

Discrete Mathematics 131 (1994) 345-350

Note

R-sequenceability and R*-sequenceability of abelian 2-groups

Patrick Headley

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-4903, USA

Received 20 December 1991; revised 15 June 1992

Abstract

A group of order n is said to be R-sequenceable if the nonidentity elements of the group can be listed in a sequence $a_1, a_2, \ldots, a_{n-1}$ such that the quotients $a_1^{-1}a_2, a_2^{-1}a_3, \ldots, a_{n-2}^{-1}a_{n-1}, a_{n-1}^{-1}a_1$ are distinct. An abelian group is R^* -sequenceable if it has an R-sequencing $a_1, a_2, \ldots, a_{n-1}$ such that $a_{i-1}a_{i+1}=a_i$ for some i (subscripts are read modulo n-1). Friedlander, Gordon and Miller (1978) showed that an R^* -sequenceable Sylow 2-subgroup is a sufficient condition for a group to be R-sequenceable. In this paper we also show that all noncyclic abelian 2-groups are R^* -sequenceable except for $\mathscr{L}_2 \times \mathscr{L}_4$ and $\mathscr{L}_2 \times \mathscr{L}_2 \times \mathscr{L}_2$.

A group of order n is said to be R-sequenceable if the nonidentity elements of the group can be listed in a sequence $a_1, a_2, ..., a_{n-1}$ such that the quotients $a_1^{-1}a_2, a_2^{-1}a_3, \dots, a_{n-2}^{-1}a_{n-1}, a_{n-1}^{-1}a_1$ are distinct. The concept of R-sequenceability has been around for more than 40 years in one form or another. In 1951 Paige observed that it is a sufficient condition for a group to have a complete mapping. In 1955 Hall and Paige [3] showed that a solvable group has a complete mapping if and only if its Sylow 2-subgroup is either trivial or noncyclic. In 1974 Ringel [5] was led to the concept of R-sequenceability in his solution of the map coloring problem for all compact two-dimensional manifolds except the sphere. In their book [1] Dénes and Keedwell used an alternative definition of R-sequenceable and discussed the topic in great depth. They also showed that an abelian group is a super P-group if and only if it is either R-sequenceable or sequenceable. Friedlander et al. [2] showed that the following types of abelian groups are R-sequenceable: cyclic groups of odd order greater than 1; groups of odd order whose Sylow 3-subgroup is cyclic; groups whose orders are relatively prime to 6; elementary abelian p-groups, except the group of order 2; groups of type $\mathscr{Z}_2 \times \mathscr{Z}_{4k}$, $k \ge 1$; groups whose Sylow p-subgroup has the form \mathscr{Z}_2^m , m>1 but $m\neq 3$; groups G whose Sylow p-subgroup has the form $S=\mathscr{Z}_2\times\mathscr{Z}_n$

where $n=2^k$ and either k is odd or $k \ge 2$ is even and G/S has a direct cyclic factor of order congruent to 2 modulo 3. Ringel [1] has claimed that abelian groups of the form $\mathscr{Z}_2 \times \mathscr{Z}_{6k+2}$ are R-sequenceable.

Friedlander et al. [2] conjectured that an abelian group is *R*-sequenceable if and only if its Sylow 2-subgroup is either trivial or noncyclic. This paper proves the conjecture for abelian 2-groups.

The following types of nonabelian groups are known to be R-sequenceable: groups of order pq where p and q are odd primes, p < q, and p has 2 as a primitive root [4]; dihedral groups of order 2n where n is even [4]; dicyclic groups of order 4n where n is divisible by 4 [6].

An abelian group is R^* -sequenceable if it has an R-sequencing $a_1, a_2, ..., a_{n-1}$ such that $a_{i-1}a_{i+1}=a_i$ for some i (subscripts are read modulo n-1). The term was introduced by Friedlander et al. [2], who showed that the existence of an R^* -sequenceable Sylow 2-subgroup is a sufficient condition for a group to be R-sequenceable. In this paper we also show that all noncyclic abelian 2-groups are R^* -sequenceable except for $\mathcal{Z}_2 \times \mathcal{Z}_4$ and $\mathcal{Z}_2 \times \mathcal{Z}_2 \times \mathcal{Z}_2$.

We begin with two results of Friedlander et al. concerning abelian 2-groups.

Lemma 1 (Friedlander et al. [2]). $(\mathcal{Z}_2)^m$ is R^* -sequenceable for m > 1, $m \neq 3$, $\mathcal{Z}_2 \times \mathcal{Z}_{2^k}$ is R^* -sequenceable for k odd, and R-sequenceable for all k.

