- 
ing mechanism built into the regression function, 
a single set of polynomial coefficients trained from 
the two tokens having varying state-durations are 
not able to fit closely to both the tokens. The 
polynomial coefficients were trained in such a way 
that the fitting accuracy is compromised between 
the two tokens. 

In Fig. 2, we show the results of fitting the same 
two C1 data sequences as in Fig. 1 but using the 
new trended H MM containing time-warping para- 
meters. Again, the same two tokens were used to 
train the model according to the algorithm de- 
scribed in Section 3. In contrast to the results in 
Fig. 1, with use of the new model, the fitting accu- 
racy is high for both of the two tokens despite their 
varying state durations. This simultaneous high 
accuracy is achieved through use of different values 
of the auxiliary time-warping parameters for the 
two tokens. 

As another example, Figs. 3 and 4 are analogous 
to Figs. 1 and 2 except for use of C3 data sequences 
of two tokens from the TIMIT database. Again, 
use of time-warping parameters in the trended 
H MM produces more accurate fitting to the two 
data tokens simultaneously than without use of 
them. 
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Fig. 1. The solid lines in the two graphs are C1 data sequences from two tokens, respectively, uttered by the same speaker from the same 
word peek. Vertical axis is the magnitude of C1; horizontal axis is the frame number. The dotted lines superimposed on the graphs are 
three sequentially arranged state-dependent polynomial regression functions with the polynomial coefficients optimally trained from the 
two data tokens and with no time warping incorporated (i.e. using the trended HMM in [4].) The point in time in each graph where the 
otherwise continuous regression line is broken is the frame at which optimal state transitions occur. 

5. Speech recognition experiments 

We choose the standard acoustic-phonetic 
TIMIT database for the evaluation experiments in 
this paper. The results on phonetic recognition are 
presented using time-warping trended HMMs in 
comparison with the regular trended HMMs. The 
advantage of the trended HMMs over the standard 
HMMs have been demonstrated in [5] and is not 
the focus of the recognition experiments in this 
paper. 

Since trended HMMs are mostly effective for 
long-span, continuously varying patterns, we only 

consider vowel recognitions in the experiments. 
For consonant segments, it is not beneficial to 
employ the trended HMMs due to the extremely 
dynamic nature of the acoustic features. After some 
exploratory study, we notice that there is a large 
amount of variations among the tokens of the same 
vowel in the TIMIT database due to heavy co- 
articulation and varying speakers. The advantage 
of modeling accuracy using trended HMMs tends 
to be cancelled out by the merge of tokens with 
large variations, in particular the contextual vari- 
ations. Therefore, we train multiple models for each 
vowel according to its left and right contexts. In the 
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Fig. 2. The same data fitting as in Fig. 1 but using the trended HMM with the state-dependent time-warping mechanism incorporated. 

experiments, we select ten vowels : /aa / , /ao / , /aw/ ,  
/ a y / , / e h / , / e r / , / i y / , / o w / , / o y / , / u w / ,  and for each 
vowel, we select the tokens in various CVC con- 
texts, where the initial and the final consonants are 
selected from the stop consonants : /b / , /d / , /g / , /p / ,  
/ t / , /k / .  The acoustic features for model estimation 
are only based on the vowel segments. In other 
words, the acoustic features of the consonant seg- 
ments are not used. 

The recognition experiments involve two types of 
recognition systems based on the regular trended 
HMMs and the time-warping trended HMMs. For 
each recognition system, we vary the degree of the 
polynomials in the trended HMMs and the number 
of states in the HMMs. For  the ten vowels in 
CVC context, we created 126 HMMs for each 

recognition experiment (about 5 to 20 models per 
vowel). Each experiment is based on 351 training 
tokens selected from a set of 120 speakers in the 
training set and 518 test tokens selected from the 
168 speakers in the test set. Table 1 lists the vowel 
recognition results of the recognizers. 