Lemma 2 (Friedlander et al. [2]). $\mathscr{Z}_2 \times \mathscr{Z}_2 \times \mathscr{Z}_2$ and $\mathscr{Z}_2 \times \mathscr{Z}_4$ are R-sequenceable but not R^* -sequenceable.

Lemma 3. If an abelian group G is an extension of $\mathscr{Z}_2 \times \mathscr{Z}_2$ by an R^* -sequenceable group H, then G is R^* -sequenceable.

Proof of Lemma 3. Let n=|H|. Since H is R^* -sequenceable, the cosets of $\mathscr{Z}_2 \times \mathscr{Z}_2$, excluding $\mathscr{Z}_2 \times \mathscr{Z}_2$ itself, have an ordering K_1, \ldots, K_{n-1} that is an R-sequence with $K_{n-1}K_2 = K_1$. Choose k_i , $1 \le i \le n-1$, such that $k_i \in K_i$ and $k_{n-1}k_2 = k_1$. Then any element in G can be uniquely expressed as a product of an element in $\mathscr{Z}_2 \times \mathscr{Z}_2$ and an element in $\{k_1, \ldots, k_{n-1}, e\}$. Let $\{y_i\}_{i=1}^{4n-1}$ be the sequence $k_1, k_2, \ldots, k_{n-1}, e$, $k_2, k_3, \ldots, k_{n-1}, k_1, k_1, k_1, k_2, \ldots, k_{n-1}, e$, $k_2, k_3, \ldots, k_{n-1}$. Let A and A be generators of the A subgroup of A. Define A subgroup of A subgroup of A. Define A subgroup of A.

Case 1: $|H| \mod 3 \equiv 0$. Let 3k = |H|, $\{x_i\}$ is given by the successive rows of the $4 \times n$ matrix

$$\begin{pmatrix} e & e & \cdots & b & a \\ ab & k-2 \text{ copies of } \{a,b,ab\} & a & ab & ab & b & a \\ ab & b & k-2 \text{ copies of } \{ab,a,b\} & ab & b & a & ab \\ b & a & k-2 \text{ copies of } \{b,ab,a\} & b & a & e \end{pmatrix}.$$

If k=1, then $H=\mathcal{Z}_3$, so $G=\mathcal{Z}_2\times\mathcal{Z}_6$, which is R^* -sequenceable since its Sylow 2-subgroup is R^* -sequenceable.

Case 2: $|H| \mod 3 \equiv 1$. Let 3k+1=|H|. $\{x_i\}$ is read from the successive rows of the $4 \times n$ matrix.

$$\begin{pmatrix} e & e & \cdots & b & a \\ ab & k-1 \text{ copies of } \{b,a,ab\} & ab & b & a \\ ab & b & k-1 \text{ copies of } \{a,ab,b\} & a & ab \\ b & a & k-1 \text{ copies of } \{ab,b,a\} & e \end{pmatrix}.$$

Case 3: $|H| \mod 3 \equiv 2$. Let 3k+2=|H|. $\{x_i\}$ is read from the successive rows of the $4 \times n$ matrix

$$\begin{pmatrix} e & e & \cdots & b & a \\ ab & k-1 \text{ copies of } \{b, a, ab\} & b & ab & b & a \\ ab & b & k-1 \text{ copies of } \{a, ab, b\} & a & a & ab \\ b & a & k-1 \text{ copies of } \{ab, b, a\} & ab & e \end{pmatrix}.$$

Then $\{x_iy_i\}$ is an R^* -sequence. Clearly $(x_{4n-1}y_{4n-1})(x_2y_2)=x_1y_1$. Verifying that $\{x_iy_i\}$ is an R-sequence is straightforward with the following observations:

- (i) $k_{n-1}^{-1}e = k_1^{-1}k_2$ and $e^{-1}k_2 = k_{n-1}^{-1}k_1$, so $\{y_i^{-1}y_{i+1}\}_{i=1}^{4n-1}$ (with $y_{4n} = y_1$) is the sequence $k_1^{-1}k_2, k_2^{-1}k_3, \dots, k_{n-2}^{-1}k_{n-1}, k_1^{-1}k_2, k_{n-1}^{-1}k_1, k_2^{-1}k_3, k_3^{-1}k_4, \dots, k_{n-2}^{-1}k_{n-1}, k_{n-1}^{-1}k_1, e, e, k_1^{-1}k_2, k_2^{-1}k_3, \dots, k_{n-2}^{-1}k_{n-1}, k_1^{-1}k_2, e, k_{n-1}^{-1}k_1, k_2^{-1}k_3, k_3^{-1}k_4, \dots, k_{n-2}^{-1}k_{n-1}, k_{n-1}^{-1}k_1$.
- (ii) If x_m is the first element of the first copy of one of the repeated 3-element sequences in $\{x_i\}$, then $y_m = k_3$, and the sequence $\{a, b, ab\}$ is itself an R-sequence. \Box

Lemma 4. $\mathscr{Z}_2 \times \mathscr{Z}_{2^n}$ is R^* -sequenceable for $n \ge 1$, $n \ne 2$.

Proof of Lemma 4. Any sequence of the nonidentity elements of $\mathscr{Z}_2 \times \mathscr{Z}_2$ is an R^* -sequence. $\mathscr{Z}_2 \times \mathscr{Z}_8 \cong \langle a, b | a^8 = b^2 = e, ab = ba \rangle$ has the R^* -sequence ba^7 , b, a^5 , a^3 , ba^6 , ba, a^2 , a^6 , ba^5 , ba^2 , a^4 , ba^4 , ba^3 , a^7 , a. The relevant triple is ba^4 , ba^3 and a^7 .

For $n \ge 4$, $\mathscr{Z}_2 \times \mathscr{Z}_{2^n} \cong \langle a, b | a^{2^n} = b^2 = e$, $ab = ba \rangle$, an R^* -sequence can be read from the successive rows of this $2m \times 8$ matrix, where $m = 2^{n-3}$:

To see that the sequence is an R-sequence, the successive quotients are listed in the successive rows of this matrix:

If m=6k+2, we have ..., $ba^{7m-1-2(4k+1)}$, $ba^{m+2(4k+1)}$, $a^{6m-1-2(4k+1)}$,... and $(ba^{7m-1-2(4k+1)})(a^{6m-1-2(4k+1)})=ba^{14k+4}=ba^{m+2(4k+1)}$. If m=6k+4, we have ..., $a^{2m+1+2(4k+2)}$, $ba^{7m-2-2(4k+2)}$, $ba^{m+1+2(4k+2)}$,... and $(a^{2m+1+2(4k+2)})(ba^{m+1+2(4k+2)})=ba^{34k+22}=ba^{7m-2-2(4k+2)}$. Thus, the sequence is an R^* -sequence for all $n \ge 4$. \square

Theorem. If G is a non-cyclic abelian 2-group, then G is R-sequenceable. Moreover, if $|G| \neq 8$, then G is R^* -sequenceable.

Proof. If |G|=8, the result follows from Lemma 2. Otherwise, we use induction on n, where $|G|=2^n$. For n even, the base of the induction is n=2, so that $G\cong \mathscr{Z}_2\times \mathscr{Z}_2$, which is R^* -sequenceable by Lemma 1. For n odd, the base of the induction is n=5, so that either $G\cong \mathscr{Z}_2\times \mathscr{Z}_2\times$

To complete the induction, we assume the result is true for n. Let $|G| = 2^{n+2}$. If $G \cong \mathscr{Z}_2 \times \mathscr{Z}_{2^{n+1}}$, G is R^* -sequenceable by Lemma 4. Otherwise, G is an extension of $\mathscr{Z}_2 \times \mathscr{Z}_2$ by a noncyclic abelian 2-group H, and $|H| = 2^n$. Since H is R^* -sequenceable by assumption, G is R^* -sequenceable by Lemma 3. \square

Since Friedlander et al. [2] have shown that an abelian group whose Sylow 2-subgroup is R^* -sequenceable is itself R^* -sequenceable, we have the following corollary.

Corollary. An abelian group whose Sylow 2-subgroup is noncyclic and not of order 8 is R^* -sequenceable.

Acknowledgment

This paper was written at the University of Minnesota, Duluth, under the direction of Professor Joseph Gallian. Donald Keedwell read a preliminary version of the paper and made several helpful suggestions that are incorporated in this version. The research was supported by NSF grant DMS 8709428.

References

- J. Dénes and A.D. Keedwell, Latin squares: new developments in the theory and applications, Ann. Discrete Math. 46 (1991).
- [2] R.J. Friedlander, B. Gordon and M.D. Miller, On a group sequencing problem of Ringel, Proc. 9th S-E Conf. Combinatorics, Graph Theory and Computing, Congr. Numer. XXI (1978) 307–321.

- [3] M. Hall and L.J. Paige, Complete mappings of finite groups, Pacific J. Math. 5 (1955) 541-549.
- [4] A.D. Keedwell, On R-sequenceability and R_h-sequenceability of groups, Ann. Discrete Math. 18 (1983) 535-548.
- [5] G. Ringel, Cyclic arrangements of the elements of a group, Notices Amer. Math. Soc. 21 (1974) A95-96.
- [6] C. Wang, On the R-sequenceability of dicyclic groups, preprint.