These results demonstrated the advantages of the 
time-warping trended HMMs over the regular 
trended HMMs (10 to 15% differences in recognition 
rates). The major reason is that both training and 
test tokens in the TIMIT database are highly vari- 
able in their durations. While the regular trended 
HMMs are not capable of eliminating such vari- 
ations, the time-warping trended HMMs effectively 
avoid the duration variations by 'on-line' estima- 
tion of auxiliary time-warping parameters. Based 
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Fig. 3. Fitting the trended HMM with no time-warping mechanism to C3 data sequences from two tokens of word bike excised from the 
TIMIT database. 

on the results of experiments, we also conclude that 
the number of states in both regular trended 
HMMs and time-warping trended HMMs does not 
appear to play an important role for improving the 
performance of the recognizers. 

6. Summary and conclusion 

In this study we propose an improved version of 
the nonstationary state, trended H M M  published 
in [4] in its provision of the flexibility of time 
scaling in individual H M M  states. We identify the 
need for incorporating this flexibility in the new 
model: Since multiple speech-data sequences (after 

state segmentation) used for training a single set of 
state-dependent polynomial coefficients usually do 
not have the same sequence length, the resulting 
polynomial trend function cannot simultaneously 
fit all these data sequences well. (Interestingly, this 
problem did not exist for the conventional station- 
ary-state HMM, where all the state-dependent 
'trend functions' are constant over time.) 

After we addressed the importance of incorporat- 
ing time warping in the trended H M M  states, we 
provide an effective solution to this problem. The 
solution is based on use of token-dependent time 
scaling parameters, which we call auxiliary para- 
meters to distinguish them from the intrinsic model 
parameters such as the polynomial coefficients in 
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Fig. 4. The same data fitting as in Fig. 3 but using the trended HMM with the state-dependent time-warping mechanism incorporated. 

Table 1 
Speech recognition rates based on regular and time-warping trended HMMs 

No. of states 1 2 3 4 5 

Regular trend HMM (order 1) 
Regular trend HMM (order 2) 

Time-warping trend HMM (order 1) 
Time-warping trend HMM (order 2) 

60.4 59.7 62.0 62.4 64.3 
64.5 64.5 65.1 65.3 66.0 

75.5 75.1 77.8 73.4 74.1 
76.1 75.7 76.6 74.5 74.1 

the trend functions. An efficient, iterative two-stage 
optimization algorithm!is developed to accomplish 
maximum likelihood estimation of all model para- 
meters, including both the:auxiliary and intrinsic 
ones. Convergence of the algorithm is proved under 

most general conditions, so is its convergence to 
(state-optimized) maximum likelihood estimates. 

Numerical experiments are designed to fit a 
single state-dependent trend function in the trended 
HMM simultaneously to multiple sequences of 
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speech data which are different renditions of the 
same word yet vary in the sequence length. When 
no time-warping mechanism is built into the trend 
function, we demonstrate that a single set of (state- 
dependent) polynomial coefficients are not able to 
fit multiple tokens possessing different token 
lengths. The polynomial coefficients were trained 
such that all the tokens are fitted moderately well 
but none of them is closely fitted. In contrast, using 
the new model developed in this paper and ap- 
plying the algorithm described in Section 3, the 
fitting accuracy becomes much higher for all the 
tokens regardless of their varying state durations. 
Such simultaneous high accuracy is achieved 
through use of different values of the auxiliary 
time-warping parameters for different tokens, 
which are automatically determined by the training 
algorithm, for the different tokens. 

Incorporation of the mechanism for state-depen- 
dent time warping described in this paper is a ne- 
cessary step for accurate speech recognition to be 
pursued in our future work. The warping automati- 
cally normalizes speaking rate variation from one 
speech token to another given the same phonetic or 
subphonetic content for the HMM state. Other- 
wise, this speaking rate variation would introduce 
unnecessary variability in the estimates for the 
state-dependent trend function's parameters and 
hence increase overlap (confusion) among different 
classes of speech sounds. 
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